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ABSTRACT

Personal mobile devices are increasingly equipped with the
capability to sense the physical world (through cameras, mi-
crophones, and accelerometers, for example) and the net-
work world (with Wi-Fi and Bluetooth interfaces). Such
devices offer many new opportunities for cooperative sens-
ing applications. For example, users’ mobile phones may
contribute data to community-oriented information services,
from city-wide pollution monitoring to enterprise-wide de-
tection of unauthorized Wi-Fi access points. This people-
centric mobile-sensing model introduces a new security chal-
lenge in the design of mobile systems: protecting the privacy
of participants while allowing their devices to reliably con-
tribute high-quality data to these large-scale applications.
We describe AnonySense, a privacy-aware architecture for
realizing pervasive applications based on collaborative, op-
portunistic sensing by personal mobile devices. AnonySense
allows applications to submit sensing tasks that will be
distributed across anonymous participating mobile devices,
later receiving verified, yet anonymized, sensor data reports
back from the field, thus providing the first secure imple-
mentation of this participatory sensing model. We describe
our trust model, and the security properties that drove the
design of the AnonySense system. We evaluate our proto-
type implementation through experiments that indicate the
feasibility of this approach, and through two applications: a
Wi-F1i rogue access point detector and a lost-object finder.
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1. INTRODUCTION

Opportunistic sensing has been gaining popularity, with
several systems and applications being proposed to leverage
users’ mobile devices to collectively measure environmental
data, sometimes used as context in pervasive-computing ap-
plications. In these systems, applications can task mobile
nodes (such as a user’s sensor-equipped mobile phone or ve-
hicle) in a target region to report context information from
their vicinity. In this model, the system opportunistically
hands the task to mobile nodes that choose to participate,
and the nodes report sensor data through opportunistic net-
work connections (such as third-party access points they en-
counter). Examples of such systems include CarTel [18],
Mobiscopes [1], Urbanet [31], Urban Atmospheres [40], Ur-
ban Sensing [8], SenseWeb [32] and our own Metrosense [7]
at Dartmouth College. Applications of opportunistic sensing
include collecting traffic reports or pollution readings from
a particular street or part of a university campus [18, 7],
finding parking spots [31], locating lost Bluetooth-enabled
objects with the help of other users’ mobile devices [13],
and even inferring coffee-shop space availability [36].

Although opportunistic sensing is a best-effort service, it
can be useful if there is no fixed-sensor infrastructure in the
places where an application desires sensor data. Indeed, by
leveraging personal mobile devices as its sensor nodes, this
model collects context information closely related to real-life
experience “by the humans, for the humans” and potentially
with little or no infrastructure cost.

In short, opportunistic sensing introduces a new, people-
centric, dynamic and highly mobile communication and com-
putation model. It raises three major challenges.

First, it depends on a large-scale, inherently heteroge-
neous and unpredictable collection of users’ personal devices
forming the sensing infrastructure, in which available mobile
nodes are tasked with specific context requests and expected
to later report the sensed data.

Second, this new model for tasking, sensing, and report-
ing is likely to be implemented across administratively au-
tonomous wireless access points and the public Internet.

Third and most importantly, opportunistic sensing poses
a new security dimension. Users offer the services of their
devices for sensing the environment and usually do not gain
a direct benefit from reporting such data; they, therefore,
will be reluctant to participate in environmental sensing
if their privacy is at risk, or if it consumes too many re-
sources on their mobile device. Since reports usually in-
clude the time and location of the sensor reading, the re-
port could trivially reveal the user’s location at a particular



time. Furthermore, since context is produced by volunteer
users and is queried and collected through third-party access
points, higher-level applications will require certain guaran-
tees about the integrity of the system and the reliability of
reports. The new challenge is to ensure reliable, efficient,
and privacy-preserving context tasking and reporting. In
this paper, we address this challenge and describe how our
system, AnonySense, incorporates new privacy-aware tech-
niques for secure tasking and reporting, and demonstrate
that our solution consumes few device resources. Other ma-
jor systems note these challenges but offer no solutions [1,
7,18, 31, 8, 32].

We should note that simply suppressing or anonymizing
the node’s identity in reports [36] is insufficient to protect
users’ privacy—if multiple reports from nodes can be linked
as being from the same user, they may reveal the identity of
the user [24]. Cryptographic unlinkability [4] is insufficient
if various reports uploaded by a user can be linked based on
the timing of the reports. Care must be taken, therefore,
to ensure that multiple reports from the same user are un-
linkable through timing attacks. Prior approaches provide
only part of the solution for anonymous tasking and report-
ing, because they focus either on a narrow set of pre-defined
applications, or only parts of the tasking and reporting life-
cycle.

To this end, we present AnonySense, an application-
independent infrastructure for realizing anonymous tasking
and reporting that is designed from the ground up to provide
users with privacy. AnonySense provides a new tasking lan-
guage that can express a rich set of context queries; applica-
tions can deliver tasks to anonymous nodes, and eventually
collect verifiable, yet unlinkable, reports from anonymous
nodes. We use a stringent threat model that adopts min-
imal trust assumptions: in particular, we assume that the
mobile-device carriers do not completely trust the system,
the applications, or the users of the applications, with the
anonymity of the reports produced by their mobile devices.
AnonySense is designed so that no entity should be able to
link a report to a particular carrier and, additionally, so that
no intermediate entity can infer information about what is
reported, tamper with tasks, or falsify reports.

To the best of our knowledge, AnonySense is the first se-
cure implementation of this fundamental task-report model
for collecting sensor data, providing flexibility to applica-
tions while simultaneously ensuring the anonymity of users
against strong adversarial models that include timing at-
tacks on reported data. We discuss the tradeoffs for achiev-
ing such anonymity, which comes at the cost of higher la-
tency in receiving reports. For example, higher latencies
may preclude certain real-time applications if privacy is to
be maintained.

To demonstrate our tasking and reporting architecture,
we developed AnonySense within the Metrosense project [7],
and built two applications of interest to the mobile-
computing community. ROGUEFINDER is our application
to task users’ mobile devices to detect unauthorized Wi-Fi
access points in and around the Dartmouth College cam-
pus, and OBJECTFINDER leverages Bluetooth “sensors” on
mobile devices to locate Bluetooth-enabled objects. We use
these applications to measure the performance overhead of
our security protocols, and to demonstrate the feasibility of
privacy-aware opportunistic sensing. We discuss other pos-
sible applications in Section 5.

We note that AnonySense focuses on anonymous tasking
and reporting, but does not address the leakage of private
information through the reported data. For example, a re-
port containing Alice’s office as the location where the sensor
reading was taken leaks information about Alice’s identity.
There is a wealth of research focused on this problem, and
our architecture can be extended to include techniques such
as k-anonymity and spatio-temporal cloaking [35, 15, 14, 19,
17] to reduce the leakage of private data through reports. In-
deed, we propose one such cloaking technique in the context
of AnonySense in another paper [23]. These techniques are,
however, orthogonal to the work presented in this paper,
which focuses on anonymous tasking and reporting. In the
remainder of the paper, therefore, we assume that such tech-
niques are used in conjunction with our tasking-reporting
protocol.

Our contributions.

