Know Why Your Access Was Denied:
Regulating Feedback for Usable Security

Apu KapadiaT

Geetanjali Sampemane

Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801

{akapadia,geta,rhc}@cs.uiuc.edu

ABSTRACT

We examine the problem of providing useful feedback about
access control decisions to users while controlling the dis-
closure of the system’s security policies. Relevant feedback
enhances system usability, especially in systems where per-
missions change in unpredictable ways depending on contex-
tual information. However, providing feedback indiscrimi-
nately can violate the confidentiality of system policy. To
achieve a balance between system usability and the protec-
tion of security policies, we present Know, a framework that
uses Ordered Binary Decision Diagrams (OBDDs) and cost
functions to provide feedback to users about access control
decisions. Know honors the policy protection requirements,
which are represented as a meta-policy, and generates per-
missible and relevant feedback to users on how to obtain
access to a resource. To the best of our knowledge, our
work is the first to address the need of useful access con-
trol feedback while honoring the privacy and confidentiality
requirements of a system’s security policy.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Controls; H.5.m [Information Interfaces and Pre-
sentation]: User Interfaces

General Terms

Security, Human factors

*This research is supported in part by the National Science
Foundation NSF CCR 00-86094 and CISE EIA 99-72884 EQ

TApu Kapadia is funded by the U.S. Dept. of Energy’s
High-Performance Computer Science Fellowship through
Los Alamos National Laboratory, Lawrence Livermore Na-
tional Laboratory, and Sandia National Laboratory.

Permission to make digital or hard copies of all or part of this work for

Keywords

Security, access control, policy protection, privacy, feedback,
usability

1. INTRODUCTION

When a user is denied access to a resource, what level of
feedback should the system provide? At one extreme, the
system can conceal all policy information and respond with
a simple “Access denied.” Many security systems use this
policy, on the grounds that an unauthorized user must not
be given any further information. However, such a system
is less user-friendly to legitimate users, because they are not
given enough feedback to reason about, and correct, errors.
This problem is exacerbated when access also depends on
contextual information, and permissions change based on
factors like room activities and time-of-day—without feed-
back, a user has no way of discerning why some attempts
succeed and others fail. At the other extreme, the system
can be completely open about its policies and make them
public knowledge. Users can then reason about their ac-
cess to resources, making such a system more usable. While
feedback to legitimate users is often a desirable feature, un-
restricted feedback can be harmful, for example, by assist-
ing intruders probing system security in finding out where
to direct their attacks. Another problem with open policies
is information leakage—policies contain enough information
to allow legitimate users to deduce what other system users
can access, thus violating the privacy of those other users.

As systems get more complex, access policies get more
complicated too, and it is unreasonable to expect users to
memorize all the conditions that affect access. It thus be-
comes important to provide useful feedback to legitimate
users, while also addressing privacy and security concerns of
the system’s policies (i.e., providing suitable policy protec-
tion). Any such system makes a trade-off between usability
and policy protection. While this issue has not been ade-
quately researched, common operating systems do provide
primitive forms of policy protection. For example, UNIX

personal or classroom use is granted without fee provided that copies areallows users to look at a file’s permissions if they have (exe-
not made or distributed for profit or commercial advantage and that copies cute) access to that directory. However, for two files in the
bear this notice and the full citation on the first page. To copy otherwise, t0 game directory, there is no way to hide the policy for one file
republish, to post on servers or to redistribute to lists, requires prior specific ;. 1 110t the other. Users generally protect access to files or

permission and/or a fee. hide their existence (by denying a directory listing). While

CCS’04,0October 25-29, 2004, Washington, DC, USA. ; ’ 4 . .
Copyright 2004 ACM 1-58113-961-6/04/001($5.00. this coarse-grained policy protection has been adequate in

conventional systems, we believe that new ubiquitous com-
puting |18| environments accentuate the problem of policy
protection and feedback.

Users in ubiquitous computing environments typically in-
teract with a plethora of computing, communication or I/O
devices in their vicinity in many ways—voice, gestures, and
traditional keyboard-and-mouse input being some of them.
Different sets of users are allowed access to different subsets
of resources, and these permissions may change depending
on contextual information such as the time of day, the cur-
rent activity, or the set of people involved. In such an en-
vironment, it may not be clear to a user why he or she was
denied access to certain resources. Thus, informative feed-
back about why access was denied becomes very important
if the system is to avoid annoying users with apparently-
arbitrary restrictions. However, as mentioned earlier, un-
restricted feedback about who is allowed to do what in the
system could itself compromise system security and privacy;
therefore, policies need to be protected against inadvertent
disclosure. As a first step in this direction, we present a feed-
back model called Know, which uses meta-policies for policy
protection and cost functions to compute useful feedback.

Know examines the meta-policy that protects a policy
and determines the level of feedback that can be provided
to a particular user. For example, a student trying to access
an audio device in a conference room may be told to return
after the ongoing meeting has finished. However, a meeting
participant may be informed that the meeting chair has ac-
cess to the audio device. The basic challenge in providing
informative feedback is to identify the conditions required
for the requested operation to be allowed, i.e., find a way
to “satisfy” the access control rule guarding that operation.
This may involve the user activating a different role (or pre-
senting a different credential) or waiting for the context to
change (e.g., the current activity configuration of the space).
Searching all the rules that guard a particular action will
determine all the situations in which this operation is per-
mitted. Know can use this information to suggest viable
alternatives. A cost function is used to represent the rela-
tive difficulty of changing an attribute to satisfy an access
condition—it may be easier for a Student to wait for the end
of a meeting to be allowed access to a printer, rather than
to become a Room Administrator to print the document
immediately.