We summarize the contributions of our work in the con-
text of the design, implementation, and evaluation of mobile
systems and applications as follows:

e We present AnonySense, a general-purpose framework
for anonymous opportunistic tasking and reporting,
which, by design, allows applications to query and re-
ceive context through an expressive task language and
by leveraging a broad range of sensor types on users’
mobile devices, and at the same time respects the pri-
vacy of users.

e We have implemented AnonySense and through exper-
iments we show that our privacy-aware tasking and
reporting approach can be realized efficiently, that is,
consuming little CPU time, network bandwidth, and
battery energy.

e We demonstrate the flexibility and feasibility of
AnonySense in supporting collaborative-sensing appli-
cations by presenting two such prototype applications:
ROGUEFINDER and OBJECTFINDER.

Paper outline.

We present the architecture of AnonySense, formalize our
privacy and security goals and state our trust assumptions
in Section 2. We present our protocols for anonymous task-
ing and reporting in Section 3, followed by an evaluation
of AnonySense in Section 4. We discuss several important
issues related to AnonySense in Section 5, and conclude in
Section 6. Focused on anonymity, this paper omits some
design and implementation details of our system.

2. ANONYSENSE ARCHITECTURE

In this section, we present the AnonySense architecture
for anonymous tasking and reporting. We begin by pre-
senting the system design, followed by a description of our
tasking language AnonyTL, the security properties we de-
sire for our design, and the underlying trust assumptions
and threat model.

2.1 System design

AnonySense has three major design principles: (1) to al-
low a broad range of sensor types and application tasks,
(2) to provide anonymity for participating carriers, and



(3) to provide applications with confidence in the integrity
of the sensor data. The first principle recognizes our goal
to provide a general-purpose framework that can serve a
variety of applications, and can leverage a broad set of mo-
bile platforms. The second principle recognizes that people
will only participate if the design respects their privacy [21];
we provide anonymity for the carrier, with respect to both
the system components and the applications and application
users. The third principle recognizes the need for applica-
tions to receive high-quality information.

Overview.

The foundation of the AnonySense architecture rests on a
dynamic set of mobile nodes (MNs) that volunteer to par-
ticipate. We necessarily assume that there are a variety of
node platforms, including mobile phones, PDAs, laptops,
or other personal mobile devices, with widely varying ca-
pabilities for sensing the physical and network environment
around them. We assume that all mobile nodes have wire-
less access to the Internet, at least intermittently, through
wireless access points (APs) distributed across the sensing
area. We assume the existence of an open-access Wi-Fi in-
frastructure, operated by any number of individuals and or-
ganizations. In many cities, there are municipal Wi-Fi net-
works and Wi-Fi hotspots, as well as privately-owned open
APs, and opportunistic connections are readily available for
applications that can tolerate delay [18].

In AnonySense, applications request the desired context
through tasks, which specify when and where to sense, and
what sensor readings to report. After receiving a task, a
mobile node decides whether to accept the task depending
on certain criteria (related to the node’s ability to correctly
and privately serve the task). If a node accepts a task, the
node produces a series of reports, each of which is a tuple
containing a unique task ID (assigned by the system, de-
scribed below) and a set of task-specified data fields (such
as timestamp, location, and sensor readings). The nodes
retrieve tasks, and submit reports, through an anonymity-
preserving protocol.

Since there may be a large population of MNs; a task may
list criteria to limit which MNs may accept the task. These
“acceptance conditions” may reference static attributes of the
MN or its carrier. This method allows an application to task,
for example, only MNs that are mobile phones and are car-
ried by students. The AnonySense design does not impose
any specific meaning on the attributes, which are defined by
convention with string names and with string or numeric val-
ues. As we explain below, the system verifies the attributes
of an MN and its carrier when the MN first registers as an
AnonySense node. The system will use its knowledge of the
MNSs’ attributes to ensure that applications cannot violate
a carrier’s privacy by crafting narrow attribute-based condi-
tions (see Task verification in Section 3.1).

The AnonySense architecture is demonstrated in Figure 1.
The applications and mobile nodes communicate via the In-
ternet with the system’s four core services: the registration
authority, the task service, the report service, and a Mix net-
work. These services can be administratively independent,
in the sense that they are operated by autonomous entities,
with trust relationships defined by our trust model (below).

Components.
The Mobile Nodes (MNs) are devices with sensing, com-

putation, memory, and wireless communication capabilities.
Mobile nodes are carried by people, or are attached to ob-
jects such as vehicles. We can support stationary nodes,
but consider mobile nodes as the general and common case.
The carrier of a node is the person carrying the node, or
the owner of the vehicle.

The Registration Authority (RA) is responsible for regis-
tering nodes that wish to participate, and for issuing certifi-
cates to the task service and the report service so that appli-
cations and nodes can verify the authenticity of the services.
Mobile-node registration serves three purposes: (1) the RA
verifies that the task interpreter is properly installed on the
node and the node’s sensors are properly calibrated, (2) the
RA verifies the attributes of the mobile node and its human
carrier and records them in the RA database for use in future
tasking decisions, and (3) the RA installs a private “group
key” on the node, so that the node may later sign reports
anonymously as described below, along with the public keys
of the task and report services.

We do not specify here how the RA should verify at-
tributes of the MN carrier. The RA may accept digital cer-
tificates issued by known authorities (e.g., universities, gov-
ernments, or professional organizations) or the RA’s human
operators may verify paper documents to the same effect.

The Task Service (TS) receives task descriptions from
applications, performs some consistency checking (related
to the carriers’ privacy requirements and the feasibility of
the task), and distributes the current tasks to mobile nodes
when they ask to download new tasks. It returns to the ap-
plication a token that may be used in retrieving the tasked
data.

The Report Service (RS) receives reports from mobile
nodes, aggregates them internally to provide additional pri-
vacy, and responds to queries from applications who present
a token to collect their task’s sensor data.

The Miz Network (MIX) serves as an anonymizing chan-
nel between mobile nodes and the report service: it de-links
reports submitted by MNs before they reach the RS. In
general, a MIX allows users to send messages anonymously.
Chaum originally proposed a remailing scheme [9], where
clients sent multiply-encrypted messages in such a way that
each subsequent MIX node could “peel off” a layer of en-
cryption and forward the embedded encrypted message to
the next MIX node as prescribed by the message. In gen-
eral, MIX nodes wait for enough incoming messages before
sending the messages to the next MIX node. Such delaying
and mixing of messages makes it difficult for passive adver-
saries to correlate incoming and outgoing messages. Assum-
ing that there are enough users sending messages via the
MIX, a recipient cannot link multiple messages to the same
sender. Mixmaster [26] is the most popular MIX in use to-
day, and operates as a remailer network. In our AnonySense
implementation, MNs use Mixmaster to send reports to the
RS, although any MIX supporting standard email protocols
(SMTP) would suffice.

2.2 Task language

We defined a simple and expressive language called
AnonyTL for applications to specify their tasks. AnonyTL
allows an application to specify a task’s behavior by provid-
ing a set of acceptance conditions, report statements, and
termination conditions. The acceptance conditions are eval-
uated by the MN after retrieving tasks from the TS. The ac-
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Figure 1: The AnonySense architecture and overview of the communications model. A collection of sensor-
equipped mobile nodes (MNs) register (0) as volunteers with the registration authority (RA). The RA also
certifies the authenticity of (1) the task service (TS) and (2) report service (RS). Applications (App) submit
(3) tasks to the task service; the MNs occasionally download (4,5) new tasks from the TS using the Internet
and any handy wireless access point (AP). The task specifies when the MN should sense information, and
under what conditions to submit reports. MNs report (6) sensed data via any AP and through (7) a Mix
network (MIX), such that the report eventually arrives (8) at the RS. At its convenience, the App fetches

(9) the data from the RS.

ceptance conditions indicate that the MN must have certain
attributes; the report statements implicitly indicate that the
MN must have the necessary sensors. As specified by the re-
port statements, MNs periodically check a set of report con-
ditions against polled sensor values, and if the conditions are
met, prepare a report containing application-specified fields
to send to the RS. These periodic evaluations continue until
a termination condition is satisfied or the task reaches its
expiration date, at which point the task is removed from
the MN’s task pool. We note that tasks are not executable
code; tasks specify sensor readings desired at a particular
granularity, and under what conditions an MN should re-
port data.

We chose to develop a small new language, rather than
using an existing language such as SQL or XQuery, because
we wanted concise task descriptions, a small interpreter foot-
print, easy portability to embedded platforms, and a clean
fit with the semantics of sensing and reporting. Had we used
a query language, we would have needed to wrap it or extend
it to obtain the desired semantics.

We chose a Lisp-like syntax for AnonyTL, with paren-
thesized statements throughout and a prefix notation for
operators, to allow construction of small interpreters. Ap-
plications can specify acceptance and reporting conditions
by using arbitrary logical expressions relating sensor values,

MN attributes, and constants with a set of operators. The
language is strongly typed, and provides meaningful opera-
tors for each type. For example, the spatial point data type
returned by a location sensor can be checked for contain-
ment in a polygon literal using the IN operator. The follow-
ing task (of our ROGUEFINDER application) demonstrates a
simple use of such a comparison:

(Task 25043)(Expires 1196728453)
(Accept (= @Qcarrier ‘professor ’))
(Report (location SSIDs) (Every 1 Minute)
(In location
(Polygon (Point 1 1) (Point 2 2)
(Point 3 0))))

This task uses two sensors: “location,” which provides the
coordinates of the node’s estimated location, and “SSIDs,”
which returns a list of SSIDs responding to a Wi-Fi beacon
probe. The task starts by specifying its taskID = 25043, and
the timestamp (Unix time) at which it expires. The accep-
tance condition corresponds to the second line: only MNs in
which the attribute “carrier” has value “professor” (attribute
names are indicated with @), will accept this task. Further-
more, the reference to a “location” sensor and an “SSIDs”
sensor add implicit acceptance conditions; it would be use-
less to accept a task that required sensors the MN did not
possess. A report statement covers the remaining lines, in-



dicating what to report (the current location and the SSID
list), the sensing interval (once a minute), and a report con-
dition (when the current location is inside the given trian-
gle). There is no explicit termination statement in this task,
but the expiration timestamp serves as an implicit one.
The following task illustrates some additional behavior:

(Task 25044)(Expires 1210392000)

(Accept (< temperature 0))

(Report (location time temperature)

(Every 5 Minute)

(and (< temperature 0) (< humidity 20)))
(Report (location time temperature humidity)
(Every 10 Minute)

(and (> temperature 20) (> humidity 80)))

This task restricts the number of MNs accepting it to
those whose temperature is below 0°C (and, as mentioned
earlier, those MNs who have the sensors needed by the task).
It then polls every five minutes, reporting the sensing loca-
tion, time, and sensed temperature if is still below freezing,
and if the humidity is below 20%. It additionally tests every
10 minutes if the temperature is above 20°C and the hu-
midity is above 80%, reporting humidity in addition to the
earlier values if the conditions are met.

We note that the reports never contain the name of the
MN’s carrier, or a unique identifier for the MN, and are
thus superficially anonymous. AnonySense addresses deeper
threats to anonymity, as described below.

2.3 Threat model

In our design goals we set out to provide two key security
properties: anonymity for the carriers and integrity for the
sensed data. Here we consider the likely threats related to
each goal. In this context, we recognize that an adversary
can come in many forms: as one of the AnonySense applica-
tions or its user, as one of the AnonySense components, or
as a third party (including another MN).

Carrier anonymity.

We seek to provide anonymity for participating carriers,
i.e., the humans who carry MNs. An adversary seeks to
de-anonymize a carrier by linking a given report to a given
carrier or his MN, thus obtaining detailed information (time,
place, or sensor data) about a given MN. For now, we as-
sume that a carrier’s attributes (e.g., “a professor” and “a
Dartmouth person”) are public information.

We assume that the adversary may eavesdrop on com-
munications between the MN and the APs, collude with an
AP or MIX node to intercept the MN’s traffic, attempt to
impersonate the TS to hand out bogus tasks, or attempt
to impersonate the RS to receive reports. The adversary
may submit tasks, via the T'S, and receive reports back from
those tasks. The adversary may register as an MN, and re-
ceive tasks from the TS. Finally, we assume the adversary
is free to observe the carrier’s activities, over time, except
those that generated the report the attacker desires to link
to the carrier. Thus, the adversary is knowledgeable but not
omniscient.

The adversary may attempt to link an MN’s actions (ac-
cepting tasks or submitting reports), and correlate this
linked history of time/location events to known carrier pat-
terns and identify which carrier’s MN generated those re-
ports.

The adversary may attempt to discern the activity of an
MN, or small group of MNs, by submitting tasks with a
specific combination of attributes.

Finally, we imagine that the RS or TS may be an adver-
sary, that is, attempting to link reports to individual MNs,
or to collude with APs to build linkable location histories
that could later be correlated with individual MNs.

Data integrity.

We seek to provide applications with some confidence in
the integrity of the sensor data. An adversary seeks to tam-
per with the sensor data received by applications, or to insert
false data.

We assume that the adversary has all the capabilities de-
scribed for the anonymity threats above. The adversary may
also attempt to submit bogus reports, may intercept and re-
play old reports, may collude with an AP or MIX node to
tamper with reports on the way to the RS, or may attempt
to impersonate the RS to deliver bogus reports to the ap-
plications. The adversary may attempt to tamper with the
MN hardware or software.

Other threats.

We make no guarantees about an adversary who tampers
directly with the MN sensor or its environment. For exam-
ple, an adversary may hold the MN’s temperature sensor
next to a heat source, skewing its reading of the local tem-
perature. In future work, we plan to address the broader
question of how the system, or applications, can verify the
integrity of sensor data.

We do not consider denial-of-service threats in this paper.
In such cases an adversary seeks to deny applications the
opportunity to submit tasks or to receive reports, to overload
the services with excessive tasks and reports, or to cause
MNs to consume excessive resources through burdensome
tasks.

Finally, we recognize that a sophisticated adversary with
a physical infrastructure may track a target mobile device,
e.g., by analyzing RF characteristics. This threat exists re-
gardless of AnonySense, although any techniques to mitigate
this threat could easily be employed by AnonySense.

2.4 Trust model

Our system design and implementation, as in any system,
depends on assumptions about who trusts whom for what
purpose. Here, we define our trust model, with each para-
graph identifying what that entity trusts about the others.

Carrier.

The human carrier of a mobile node trusts the node soft-
ware to properly implement the AnonySense protocols and
trust relationships, as described below.

Mobile nodes.

We assume that all MNs communicate with the TS and
RS using Wi-Fi APs. (Use of other networking technologies
is possible, but the subtle differences are beyond the scope
of this paper.) MNs trust APs to allow Internet connections,
but do not trust the APs (or eavesdroppers) with the confi-
dentiality or integrity of their network traffic, or with their
identity and location (beyond the fact that the MN is in the
AP’s vicinity); in the worst case, a malicious AP or eaves-
dropper may collude with the T'S, RS, or the application.