Satisfiability is an NP-complete problem in general. How-
ever, in our experience with smart spaces, policies for indi-
vidual devices involve a small number of variables, resulting
in tractable state space exploration. For this purpose, we
use ordered binary decision diagrams (OBDDs) [14] as an
efficient and compact representation of policies (or rules),
and search for conditions that satisfy the access rules. OB-
DDs are graph structures, which makes it easy to apply cost
functions and shortest path algorithms for providing useful
feedback. While certain degenerate cases can result in expo-
nentially large OBDDs, there are several heuristics to reduce
the size of OBDDs in general. To improve performance, the
OBDDs are computed in advance by Know. Know provides
feedback to the user only if it can do so within reasonable
bounds of time and space.

This work is an initial attempt to address the problem of
providing useful feedback about security decisions in ubiqui-
tous computing systems while honoring protected policies.
Our main argument is that system feedback is more useful if

it is tailored to the intended recipient and based on his or her
current permissions rather than a generic “Access Denied”
message, and that it is possible to provide such feedback
while still protecting policy information appropriately.

The rest of the paper is organized as follows—Section 2]
discusses some necessary background and Sectiondescribes
the system architecture including the use of OBDDs and
cost functions to efficiently generate feedback. In Section
we describe our implementation of Know and show how it
presents useful feedback for a realistic policy. We then dis-
cuss some related work and issues raised by our approach in
Section [§] before concluding in Section [6]

2. BACKGROUND

While our method of providing feedback is generally ap-
plicable to security systems, we focus on its use in ubiquitous
computing systems. Good security feedback is particularly
important for these systems for a variety of reasons:

e Ubiquitous computing is an area of active research [15|
9]; new systems and modes of applications are being
developed. While these systems are still being used in
experimental ways by researchers, application devel-
opers and early adopters, good security feedback will
help direct secure application design.

e Ubiquitous computing environments, currently most
prevalent in academic and research environments, are
envisioned to percolate into everyday use, with a ma-
jority of non-technical users. In both these situations,
feedback is important for usability, since users either
disable or work around security mechanisms that seem
incomprehensibly obstructive.

e Ubiquitous computing systems can be more confusing
to users than traditional distributed systems due to
the inherent dynamism (mobile users and devices may
enter and leave the system), the large number of de-
vices and the context-sensitive environment—without
adequate feedback, it can be difficult to tell whether
access was denied due to a bug in the system (espe-
cially in experimental systems) or due to user permis-
sions changing in response to non-obvious changes in
the context.

We believe that these features make ubiquitous computing
systems an ideal test-bed for Know.

Test-bed: The Active Spaces project at the University
of Illinois takes an operating system approach to ubiquitous
computing environments. A “space OS” called Gaia [15]
interacts with all the devices in the space and provides a
uniform programming interface to application developers.
The Gaia OS provides infrastructure services such as nam-
ing and context that applications can use, as well as security
services for authentication and access control. The Gaia ac-
cess control system [17] uses an extension of the role-based
access control system to assign roles to users within an Ac-
tive Space. The “space role” assigned to a user decides the
permissions available to the user at that time. The user’s
space role may change depending on contextual information
such as the time of day, the current activity being under-
taken in the space or even the set of people currently in the
space. Thus, permissions available to a user at any point
in time depend on a variety of factors, and good feedback
about access control decisions is very important.

T F T F

(a) Variable or-
dering: a,b,c

(b) Variable or-
dering b, ¢, a

Figure 1: Example OBDDs for aV (b Ac)

Policy Protection: UniPro |21 provides a scheme to
model protection of resources, including policies, in trust
negotiation. It allows policies to be treated as resources in
the system, and allows the specification of policies to protect
them. Know uses the UniPro notation for writing meta-
policies that protect the policies to decide what feedback
can be provided to a user.

Representation: Ordered binary decision diagrams (OB-
DDs) [14] are a canonical-form representation for boolean
formulas where two restrictions are placed on binary de-
cision diagrams: the variables should appear in the same
order on every path from the root to a terminal, and there
should be no isomorphic subtrees or redundant vertices in
the diagram. A binary decision diagram is a rooted, di-
rected acyclic graph with two types of vertices: terminal
and nonterminal. Each nonterminal vertex v is labeled by a
variable var(v) and has two successors, low(v) and high(v).
We call the edge connecting v to low(v) the 0-edge of v
(since it is the edge taken if v = 0) and the edge connect-
ing v to high(v) the 1-edge of v. A single formula may be
represented by multiple different OBDDs based on the or-
der that variables in the formula are tested; however, given
a particular variable-ordering, the OBDD structure is fixed
(canonical form for that variable-ordering). Figure (1| gives
an example of two OBDDs that each represent the simple
boolean formula a V (b A ¢). The first is the canonical-form
OBDD for the variable-ordering a, b, ¢ and the second is the
canonical-form OBDD for the variable-ordering b, c,a. To
test for satisfiability, we start at the root node and test
whether the variable at the root is true or false. If it is false,
we follow the 0-edge, and if true, the 1-edge, and repeat this
process. Eventually we reach either the T-node or the F-
node (also called the 1-node and 0-node, respectively). If
we reach the T-node, then the given assignment satisfies the
formula; if we reach the F-node, it does not. For example,
applying the assignment (a = false,b = true,c = false) to
either of the OBDDs in Figure [I] tells us that the formula is
not satisfied. We use OBDDs because they are a compact
and graphical representation of boolean formulas. This al-
lows us to use cost functions and shortest path algorithms
to find conditions of satisfiability that are of “least cost” to
the user.