MNs trust the Registration Authority (RA) to certify the
identities of TS and RS. The MN, therefore, can authenti-
cate the TS (e.g., with SSL) and encrypt reports for the RS.
Likewise, the RA certifies each MN, which can then prove
to the TS and RS that it is a valid node in the system. As
we explain below, MNs can prove their validity anonymously
using a cryptographic construct called group signatures. The
MNs trust the RA to certify the authenticity of each task
whose attributes would not target too narrow a set of MNs.
Last but not least, MNs trust the RA to not conspire (with
any component) against the carriers’ privacy.

Access Points.

The APs, which we assume are owned and operated by
various third parties, need not trust anything about any
component.

Applications.

Applications (Apps) trust the RA to certify the TS and
RS, so that they may authenticate the T'S before sending it
tasks and the RS before downloading reports. Apps trust
the TS to deploy tasks as requested, and to not divulge the
report-retrieval token to any other party. Apps trust the RS
not to drop or corrupt reports, or to give a task’s reports
to another App that does not present the right token. Apps
trust the RA to calibrate MNs, protecting the integrity of
the sensor data. Apps trust that MNs will execute tasks
correctly, and that the carrier of the MN does not tamper
with the node. (See below for more about MN integrity.) For
now, we do not certify or authenticate Apps. In the future
we may require Apps to authenticate, or require the querier
(user of the App) to authenticate, if we wish to control access
to certain kinds of sensor data or limit the right to task
mobile nodes.

Registration Authority.

The RA trusts nothing about any component; it is a root
of trust. Additionally, we assume the RA is administratively
independent from the task or report services.

Task Service and Report Service.

The TS and RS trust the RA to certify only valid MNs in
the system, and they verify an MN’s credentials (see below)
before sending tasks or accepting reports. The TS and RS
need not trust the applications; the TS validates any task
submitted by an application, and trusts the RA to certify
only those tasks that target a sufficiently large subset of the
MNs (see Section 3.1). The RS validates the token provided
by the application before sending it sensor data.

Certifying MNs.

The RA is responsible for certifying valid MNs. It first
verifies that the MN is running the proper version of the
AnonyTL interpreter and that the MN’s hardware and soft-
ware are untampered. It verifies the attributes of the MN
and the carrier, and calibrates the MN’s sensors. Once
complete, it provides the MN with a credential that al-
lows the MN to produce signatures that appear to come
from some valid MN, but the signatures do not reveal which
MN produced that signature. MNs can, therefore, maintain
anonymity and yet prove that they are valid, calibrated MNs
(the credentials are updated upon recalibration).

We use the short-group-signature scheme by Boneh et
al. [2] to allow MNs to generate group signatures. We use
Boneh’s scheme because group signatures are “cutting-edge”
cryptography technology, and Boneh’s scheme was the only
publicly available implementation at the time of writing.

Note that schemes based on group signatures allow for
different levels of privacy for carriers. Some schemes allow
MNs to be deanonymized by a special entity such as the RA,
whereas some schemes maintain unconditional anonymity
for carriers. For a discussion on various techniques that bal-
ance anonymity with accountability, we point the interested
reader to a recent paper on Blacklistable Anonymous Cre-
dentials (BLAC) [39]. AnonySense makes no assumptions
on the revocation capabilities of the RA; some systems may
want the option to identify misbehaving carriers, while oth-
ers may want to guarantee unconditional privacy.

We assume the MNs are tamper-resistant with respect to
software attacks, for example, by leveraging a Trusted Plat-
form Module (TPM) [38]; the RA can test for the presence
of, and proper configuration of, the TPM as part of the
certification process. (Although TPMs are currently avail-
able only on laptops, desktops, and servers, we expect to
see TPMs in smart phones soon— the Trusted Comput-
ing Group released a complete specification of the Mobile
Trusted Module (MTM) in June 2007 [25, 37]. MTMs add
to the TPM’s functionality for use in mobile devices.) The
TPM protects the group-signature key, so that only RA-
certified nodes will be able to generate AnonySense reports
acceptable to the RS. We note that TPMs do not offer
strong guarantees against hardware attacks; nevertheless,
TPMs raise the bar since most users would be unwilling to
tamper with the hardware.

3. PROTOCOL

In this section we describe our privacy-preserving proto-
cols for anonymous tasking and reporting, which provide
security despite the threats of Section 2.3 under the trust
assumptions of Section 2.4.

There are two major protocols: one for getting tasks from
applications to mobile nodes, and the other for mobile nodes
to report sensor data back to applications. We assume that
relationships with the RA are handled offline; for example,
an MN may be registered with the RA at the time of pur-
chase, or by the service provider, when the MN’s sensors can
be calibrated and the AnonySense software can be securely
installed.

3.1 Tasking protocol

We first consider the protocol for anonymously assigning
tasks to MNs.

Step 1. Task generation. The App generates a task using
the tasking language and sends the task to the TS using a
server-authenticated channel (SSL, in our implementation).
The App, therefore, ensures that the true TS receives the
task without being tampered by a third party. As part of
the task, the application specifies an expiration date, after
which the task is deleted by the TS and MNs. The TS
generates a unique task ID for the task.

Tdemix [5] is an alternative, but is currently unavailable
because of its transition to the Higgins project. See http:
//www.eclipse.org/higgins/.



Step 2. Task verification. If the task syntax is valid,
the TS sends the task to RA over a mutually authenticated
channel. The RA computes the value of k, the number of
unique MNs that satisfy the attribute criteria and sensor
capabilities required by this task. If k > k4, where kg is
a global parameter, the RA prepares a certificate stating
that at least k, MNs satisfy the task criteria. (Without
such a safeguard, Apps might craft tasks that target a small
set of users, thereby reducing the privacy of users.) The
RA sends this certificate, which includes a hash of the task
and the task ID, back to the TS. Note that this protocol
insulates the TS from knowledge about individual MNs or
their attributes. MNs and their carriers need only trust the
RA to check the attribute conditions against k.

Step 3. Response to App. If the task is semantically
or syntactically incorrect, or k < kg, the TS replies to the
App that the task is invalid. Otherwise, the TS replies to
the App in a message that contains the task ID along with a
TS-signed certificate for the task ID. The application later
uses this certificate as a token to retrieve data from the RS,
or to tell the TS to cancel the task once it has enough data.

Step 4. Tasking nodes. When MNs have Internet ac-
cess, they poll the TS for tasks over a server-authenticated
channel (using a new address as discussed below). For each
connection, the MN uses anonymous authentication to prove
to the TS that it is a valid MN in the system, without reveal-
ing its identity. To do this, the MN uses a group signature to
sign a nonce challenge provided by the T'S. The TS delivers
all recent, unexpired tasks to the MN. For example, the T'S
will deliver all tasks that have been created in the past three
hours and have not yet expired. This approach means that
some nodes will repeatedly retrieve the same tasks. We sac-
rifice performance here for privacy: if MNs were to reveal
the ID of the last downloaded task, or the time they last
downloaded tasks, it becomes easier to link the MN’s con-
nections. This approach also means that some older tasks
will not be delivered; we assume that most nodes will poll
the TS during the “recent” window so that few tasking op-
portunities will be missed. We sacrifice some task deliveries
here for performance, to reduce the time for each poll of the
TS.2 The TS drops a task when it reaches its expiration
date or when it is canceled by the App.

The MN ignores any tasks it has considered in an earlier
download, and considers the acceptance conditions of new
tasks. The MN accepts any tasks for which it meets the
criteria. Although the AnonyTL engine allows any number
of tasks to “run” on an MN, in future work we will allow MN
policies to limit resources consumed by AnonyTL tasks.