Know stores access control rules as OBDDs, and can effi-
ciently search these OBDDs for paths that satisfy the rules.
When access is denied, the OBDD can provide information

about alternate paths that would allow access. Know pro-
vides information to the user about such paths as feedback.
Since satisfiability is an NP-complete problem in general, the
number of nodes in an OBDD can be exponential in the size
of the boolean expression. However, there are several heuris-
tics to find an ordering that reduces the size of the OBDD.
In our experience with policies for smart spaces, the access
rules for devices involve a small number of variables, result-
ing in compact OBDDs in general. Know provides feedback
only if it can be done with acceptable overhead. Example
policies in the Gaia system are presented in Sections [3| and
A

With this background, we proceed to describe the Know
architecture.

3. ARCHITECTURE

We augment the Gaia access control mechanism with our
feedback component (Know). The Gaia access control mech-
anism intercepts all requests for service, and checks them
against the system policy. If disallowed, the access request
is forwarded to Know, which prepares a feedback message
for the user. The message contains a list of alternative con-
ditions under which access to the given service is permitted.
Since Gaia is highly context-driven, the feedback may sug-
gest changes in context. For example, if a printer is inac-
cessible due to the current context (e.g., a meeting in the
room disallowing the use of noisy printers), feedback may
be of the form, “if you return after the meeting, then you
will have access to Printer X.”

When providing feedback to a user, a system must not
compromise sensitive components of the system policy. For
example, feedback of the form, “if you are a Motorola or
IBM employee, then you will have access to this room” re-
veals sensitive information that IBM and Motorola may be
collaborating on a project. To protect such information,
Know augments the policies with meta-policies. A meta-
policy governs access to a policy, thereby treating policies
as objects themselves. When determining feedback for a
user (Alice), Know first checks the meta-policy to see what
parts of the policy Alice is allowed to read, and constructs
feedback using only those parts. UniPro [21] provides a
generalized framework to protect parts of the policy with
a policy, which in turn can be protected by another policy,
and so on. Here, in the interest of simplicity, we focus on
policies and their meta-policies (and not multiple levels of
meta-policies). Henceforth our notation will resemble that
of UniPro, since we use a subset of its functionality. We now
provide some concrete examples of access policies, and their
associated meta-policies.

Example 1 The access policy of an electronic door lock
might allow access only to Computer Science professors or
members of the CIA. When a person is denied access to the
room, feedback of the form, “if you are a CS professor or a
member of the CIA, then you will have access to this room”
is potentially dangerous. Collaboration between the Com-
puter Science department and the CIA could be sensitive
information. Outsiders may also glean intelligence informa-
tion about where CIA members meet. Clearly, we may not
want to reveal parts of this access rule. Feedback of the form,
“if you are a professor in Computer Science, then you will
have access to this room” may be acceptable. A meta-policy
would control this flow of information to denied users. For-
mally, we can represent the policy and meta-policy as shown

below:

Policy:
R : P
P «— PlvP2
P1 < User.role = Professor
A User.department = C'S
P2 « Userrole=CIA
Meta-Policy:
P1 : User.department = CS
P2 . false

A policy definition includes two types of expressions. An
expression of the form O : P means that an object O is
protected by policy P, where policies themselves can be ob-
jects (since policies may be protected by meta-policies). An
expression of the form P < E means that the policy P
is defined by expression E. Expressions can contain both
atomic propositions (e.g., User.department = CS) and ref-
erences to sub-policies (e.g., P < P1V P2, where P1 and
P2 are defined subsequently). The access policy for the
room is R : P, which means that access to the room R is
protected by policy P. P is defined as the disjunction of
policies P1 and P2. P1 is the policy, “User must be a pro-
fessor in Computer Science.” P2 is the policy, “User must
be a member of the CIA.” Hence the policy P to access
the room is “User must be a professor in Computer Sci-
ence or the user must be a member of the CIA.” Figure
shows the associated OBDD for this policy. The meta-policy
P1 : User.department = C'S indicates that the policy P1
may be revealed only to subjects in the Computer Science
department, while the meta-policy P2 : false does not re-
veal P2 under any circumstance: For example, a denied
student in Computer Science would receive the feedback “if
you are a professor in Computer Science, then you will have
access to this room,” while a student in Civil Engineering
will be informed, “access is denied.” In either case, no policy
information involving the CIA is revealed. We discuss how
to apply meta-policies to OBDDs through cost functions in
Section Bl

We make two assumptions here. First, we assume that
any logical dependencies between atomic propositions are
captured within the policy. For example, a policy may con-
tain atomic propositions User.isAdult and User.isMinor.
We know that User.isAdult < —User.isMinor, and hence
feedback of the form “if you are an adult and a minor, you
will have access” would be absurd. Such inconsistencies are
avoided by either replacing occurrences of User.isMinor by
—User.isAdult or by adding the logical rule User.isAdult <
—User.isMinor to the policy. This will avoid any inconsis-
tencies in feedback. The second assumption we make is that
all references to an atomic proposition a are protected by the
same meta-policy. We elaborate on this in Section [3.2