3.2 Reporting protocol

The MN processes the task using the AnonyTL inter-
preter, reading sensors when required and generating reports
as necessary. The MN includes a hash of the task within the
report package, so the application can later verify that the
correct task was provided to the MN. The MN includes a
large random nonce within the report package, so the RS
can detect report replays. The MN signs each report using
the group-signature scheme, encrypts it with the RS public

2We may consider alternatives in future work: MNs may
download a random subset of tasks, or the MN may reveal
certain attributes to the TS, reducing the number of tasks
downloaded at the expense of (some) privacy.

key, and stores it in an outgoing queue. When the network
is available, and there are queued reports, the MN connects
to an AP anonymously (using a new address as discussed be-
low), and delivers reports to the RS, each report a separate
message sent through the MIX. The RS verifies the group
signature on each report when it arrives, thereby verifying
that the report was sent by a valid node. The MIX ensures
that when the reports arrive at the RS, they are “mixed” in
with reports from other users, and hence the RS cannot link
multiple reports to a single user. The mixing step is impor-
tant to prevent the RS from trivially linking “anonymous”
reports together using timing analysis. For the same rea-
son, a low-latency anonymizing network (such as Tor [11])
is inappropriate, because it allows for timing attacks. On the
other hand, since a MIX like Mixmaster delays messages un-
til they can be reliably mixed with other messages, reports
may arrive late and out of order. AnonySense, therefore,
trades off reporting latency for improved privacy for users.

Data fusion.

The RS aggregates reports from a task before delivering
the aggregated results to the application. Reports can be
combined using standard k-anonymity techniques, and the
specific aggregation method depends on the type of data
sensed (such as a picture, an audio file, or temperature read-
ing) and the needs of the App. A detailed discussion of
aggregation methods is beyond the scope of this paper.

Data retrieval.

The App polls the RS for available context data using a
server-authenticated and encrypted channel. The applica-
tion presents the T'S-issued token with the task ID, proving
that it is authorized to access the data from that task. En-
cryption prevents eavesdroppers from receiving sensor data
they do not deserve, and ensures the integrity of data trans-
fer from the RS to the App.

MAC addpress recycling.

Using anonymous authentication is useless if an MN can
be tracked using its static MAC address, because MNs must
assume the APs may collude with the TS or RS. We as-
sume the MN changes its MAC and IP addresses using one
of the standard mechanisms [16, 20] so that an MN’s re-
port and task actions may not be linked. Addresses should
be recycled for each tasking or reporting session, for maxi-
mum privacy. The MIX serves to defeat timing attacks that
link reports submitted in the same session, and the use of
random intervals between connections to the TS protects
the MN from attempts to link tasking operations. Recently,
Pang et al. show how users’ privacy can be reduced through
802.11 fingerprinting [30], and therefore better mechanisms
are needed to prevent such inferences.

3.3 Security properties

The above AnonySense protocol, given the trust model in
Section 2.4, provides anonymity to the MN users and ensures
integrity of the sensor data reported to the applications, as
follows.

e An adversary (even an AP) can learn little by eaves-
dropping on the MN’s communications, because all
communications with the TS or MIX are encrypted,
and the MN rotates its MAC and IP addresses for each



such session. We note that MAC and IP rotation pro-
vides unlinkability at the granularity of an AP. After
a MAC and IP rotation, the user appears to be a new,
possibly different, user in the vicinity of the AP.

e An adversary may not pose as the TS or the RS, be-
cause both the MNs and the Apps have a certificate
from the RA to the public key for the T'S and the RS,
and they use an authenticated channel (such as SSL) or
encrypted messages to secure these communications.

e The TS may not link an MN’s tasking operations to-
gether, because each poll arrives from a new IP address
and the polling interval is randomized.

e An adversary can learn little by submitting tasks to
the system, because any task must satisfy £ > k4 to
be distributed to mobile nodes. Adversaries, therefore,
cannot construct tasks to target a narrow set of users.

e An adversarial MN may receive many of the tasks in
the system, but since (a) we ensure that the TS val-
idates an MN before providing it tasks, (b) the RA
certifies MNs as valid only if they have some tamper-
resistant features (such as TPM) and have our soft-
ware installed, and (c) our software will not divulge
the tasks (except possibly to its human carrier), an ad-
versary cannot see the tasks. The tasks are encrypted
in the air and thus cannot be sniffed by a third party.

e An adversary may attempt to link reports together,
or link task actions to report actions, but we foil these
attempts. The MN rotates its MAC address every time
it connects to the system, it uses random TS-polling
intervals, and it uses a MIX to temporally separate its
reports sent to the RS. These methods prevent even
the RS or TS from linking tasks or reports.

e Any report submitted by an adversary will be re-
jected, because an adversary does not have the group-
signature key necessary to sign reports, and cannot
easily extract it from an MN due to its tamper-
resistant features.

e An adversary cannot replay an intercepted report be-
cause of the nonce encoded within the signed and en-
crypted report, and the RS memory of reports already
submitted.

e An adversary cannot tamper with reports between the
MN and the AP, within an AP, or within a MIX node,
because all reports are signed by the MN and en-
crypted with the RS public key.

e If TPMs are used, an adversary cannot tamper with
the MN software because the TPM hardware will de-
tect software tampering (at load time) and fail to pro-
vide the group-signature key for signing future reports.
As mentioned earlier, using TPMs would provide secu-
rity against adversaries unwilling to perform hardware-
based attacks.

A more detailed proof of these properties is beyond the
scope of this conference paper.

Figure 2: Implementation

4. EVALUATION

We implemented AnonySense. The services run on generic
Linux servers. The mobile-node software runs on a Linux
PDA (the Nokia N800) and the Apple iPhone, and can be
easily ported to any other Unix-based platform.

In this section we describe our implementation and eval-
uation. Our evaluation focuses on the cost the implemen-
tation imposes, particularly on the mobile nodes’ resources:
network bandwidth, CPU time, and battery life.

4.1 Implementation

Figure 2 illustrates the overall architecture of our proto-
type implementation. The AnonySense services (RA, TS,
and RS), a single-node MIX, and an application component
run on a Linux desktop. To minimize network effects during
testing, the services were connected to Dartmouth’s Com-
puter Science wired network (100 Mbps switched Ethernet),
and the MNs were connected to Dartmouth’s wireless net-
work, which consists of about 1500 APs spread throughout
the campus. Although a real AnonySense deployment would
require multiple MIX nodes, we needed only one node for
the purpose of our measurements; we obtain realistic MIX
latency information from the literature.

Communications.

Our implementation leverages standard protocols imple-
mented by open-source libraries, resulting in compact and
robust code. The Apps POST their tasks to the TS over an
SSL-encrypted HTTP channel, after authenticating the TS
using the certificate from the RA. In response, T'S provides
the App a URI and token. The MN also communicates with
the TS using an SSL-encrypted HTTP channel, requesting
and downloading tasks after authenticating to the T'S using
the group signature. The TS communicates with the RA us-
ing a mutually-authenticated SSL-encrypted HTTP channel
to submit a task to the RA and receive a digital signature
certifying that the RA has verified the task (see Section 3.1).
The MN communicates with the MIX by encrypting its re-
port with known MIX node keys, and then sends the mes-
sage using SMTP, which the MIX ultimately forwards to
the RS. The App finally polls the RS over HTTP with the
TS-provided URI and token to retrieve new reports, again
validating the authenticity of the RS using the certificate
from the RA.

Servers.
The AnonySense services are written in the Ruby pro-



gramming language (v1.8). Both the TS and RA are im-
plemented using Camping [6], a micro-framework for devel-
oping small HTTP servers, with the actual SSL and HTTP
handling done by Mongrel [27]. The RS is a simple Ruby
script that processes emails as forwarded by the postfix email
server. The RS verifies and decrypts emails forwarded to it
by the MIX, storing reports for later retrieval by the App.
Each server is backed by a SQLite3 database for persistence.