It is important to note that in all our examples we are
careful to provide feedback as “if...then” clauses. This is
important for policy protection. Feedback of the form, “only
professors may access this room” gives more information
than “if you are a professor, then you will have access to

In our examples we omit meta-policies of the form P :
true for clarity. In practice however, all meta-policies are
assumed to be of the form P : false unless a meta-policy is
explicitly specified.

this room.” If both types of feedback were allowed, the user
may infer from the latter feedback that there is a protected
policy not being revealed. Hence, if feedback is consistent in
its use of “if...then” clauses, users will not gain any extra
information about protected policies.

T F

(a) Example 1, with » = User.role

F

(b) Example 2, with r = User.role, a = Context. Activity,
t = Context.time

Figure 2: OBDDs for the examples

Example 2 Since we are interested in providing useful
feedback for complex policies, we provide a more complex
example. We first present the policy P for a printer A, and
then augment it with a meta-policy. The policy A : P may
be as follows:

Policy:
A : P
P < PlVP2
Pl < Context.activity # meeting A (P3V P4V P5)
P2 «+ Context.activity = meeting N\ P6
P3 « User.role = TeachingAssistant
P4 — ContexrtlabAssistant Present = true
P5 «+ Context.workingHours = true

P6 << User.currentRole = MeetingChair
To understand this policy, first note that printer A is noisy,

and so, disruptive to meetings being held in the room. Dur-
ing meetings, printer access is restricted to the person in
charge of the meeting. P2 and P6 ensure that nobody will
disturb the meeting by using the printer, but the meeting
chair may use the printer if needed. When there is no meet-
ing in effect, we would like to grant access to the printer to
anybody during normal business hours (P1, P5). At other
times, users are only allowed to access this printer while no
meeting is in progress, and then only in the presence of a
Lab Assistant (P1, P4). Teaching Assistants have 24-hour
access (P1, P3) to the printer to perform their duties (again,
as long as there is no ongoing meeting in the room). Fig-
ure shows the associated OBDD for this policy.

Consider the case when a Student is denied access to the
printer. An “Access Denied” message may be confusing to
the Student who was able to access the printer the previous
day. In the spirit of offering the user a consistent view of the
system’s policies, we would like to inform the user why the
access was denied. Was it because a meeting was in effect?
Should the user come back during regular business hours
when there is no meeting? Should the user be informed
that there is no lab-assistant in the room and that it is
past business hours? Clearly there are several useful options
available to the user. Now consider some other options that
may not be of much help to the user. Let us say that access
was denied outside of working hours, and no meeting was
taking place in the room. Feedback of the form “Sorry,
access is denied, but if you are a Teaching or Lab Assistant,
then you will have access to this printer” is clearly less useful
to the user, since becoming a Teaching or Lab Assistant is
a non-trivial task.

Consider a final scenario when a person is denied access
to the printer because of an ongoing meeting. If the user
is not a member of the meeting, feedback of the form “if
you are the meeting chair, then you will have access to this
printer” may suggest to users that they request the chair
to print documents. This is clearly disruptive, so we would
like to disclose this fact only to people who are participating
in the meeting. Consider the following meta-policy for the
policy provided above:

Meta-Policy:
P3 : false
P6 : User € Context.activityMembers

Using this meta-policy, we restrict feedback provided to users.

Users who are denied access are not informed that Teach-
ing Assistants have 24-hour access (P3 : false), since this
may result in several students accosting their Teaching As-
sistants for their personal printing needs. Further, users
who are denied access to the printer during an ongoing
meeting, are only informed about the meeting chair’s print-
ing capability if they are a member of the current meeting
(P6 : User € Context.activityMembers).

We have presented examples of feedback that a user may,
or may not, find useful. Furthermore, there were some ex-
amples of feedback that were restricted or eliminated by the
meta-policy due to privacy concerns. Providing useful feed-
back in the face of restrictions by a meta-policy, and the
relative usefulness of the various options available to the
user, suggests the use of a cost function. This cost function
can evaluate each feedback option, and generate an ordering
that says one option is better than another. For example,

the system may provide the user with the three most useful
options as determined by the cost function. We now de-
scribe cost functions in more detail and formalize the notion
of “feedback.”

3.1 Cost Functions

When the access policy for a resource is not satisfied,
we can try to compute all the paths from the root of the
OBDD of the policy to the true node. Essentially, a set of
such paths will be presented as feedback to the user since
they represent assignments that satisfy the policy. Some
of the edges followed in the path will correspond to con-
ditions that do not currently hold. Consider Example 2.
Suppose a meeting is in progress, and a TA tries to ac-
cess the printer. One possible path from the root to true
is Context.activity # meeting,r = T'A. This requires one
change since there is a meeting in progress. Other paths may
require more changes. The number of changes that must be
made for each path, and the relative difficulty in making cer-
tain changes over others, suggests the use of cost functions
to rank the options. We first introduce some notation and
a formal definition of feedback.

We use the notation S = P to indicate that a policy
P is satisfied under the atomic propositions specified by
S. For example we could have S = {Context.meeting =
false, Context.workingHours = true}. In the notation
Sla] = P, S[a] is the set of atomic propositions in S along
with any update provided by a. In our example above,
S[Context.meeting = true] = {Context.meeting = true,
Context.workingHours = true }. This notation can be
naturally extended for a set of updates, e.g., S[A], where A
is a set of atomic propositions. Let C be the set of atomic
propositions relating to the context of the system and U
be the set of atomic propositions specific to the user (iden-
tity, role, etc.). Given a policy P and a user U, the user is
granted access when C' UU = P, and denied access when
CUU £ P. In essence, if CUU [~ P, then a set of updates
X such that (CUU)[X] | P constitutes a feedback option
to the user.

To formalize the notion of feedback, let II = {m1,..., 7}
be the set of paths from the root node to the true node in the
OBDD of P. Let 7} be the set of atomic propositions that
appear in 7; € Il and not in CUU, i.e., the set of propositions
that must be changed (or a set of updates to the state) for
the policy to be satisfied. Let F = {r{,..., 7, }. Note that
(CuU)[n}] E P for all m; € F. We define any subset F of F
to be the feedback offered to the user. In other words, each
feedback option f; in the feedback F' corresponds to a set
of atomic propositions the user must change to be granted
access. F is the set of all possible feedback options available
to the user. Since F can be very large, our primary goal is
to find a way to offer the user only a few relevant feedback
options in F. We do this through the use of cost functions.
The cost function assigns a cost to each f € F, and returns
the k lowest-cost feedback options, where k is a tunable
parameter.

A naive cost function could assign the same cost to each
change, in which case the user would be given feedback with
the least number of changes that need to be made to access a
resource. For example, we could sort the elements f; of F in
ascending order based on | f;| (number of atomic propositions
in f;) and return the first k choices. However, changing roles
might be more difficult than changing context. For example,

a Student may be able to come back at a later time, but it
would be extremely difficult to acquire a Professor role. This
suggests the use of more sophisticated cost functions.

We need to define an appropriate cost function that is
applied to edges in the OBDD as edge weights. Using these
weights we can use shortest path algorithms from the root
to true to provide feedback with lowest total cost. Running
Dijkstra’s algorithm gives us a path with lowest total cost
in polynomial time. There are several proposed algorithms
for k shortest paths for graphs. Eppstein |5] presents an
algorithm that computes k shortest paths in time O(m +
nlogn + k), where n is the number of vertices, and m is the
number of edges in the graph. This is the best known bound
for k shortest paths in directed acyclic graphs. Since an
OBDD with n nodes has 2n —4 edges (two children for each
node, except the true and false nodes), the complexity for
computing the k shortest paths in an OBDD is O(nlogn+k).

Let A be the set of atomic propositions (this corresponds
to the condition being tested within a node of the OBDD)
for the policy P. We define a cost function ¢: A x {0,1} —
R*TU{occ}, where R™ is the set of non-negative real numbers.
An infinite cost disallows any changes to the current value
of the proposition. This function tells us the cost to follow a
0-edge or a 1-edge for a node in the OBDD. When a request
for access is denied, let T' C A be the set of propositions that
evaluate to true, and F' C A be those that evaluate to false
(note that T, F form a partition of A). We define ¢(¢,1) =0
for all t € T and ¢(f,0) = 0 for all f € F since there is no
cost to follow an edge that is satisfied under the current con-
ditions (C' U U), and we would like to assign non-zero cost
when a user must change some atomic proposition. Cost
functions will differ according to their assignments to c(t, 0)
for all t € T and ¢(f,1) for all f € F. Now, for all a € A,
assign the weight c(a, 0) to the 0-edge of a, and c(a, 1) to the
1-edge of a. What results is a directed acyclic graph with
weights assigned to each edge. We can now apply k-shortest
path algorithms to this graph to get the k lowest-cost paths.
For small k the running time for such algorithms is domi-
nated by the structure of the OBDD and not k. Specifically,
since we expect to have k < n (for example k = 3 might be
sufficient), then the running time is O(nlogn). Our naive
cost function that considers all changes to be equally expen-
sive would set ¢(¢,0) = 1 for all ¢t € T and ¢(f,1) = 1 for
all f € F. Hence the total cost of any path is equal to the
number of propositions that need to be changed under the
given conditions.

3.2 Meta-Policies

Now that we have described the basic algorithm for com-
puting feedback using OBDDs and shortest path algorithms,
we must modify the algorithm to honor the meta-policies.
Each meta-policy determines whether a user can read cer-
tain nodes in the policy’s OBDD. Let D C A be the set
of nodes forbidden by the meta-policy. For each d € D,
we assign infinite cost to the edge that effects a change in
the current value of d. This does two things: first, it pre-
vents shortest path algorithms from exploring a change in
d and hence does not return any feedback options that re-
quire a change in d. Second, since this proposition d can-
not be changed, it will not appear within a feedback op-
tion, which includes only those propositions that must be
changed. Since no atomic proposition that is precluded by
the meta-policy appears in any feedback option, the feed-

back given to the user honors the meta-policy. We assume
that all nodes corresponding to a particular atomic propo-
sition a are protected by the same meta-policy, allowing us
to perform such a transformation. Finding efficient ways of
computing consistent feedback where references to the same
atomic proposition are protected by different meta-policies
is left to future work.