Mobile node.

We use a Nokia N800 (with 330 MHz TI OMAP 2420
processor and 128 MB DDR RAM) equipped with IEEE
802.11b and Bluetooth 2.0 interfaces. Although this popu-
lar device is not a mobile phone, its features are comparable
to many “smart” phones; we chose this device because its
OS (Linux) eases system development. There are no PDAs
or mobile phones with TPM support, yet, so our implemen-
tation currently trusts the MN to correctly implement the
AnonyTL interpreter and the AnonySense protocols; our
evaluation does not include the cost of operating with a
TPM. The MN software also compiles and runs on the
iPhone, but due to the current closed nature of the platform
APIs, its sensing capabilities are limited to 802.11-related
measurements (including localization) only.

The AnonySense MN software is written in C++. It
downloads tasks from the T'S using libcurl, and verifies task
signatures using the RSA and SHA-1 functions provided by
OpenSSL. To parse downloaded tasks, the AnonyTL inter-
preter uses a Bison/Flex-generated parser. Wireless SSID
scanning capabilities are provided by the wireless tools (li-
biw version 28) library, and the equivalent Bluetooth capa-
bilities are provided by BlueZ’s hcitool utility. Localization
is currently performed by Skyhook’s Wi-Fi library [34], but
it is possible to use any other such library with minimal
effort.

When reporting, the MN generates a random AES key
and uses OpenSSL to encrypt the prepared XML? report
with it, appending a copy of the key encrypted with the
RSA public key for the RS. It then signs the package with
Boneh’s short group signatures using a modified version of
Stanford’s PBC_sig library (version 0.0.2, using the included
d159 pairing parameters). We used the Mixmaster utility
(version 3.0rcl, slightly modified) to prepare a MIX message
and send it using libsmtp 0.8.5.

For simplicity, our current implementation does not im-
plement MAC-address rotation. We were able to change
the MAC address on our N800s, and thus do a MAC ad-
dress rotation; we recognize this trick may not be possi-
ble on all platforms due to limitations of their hardware or
software. We also do not currently implement the group
signature-based authentication step of the tasking protocol.
This change, however, should not affect the performance of
the tasking step significantly, adding only a group-signature
computation (the cost of which we evaluate separately in
the context of reporting) and some additional data transfer
over the network for the signature.

4.2 Applications

To demonstrate AnonySense operation, we implemented

3We use XML for reports because (unlike with AnonyTL)
we have no special requirements for the report format. It
needs to be able to encode key/value pairs for sensed values,
and XML is a well-recognized standard for that purpose.

two simple applications. Each uses the network interfaces of
the N800 as sensors, although we have also written similar
applications that use the N800’s physical sensors (its micro-
phone, for sound-level measurements). Although these are
just two applications, AnonySense is designed and able to
support a broad range of application types.

Application ROGUEFINDER.

The ROGUEFINDER application is used to detect rogue
APs in a given area. To accomplish this, ROGUEFINDER
tasks the AnonySense system to report all APs visible to the
MNs. The sensor in this case is the MN’s Wi-Fi interface;
the interface sends a probe request on every Wi-Fi channel
and listens for probe responses from APs. ROGUEFINDER
then checks the list of APs reported against a list of known
deployed APs to determine which are rogues. When a rogue
AP is detected, then ROGUEFINDER can display a marker
on a map that is the approximate location of the rogue AP.

Granted, given an extensive static infrastructure, it might
be possible to detect most rogue APs. A large deploy-
ment, however, typically has gaps in its coverage, particu-
larly near the edges, in which it is difficult or impossible for
static methods to effectively detect rogues; MNs tasked by
ROGUEFINDER can potentially cover the gaps in the static
infrastructure.

Application OBIJECTFINDER.

Our inspiration for OBJECTFINDER comes from a simi-
lar application described earlier [13]. If a person loses one
of their Bluetooth devices, they can use OBJECTFINDER to
task AnonySense to find a specific Bluetooth MAC address.
When an MN detects the specified MAC address, it then
reports the current location. The App is then able to mark
on a map where the Bluetooth-enabled object was detected.
Although the positioning may be crude, one could easily
imagine OBJECTFINDER being extended to include other in-
formation such as signal strength so triangulation can be
used for more accurate object positioning.

Because a Bluetooth scan takes a significant amount of
time (10.5 sec on average in our experiments), a recent pa-
per provides a method for computing the optimal probing
interval [41]. Rather than specifying a fixed sensing interval,
as in our current implementation, OBJECTFINDER could re-
quest an adaptive interval and leave it to the MN to adjust
its probing interval to its environment.

4.3 Experimental Results

Our tests were conducted in the Dartmouth Computer
Science building, with around 60 distinct Wi-Fi BSSIDs vis-
ible from the testing station, and around 3-7 discoverable
Bluetooth devices in the vicinity.

Methods.

We ran the ROGUEFINDER application with a single Nokia
N800 registered with the AnonySense system. We measured
the CPU time by logging timestamps between different op-
erations. Data transfer between the MN and servers was
captured by WireShark and analyzed by tcptrace to extract
statistics of TCP flows of interest. We measured the energy
consumption of the device by measuring the voltage and cur-
rent between the battery and the device across a test resis-
tance of 0.5 Q using an Agilent 34401 A multi-meter. We also
measured the base energy consumption of the device without



Table 1: Data Transfer in Bytes
TCP Stream | Bytes

MN — TS 478
MN «— TS 3086
Total 3564

MN — MIX | 29164
MN «— MIX 297
Total 29461

any applications running. We subtracted these base values
from the measured energy consumptions to get the net en-
ergy consumption of various applications. We found that
measurement results for ROGUEFINDER in this section are
similar to the OBJECTFINDER application, except that the
cost of the Wi-Fi scan is replaced with that of a Bluetooth
scan.

Overall results.

After walking around our building with an MN for sev-
eral minutes, the MN detected 84 unique APs, of which
ROGUEFINDER determined 12 to be rogues, that is, not part
of the official campus infrastructure. Out of 50 repetitions,
it took 15.5 seconds on average for the MN to receive the
ROGUEFINDER task, perform one scan, and issue a report.
In our experiment, the average power cost was 6.64 mW and
a complete task-scan-report cycle cost 0.11 Joule on average.
As a rough benchmark, this power consumption is 17 times
smaller than MP3-quality audio streaming on the N800. Al-
though in this experiment the ROGUEFINDER task was set
to report only once, a more realistic operation would send a
task that senses and reports periodically, over a given period,
so the costs for tasking (bytes, energy) would be amortized
across many reports.

Data Transfer.

We analyzed the data exchanged over the lifetime of a sin-
gle task from the point at which the MN contacts the TS
to when it reports to the MIX. We are concerned only with
the number of unique bytes sent over the TCP streams, so
we ignore retransmits. The total number of bytes exchanged
was 33,025 bytes (32.3 Kbytes). Table 1 shows the detailed
data transfer for each direction. The total data exchanged
when the MN communicates with the TS will scale linearly
as the number of tasks increases with some fixed overhead
for the SSL encryption headers. Data transmitted from MN
to RS will grow linearly in the number of reports submitted,
but in discrete increments due to the MIX protocol requir-
ing large message paddings to evade statistical attacks on
message contents.

Overall energy consumption.