3.3 A Useful Cost Function

We now present a useful cost function that improves on
the results of the naive cost function in the context of ubig-
uitous computing environments. We improve upon the naive
cost function by forbidding the exploration of certain, obvi-
ously undesirable, options. Paths to the true nodes will still
be graded according to the number of changes, but certain
changes are forbidden.

Activities: Gaia policies for a smart space depend on the
current activity in that space. Example 2 showed the policy
for the activities meeting and no meeting. Consider a space
with the possible activities of meeting, conference, reception,
presentation and no activity. If a user is denied access to a
resource during a meeting, feedback of the form “During a
conference if you are the Chair, you will have access” is not
very useful. Hence we only provide the user feedback for
the current activity, and the absence of any real activities
(no activity). Hence we apply an infinite cost to all 1-edges
for the activities that are not current (the 0-edges will have
0 cost) and apply a cost of 1 to the 0-edge for the current
activity. Hence Know will not explore feedback for other
activities, but will explore feedback for both, the current
activity and no activity.

Roles: This cost function assumes that it is difficult for
a user to obtain a new role. Let N be the set of nodes
in the OBDD that tests for a role that the user has not
activated. For each node in N, assign infinite cost to the
l-edges (the 0-edges will have 0 cost). Hence the system
will not provide any feedback that requires a user to obtain
a new role. A user may choose to activate only certain roles
in the system. If the user is not satisfied with the feedback
options obtained, he or she may activate another role and
get better feedback.

Meta-policy: As described in Section [3:2] we assign in-
finite costs to all edges that require a change to variable
assignments forbidden by the meta-policy.

For a given feedback option (path from root to the true-
node in the OBDD), the cost is the number of changes to be
made. Since certain edges are forbidden due to infinite cost,
feedback provided to the user will not require any changes
in the current role, and will only be for the current activity,
or no activity. We believe that this cost function is useful
in the context of current policies and activities in Gaia. In
our analysis, we provide a detailed example policy and show
how this cost function provides more useful feedback to the
user than the uniform cost function.

4. |IMPLEMENTATION

We have built a prototype of the Know system. In this
section we describe the implementation and results from a
preliminary evaluation. We present results of Know running
with an example access control policy for videoconferencing
equipment located in a kiosk in a multi-purpose business
center.

As currently implemented, the system access control pol-

icy is represented as an OBDD, which is then transformed
into a weighted graph using an appropriate cost function to
assign weights to the edges. The system meta-policy also
affects these weights. Finding the k shortest paths to the
1-node of the OBDD gives us k sets of assignments to the
variables that will satisfy the access control rules, and thus,
describe k situations under which the particular operation
is allowed. We describe the process in more detail below.

The first step is to generate an OBDD from the system
access control policy. Each proposition in an access con-
trol rule forms a node of the OBDD. The 1-edge represents
the situation when this proposition is satisfied, and the 0-
edge represents the proposition being false. We use the
BuDDy |[11] library which can use some heuristics for op-
timizing the generated OBDDs. The end result of this is an
OBDD that represents all allowable ways to perform a par-
ticular action (or access a particular resource). Given a user
credential and the current context, a path from the root to
either the 1-leaf or the 0-leaf of the OBDD is determined by
the current values of all propositions. If the path reaches
the 1-leaf, the action is permitted and Know is not needed.
If the path reaches the 0-leaf, it means that the current cre-
dential and context do not permit this action. Know now
attempts to find alternative paths in the OBDD that would
permit the operation.

Alternative paths are found by using the Eppstein |5} [7]
algorithm to find the k shortest paths from the root to the
1-node in this OBDD. Weights are assigned to the edges of
the OBDD graph based on the cost function and the current
values of the user roles and context variables. We provide
results from the two cost functions described earlier—the
naive cost function (which just counts the number of changes
required) and the “useful” cost function (which treats role
changes as more difficult to achieve than context changes).
Selecting a suitable cost function is site-specific—the weights
assigned to the different changes will depend on the nature
of tasks that are normally performed by users of the system.

Know then outputs the necessary changes that must occur
to satisfy the alternative paths. It is up to the user to choose
between these suggestions, and to retry the request after
following the suggestion.

4.1 Evaluation

We illustrate this entire process with its application to a
sample policy that governs the access to devices in the busi-
ness center of a hotel. In addition to computers, the business
center also contains devices such as printers, fax machines,
cameras for videoconferencing and so on. The business cen-
ter is located in the conference hall, and hotel guests and
other members who have signed up are normally allowed to
use the devices as per the security policy. The conference
hall is also rented out for activities such as meetings, con-
ferences or receptions, during which time use is restricted to
participants of this activity, as per the policy configuration
by the organizers. Users present their credentials to enter
the business center, in the form of a smartcard (a confer-
ence badge or a hotel room key) and the system uses this
information to restrict access and provide useful feedback.
We present here the rules that affect access control to the
camera for the videoconferencing system.

The basic policy is as follows:

e When no activity is scheduled for the room, supervi-
sors, hotel guests or other registered users can use the

videoconferencing equipment during the business day.
Visitors are also allowed to use the facilities if an oper-
ator is present. Hotel guests may also use the system
during non-business hours, but others may not.

e When an activity (such as a videoconference) is sched-
uled, only registered activity participants and super-
visors are allowed to use the system.

e Use of the videocamera is disallowed for regular par-
ticipants if the videoconferencing activity being under-
taken in the conference center is labeled as confiden-
tial. However, the meeting supervisor may still turn on
the videocamera if all participants have the required
security clearance.

e Each activity being conducted in the center may define
its own policies for its users for its duration.

e Maintenance activities are performed by designated
personnel.

e Finally ambient temperature above 30C indicates some
problem with the air-conditioning/cooling system, and
camera use is prohibited until temperature reaches the
allowed range. Similarly, overcrowding the room will
violate the fire safety codes and cause access to the
camera to be denied.

The meta-policy that governs feedback contains the fol-
lowing rules:

e Information about confidential activities is only pro-
vided to the meeting supervisor. Thus an unautho-
rized user trying to access the videocamera during a
confidential activity will not be informed that a con-
fidential activity is going on, but just that access is
denied at that time. Similarly, feedback about the
presence of uncleared users is only given to the meet-
ing supervisor.

e Information about maintenance activities is not pro-
vided to other users.

The access control rules for the policy above are presented
below. In our implementation, access to the camera C' is
protected by policy P. Policies P1,..., P10 describe the
various rules presented above, where P7 and P8 are rules
pertaining to the Video Conference activity. In the interest
of brevity, we only present the rules relevant to the Video

Conference activity.

Policy:
¢ . P
P < PlV...VPI0

VC < activity = VideoConference
A(AL V...V AY)
CA

«— Context.isCon fidential = true
RS <« User.role = Supervisor
NU <« Context.UnclearedU sersPresent
= false
NH <+ Context.cameraOverheated
= false
NF «— Context.roomFull = false
P7 — VCANCAANRSANUANNH
ANF
RP <+ User.role = Participant
P8 «— VCA—-CAAN(RPVRS)ANH
ANF
Meta-Policy:
P true
CA . User.role = supervisor

This policy states that during a confidential Video Con-
ference, only a Supervisor can access the camera as long
as there are no uncleared users present. During a non-
confidential Video Conference, any Participant or Supervi-
sor can access the camera. The room must never be Over-
heated or Full during a Video Conference. The second rule
in the meta-policy states that only Supervisors will be made
aware of confidential activities. Hence if an ordinary user is
denied access to a camera, the user will not be told that
there is a confidential conference in progress (this informa-
tion itself is deemed sensitive). Only Supervisors can re-
ceive feedback about confidential activities. Since there can
be only one activity at any given time, the policy specifies
VC < VideoConference A=(A1V...VAy), where Ay ... A,
are the remaining activities.

The OBDD generated by the above policy has 17 variables
and 35 nodes (in contrast, a binary decision tree would have
at least 2'7 nodes).

To evaluate Know, we try to access the videocamera under
a variety of situations, and present the suggestions provided
by Know using each of the two cost functions described ear-
lier, which we designate as the “naive” and the “useful”
cost function. Since the useful cost function just restricts
information about role and activity change, feedback from
the useful cost function will just be a (more useful) subset of
the feedback from the naive cost function. We describe some
of the experiments below for k = 4. The run-time overhead
for Know to find these suggestions was negligible—in the
order of milliseconds. Since OBDDs are just a representa-
tion of the access control policy, they can be constructed
ahead of time and only need to be re-computed if the policy
changes. Assigning weights to the edges of the OBDD has to
be performed each time a request arrives, since the weights
depend on the current values of the context variables and
user credentials. Since Kmow only runs when access is de-
nied, it has no performance overhead on successful requests.

We now describe the situations and results in detail:

e A wvisitor tries to use the camera during business hours,
but no operator is present. There is no activity in
session. With the naive cost function, Know suggests
that the user come back a) as a hotel guest b) as a
registered room user c¢) when an operator is present,
or d) as a supervisor

The useful cost function suppresses the suggestions in-
volving a role change, and only advises the user to
come back when an operator is present. This simple
example illustrates the basic functionality of Know.

o If a hotel guest tries to use the equipment during work-
ing hours when the room is too hot and there is no
activity in session, Know correctly suggests that the
user try again when the temperature is within the al-
lowed range. Specifically, with the naive cost function,
the three options suggested by Know are: come back
a) when room is not overHeated b) when room is not
overHeated and it is out of business hours and ¢) when
room is not overHeated and as a registered room user
instead of a hotel guest, or d) when room is not over-
Heated, as a supervisor, instead of a hotel guest. The
useful cost function only offers the first two suggestions
because it does not recommend role changes. Clearly,
the only change required is for the temperature to be
reduced, but Know does not presently try to recognize
if some of its suggestions are subsets of others. This
may be a useful test in some situations.

Maintenance operations are allowed even in overheated
conditions, and a straightforward search through the
policy might have offered the suggestion to try coming
back as a maintenance worker. However, the system

meta-policy forbids disclosure of information about main-

tenance permissions, so this option is correctly ignored
by Know.

e During a confidential videoconferencing activity and
regular working hours, if a participant tries to access
the videocamera when users without the required secu-
rity clearance are present, the naive cost function also
suggests the user come back a) as a hotel guest when
no activity is in progress, b) as a room user when no
activity is in progress, c¢) as a visitor when no activity
is in progress, or d) as a supervisor when no activity
is in progress. The useful cost function does not offer
any feedback, because there is no useful option for the
participant.