Table 2 illustrates how the energy cost of a whole cycle
of tasking, sensing, and reporting compares with the con-
sumption of various multimedia applications. The purpose
of this comparison is to give an intuitive sense of the mag-
nitude of energy consumption in AnonySense compared to
other common activities someone might do on their MN.
For example, the energy consumed by one ROGUEFINDER
tasking is equivalent to the energy consumed by playing
a local MP3 file for 46.8 seconds. We also note that the

power consumption by ROGUEFINDER tasking is larger than
streaming radio (33 kbps) but less than streaming MP3
(128 kbps) over the network. In another experiment, we
found that ROGUEFINDER reduced the battery lifetime of
a fully charged N800 by 5.26% (from 285 minutes without
ROGUEFINDER to 270 minutes with ROGUEFINDER). In this
experiment we simulated a network-heavy usage scenario by
playing streaming audio continuously while downloading 20
emails per hour. The tasking operation was also heavy; one
ROGUEFINDER cycle per minute. We ran two sets of exper-
iments and report the average.

Table 2: Multimedia job equivalent to one cycle of
a ROGUEFINDER task (15.5 sec. with 6.64 mW)

Application Power Job
Local MP3 play 2.34 mW 46.8 s
Streaming Radio | 4.55 mW 24.0 s
Streaming MP3 7.61 mW 144 s
Local Video play | 9.23 mW 11.8 s
Streaming Video | 16.88 mW 6.4s
Download 22.92 mW | 746.1 KByte

Detailed energy consumption.

One sensing task can be divided into several sub-
operations. First, the MN retrieves tasks from TS (Task-
ing), executes the task once (Sensing), generates and signs
the report (Signing), and sends it to RS (Reporting). Ta-
ble 3 shows the cost of each operation. As shown in the
table, the execution of a ROGUEFINDER task took the most
time (46.6%) and energy (49.1%). The energy consumption
of the sensing operation depends on the type of application
being tasked. With ROGUEFINDER, the MN needs to probe
all channels to retrieve a list of open access points, which
is the most expensive operation, in terms of Joules. The
next most expensive operation is computing group signa-
tures of reports. In general, Tasking is more expensive than
Reporting due to the SSL connection with the TS. Finally,
the table lists the OBJECTFINDER sensing cost (BT Sens-
ing); other OBJECTFINDER costs are equivalent to those in
ROGUEFINDER.

Table 3: Energy cost of task sub-operations

Operation Time Power | Energy | Fraction
Tasking 1.1s | 11.26 mW | 12.1 mJ 11.0 %
Wi-Fi Sensing 7.2's 7.44 mW | 53.8 mJ 49.1 %
Signing 528 | 5.16 mW | 26.6 mJ 24.3 %
Reporting 2.1s| 834mW | 17.1 mJ 15.6 %
BT Sensing 10.5s | 2.87TmW | 30.0 mJ

S. DISCUSSION

In this section we discuss subtle issues of our design or
implementation.

Scalability.
The vision of people-centric urban sensing seeks to achieve
a metropolitan scale, with thousands of devices being tasked



and sending reports. We expect AnonySense to scale well
with careful implementation. The TS, RS, and RA can all be
replicated by borrowing load-balancing techniques from the
web [10, for example]. The MIX easily scales by adding more
MIX nodes, and encouraging MNs to choose MIX nodes ran-
domly.

As the number of concurrent tasks grows, the burden on
MNs may increase. There are two simple refinements. First,
to reduce the download burden when an MN requests tasks
from the TS, the TS could provide a random subset of tasks
rather than all tasks. Second, to reduce the overhead of ex-
ecuting tasks, an MN can impose resource constraints that
cause it to reject some tasks for which it otherwise is quali-
fied.

Task dissemination.

The flip side of too many tasks is too many reports: an
App may submit a task only to find that it receives far more
reports than needed or desired. AnonySense allows Apps
to explicitly remove a task, e.g., after receiving the desired
number of reports. For long-running tasks that may not re-
port quickly, we could adjust the language so an App can
code the task to send a null report immediately (Report
(timestamp) (once)), thus allowing the App an early in-
dication of how many MNs have accepted the task. (We
cannot allow the TS to count task acceptances, by expect-
ing the MN to indicate acceptance during tasking, since that
allows TS to link information about the carrier’s identity to
its MN’s IP address.)

Attribute-based tasking.

The number of MNs satisfying the requirements of an
attribute-based task may be small enough to be a privacy
concern. AnonySense uses the parameter kg to ensure that
at least ky; MNs satisfy the specified attributes. Reported
data, however, includes information such as time and loca-
tion where the reading was taken. External knowledge of
movement patterns may be used to reduce the reporter’s
purported kg-anonymity. For example, even if there are
100 professors on campus, a professor reporting from the
CS building may have only 10-anonymity (instead of 100-
anonymity) since there are known to be only 10 CS pro-
fessors on campus. As mentioned in Section 1, we defer
to existing techniques such as spatio-temporal cloaking and
k-anonymization at the server. For example, the RS could
filter or aggregate reports to provide additional k-anonymity
against the Apps, using a k; parameter provided by the
MN as part of its report. Specific strategies for setting the
anonymity parameters (k; and kg) is an interesting problem,
outside the focus of this paper. We propose another alter-
native based on “statistical k-anonymity,” where MNs can
perform spatio-temporal cloaking on the reported data for
added privacy [23].

Carrier policy.

Currently, an MN accepts and executes tasks automati-
cally, with no intervention from the human carrier. Clearly,
it would be inconvenient to repeatedly prompt the carrier
about which tasks to accept. We intend to explore mecha-
nisms for carriers to configure a personal policy about which
kinds of tasks to accept, and which kinds of information to
divulge. From our experience [22], such an interface must
be extremely simple to be effective.

TPM for data integrity.

To provide confidence in sensor data and to protect pri-
vate group keys, AnonySense leverages TPM-protected mo-
bile phones. This RA-certified, TPM-controlled platform
may, however, be cumbersome to the carrier. For exam-
ple, carriers may want the freedom to install applications
without being constrained by TPM-based attestation. In
future work, we plan to explore the data integrity issue un-
der a more modular sensing paradigm that does not require
TPMs.

Data aggregation.

We de-emphasize in-network aggregation in the
AnonySense architecture. We believe that urban mobile-
sensing systems, as opposed to traditional sensor networks,
will feature devices (such as mobile phones) with frequent
Internet connectivity. With such devices, bandwidth at the
link layer and network layer does not appear to be a major
impediment.

Delay tolerance.

We make use of a MIX to allow clients to upload reports
efficiently in a single network connection, while maintaining
the unlinkability of reports. As a consequence, reports arrive
at the Report Service after being delayed by the MIX. The
amount of delay depends on the population of MIX users
and the message flow rate. Current deployments of Mixmas-
ter show that messages can arrive in a few minutes, or may
take hours. In general, as the number of messages passing
through the MIX increases, the latency goes down because
the MIX queue fills up faster. Thus, as more carriers join
AnonySense and report, the latency of reports will go down.
If the application is sensitive to delay, and needs low-latency
reports, nodes could rotate their MAC and IP addresses be-
fore sending each report directly to the RS. Given a queue of
reports, however, rotating MAC addresses could take time.
For example, Jiang et al. [20] found that a 12-minute “silent
period” was needed before rotating the MAC address to pro-
vide reasonable unlinkability. We believe, therefore, that us-
ing a MIX to send reports is more pragmatic, especially since
it reduces the window during which the MN must maintain
an active network connection, making it more able to take
advantage of brief connectivity [18]. If an application needs
to know the specific time at which data was sensed, it can
request a timestamp from the MN, keeping in mind as men-
tioned above that the timestamp reading may be blurred by
the MN to provide suitable k-anonymity [23].

Using either approach, applications would need to wait for
several minutes before receiving reports for their tasks. Un-
der our set of trust assumptions, AnonySense is best suited
to delay-tolerant applications. We have demonstrated how
applications such as OBJECTFINDER and ROGUEFINDER can
tolerate delays and find objects or rogue Wi-Fi access points
successfully.

Data quality.

It is intuitive that providing better, more accurate data
leads to less privacy for carriers, and that more privacy nec-
essarily means less accurate data. The specifics of this trade-
off may be predicted for time and location data based on his-
torical movement patterns, so we could allow an application
to request a certain granularity of either time or location,
and have the MN blur the other dimension appropriately so



that k-anonymity is respected with high probability. Using
this idea, it may also be possible for an application to spec-
ify desired granularities for both time and space dimensions,
allowing the MN to reason about the k-anonymity such pa-
rameters would afford it and make a policy decision about
whether to report. We explore some of these tradeoffs in our
work on statistical k-anonymity [23].

Wi-Fi vs. cellular networks.

An alternative to the AnonySense architecture would be
to rely on cellular-phone service providers to track carriers at
all times (as they already do), and route tasks and reports
through the cellular network. We believe, however, in an
architecture that preserves carriers’ privacy without placing
as much trust in the provider. (There have been cases where
U.S. providers have handed over sensitive data about users
without a subpoena [28].) AnonySense, like CarTel [18],
leverages the growth of open-access Wi-Fi networks, and
AnonySense is designed to ensure carriers’ anonymity while
contributing sensing data for community use.

Privacy risks in ROGUEFINDER.

AnonySense has been carefully designed to protect the
anonymity of carriers who accept and report on tasks. No
component of the system knows which MNs or which car-
riers have accepted a task, or which MN submitted a given
report. In certain conditions, and for certain types of tasks,
however, it may be possible for an external observer to learn
something about the MN.

ROGUEFINDER uses active Wi-Fi probes to scan for nearby
APs. Suppose an adversary (Alice) wishes to learn more
about the attributes of a nearby AnonySense carrier (Bob).
Alice submits a task asking MNs to probe Wi-Fi every 1.23
minutes, say, and includes attribute conditions to limit the
set of MNs that accept the task. Sniffing the Wi-Fi network,
Alice can tell if Bob’s MN accepted the task by observing
whether Bob probes the network every 1.23 minutes, in ad-
dition to its pre-tasking probing interval. By submitting a
series of tasks, with carefully constructed attribute-based ac-
ceptance conditions, Alice may eventually be able to learn
many of Bob’s attributes. Since we currently assume at-
tributes are not sensitive information, this attack is not a
serious threat. The solution to this problem is for the MN
to add a random time delay before using any “active” sensor,
that is, whose operation can be externally observed. It re-
mains future work to consider more general cases and more
general solutions.

Privacy risks in OBJECTFINDER.

OBJECTFINDER depends on the lost object being “discov-
erable” in Bluetooth. Many people commonly leave their de-
vices in discoverable mode, and thus it is possible to harvest
the MAC addresses carried by a person simply by stand-
ing nearby. Later, one could use OBJECTFINDER for stalk-
ing that person, by tasking thousands of MNs to help track
the location of the victim’s MAC addresses. One solution
is for people never to leave devices in “discoverable” state,
but then OBJECTFINDER cannot help find lost devices. One
alternative, assuming a person carries multiple paired Blue-
tooth devices, would be for a device to periodically become
discoverable when it has been out of contact with paired de-
vices for several minutes. More sophisticated solutions are
possible, but require changes to the Bluetooth protocols.

Another potential risk is a race to find a lost device. An
adversary may use OBJECTFINDER to start his or her own
search in an attempt to find the device first. Although
the tasking protocol and tamper-resistant MN could pre-
vent carriers from learning the contents of tasks, as a design
decision we believe it is important to allow carriers to in-
spect tasks, and thus a savvy AnonySense participant may
discover the Bluetooth address of an object being sought.
Later, when we develop a carrier-configurable policy mod-
ule, we may choose to hide the task from the carrier but
expose the task to the policy module, reducing this risk.

An observant third-party adversary may notice many
Bluetooth devices issuing discovery probes, but since these
do not expose the MAC address of the lost item they cannot
learn the MAC address to seek.

MN safety.

As mentioned above, we do not consider denial-of-service
attacks in this paper. One concern of any cooperative ap-
plication is excessive use by greedy or malicious users. An
application, or its users, may issue many tasks, or tasks that
require excessively frequent sensing or reporting. We imag-
ine two aspects to a solution. Globally, the TS can throttle
aggressive users or applications by authenticating users or
applications and then applying rate limits, or requiring some
form of (anonymous) payment. Locally, an MN can ana-
lyze the task before accepting it, rejecting tasks with short
sensing or reporting intervals; the MN can also drop tasks,
sensing duties, and drop or delay reports when it is low on
resources. The specific mechanisms remain as future work.

Other applications.

There are many exciting possible applications for a system
like AnonySense. We mention a few here, some of which have
been imagined or even prototyped by others.

A small modification to ROGUEFINDER could map both
802.11 coverage and quality around campus.

We implemented a QUIETFINDER, which maps the sound
levels around campus. The task is just like ROGUEFINDER,
except using the N800’s microphone as a sound-level sensor.

For runners or bikers [12], one could use an accelerometer
and GPS to detect running or biking activity and have an
application identify the popular routes and their difficulty.
Variant: use an outboard Bluetooth sensor (such as pulse or
respiration) to sense physical exertion. Or, contribute loca-
tion data from bikers toward a street map of the world [29].

One could task mobile nodes to send images or video from
locations of interest; one set of researchers use peer-to-peer
communications for nearby cellphones to coordinate video
capture and analysis [33]. (We have concerns about privacy
from any image-based tasks, however!)

Suppose public infrastructure (such as street lamps, park-
ing meters, fire hydrants) were instrumented to transmit
beacons (or respond to probes) when they need service.
Then tasks could report the location and serial number of
the broken object; as long as the timestamp is blurred (e.g.,
reporting the date but not time) the carrier’s location pri-
vacy would be reasonably preserved.

There are many potential opportunities related to wellness
or health care. The Continua alliance lists some use cases [3].

For public safety, imagine if MNs had radiation detectors.
In addition to a local application that informs the carrier
about their own personal exposure to radiation, tasks can



provide health officials information about when and where
radiation is detected, enabling better tracking of a plume
resulting from a dirty bomb.

Other papers about people-centric sensing or urban sens-
ing imagine yet more applications [1, 7, 8, 18, 31, 32].

6. SUMMARY

We present AnonySense, a comprehensive system aimed
at preserving the privacy of users in opportunistic-sensing
environments. AnonySense allows a variety of applications
to request sensor data using a flexible tasking language, and
later receive by the system the sensor data from personal
mobile devices. Data is collected in an opportunistic and
delay-tolerant manner, in which a large and dynamic set of
mobile nodes can volunteer to accept tasks and send back
reports, both reliably and anonymously.

We implemented and evaluated our system in the context
of two applications, OBJECTFINDER and ROGUEFINDER,
and our results show that sensor data can be reliably ob-
tained, from anonymous users, without much overhead. We
believe a privacy-aware architecture will make opportunistic
sensing infrastructures more acceptable, since users will see
little risk to their privacy by participating in applications
that provide them with indirect benefits.
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