One possible suggestion is to inform the user that this
operation is not permitted during a confidential activ-
ity and to suggest re-trying when no confidential ac-
tivity is being undertaken, but the system meta-policy
precludes any information about confidential activities
from being revealed, so this suggestion is not offered.

e If a supervisor tries to use the camera when the room
is reserved for a confidential videoconference and un-
cleared users are present, the uniform cost function
suggests that the user come back a) after changing the
activity type to be non-confidential b) when no un-
cleared users are present, c) when there is no activity
scheduled, or d) as a participant after changing the
activity type to be non-confidential. The useful cost

function suggests the first three options. Note how
the supervisor is given feedback regarding confidential
activities, as opposed to a participant in the previous
scenario.

While the above examples are fairly simple, they validate
our hypothesis that Know can provide useful information
about alternatives when access is denied, that it can do
so without compromising privacy or confidentiality require-
ments of the security policies, and that this can be achieved
with negligible performance overheads. We are in the pro-
cess of integrating Know fully with the Gaia system, after
which we can perform larger-scale studies.

5. DISCUSSION AND RELATED WORK

Policy hashing [10] has been proposed to protect the poli-
cies for a firewall from less trusted enforcement points. This
prevents intruders from reading sensitive policies on com-
promised enforcement points. Feedback to end-users is not
a consideration. Access control systems for Web publish-
ing [2] provide more information about the policy if con-
ditions needs to be changed for access. However, policy
protection is not addressed.

Trust negotiation protocols |19} 3} |22] address the problem
of protecting the confidentiality of credentials of both par-
ties involved in a session. At each stage, one of the parties
must provide feedback to the other party as to what creden-
tials are needed to proceed with the negotiation. Know can
augment these systems at each stage in trust negotiation
by providing useful feedback. With respect to suppressing
feedback options, Bonatti et al. |3| protect the server’s state
by filtering policy feedback. Such techniques can also be ap-
plied to Know, which protects the server’s policies. Policy
protection in [3] is achieved by progressively revealing more
requirements depending on credentials revealed by the user.

Usability has been recognized as an important concern
for security systems since the early days [16] of research in
computer protection systems; however, in practice, usabil-
ity issues have not been a primary consideration for secu-
rity designers. Usability concerns are especially important
in ubiquitous computing environments, since the objective
of ubiquitous computing is to blend into the background
and allow the user to perform his tasks without having to
pay attention to the computing environment. Work on the
human-computer interface aspects of security [24} 20] have
identified consistent feedback as an important aspect of us-
ability. We posit that providing useful feedback about access
control decisions is a step in the right direction. Users can
then obtain a better picture of the security policies and can
access resources accordingly.

While policy feedback improves system usability, one of
the major concerns is information leakage. Meta-policies al-
low system administrators to treat the policy just like any
other system resource, and configure access to it accordingly.
Thus, providing feedback does not leak any unauthorized in-
formation. We recognize that writing effective meta-policies
that are robust against statistical inferencing remains a chal-
lenge, and further research in writing effective meta-policies
is needed.

Computing feedback options is equivalent to computing
variable assignments to satisfy a boolean formula. In gen-
eral, computing assignments for satisfiability (SAT) of a
boolean formula is NP-complete, and finding least-cost as-

signments (Weighted SAT') is an NP-hard optimization prob-
lem [12]. Therefore, we cannot expect to compute “least
cost” feedback in all cases. We propose that feedback should
be provided if it can be done with acceptable overhead.
Administrative decisions can bound the computational and
storage resources usable for computing feedback and degen-
erate OBDDs may not be computed or stored.

OBDDs are an efficient and compact representation of
boolean formulas, and tests for satisfiability are efficient.
It is well known that the size of OBDDs depends on the
variable ordering (the order in which variables are tested
in an OBDD), and in certain cases it is not possible to re-
duce the exponential state space of decision trees. In fact,
determining a suitable variable ordering (yielding a mini-
mum sized OBDD) has been shown to be NP-complete [1].
Given these challenges, it is comforting to know that com-
monly encountered functions have reasonably sized OBDDs
and there are several heuristics (e.g., group-sifting |13] is one
of the popular methods, also see [4, |6]) to determine ade-
quate variable orderings for small (non-exponentially sized)
OBDDs. Degenerate cases usually involve functions that be-
have differently for all possible assignments (e.g., output of
an integer multiplier [14] and integer division [§]), and we
do not expect such state space explosion in practice.

An interesting avenue for future work is the study of suit-
able cost functions. More nuanced cost functions could bet-
ter reflect the relative difficulty of changing propositions.
Selection of an appropriate cost function will be influenced
by various factors, such as user preferences and system usage
patterns. Another option could be to allow users to specify
their own cost function to tailor the Know feedback. Finally,
learning algorithms [23] could be used to improve feedback
over time by allowing users to rate the feedback received.
Inference rules may be added. For example, if Alice is a
student in a particular course, it is unlikely that she is also
the TA for that course. Such cost functions will improve
the quality of feedback. Bounded searches can be more effi-
cient. For example, the user can also specify the maximum
number of changes, v, that he or she is willing to accept. A
naive brute-force algorithm for computing feedback would
take time O(n"), which might be acceptable overhead for
small v.

6. CONCLUSIONS

We have presented Know, a system for providing feedback
to users about access control policy decisions. When the
system denies a user access to a resource, Know suggests
alternatives for the user to gain access. While a list of all
possible conditions under which a particular resource may
be accessed is likely to be large and not very useful, we try to
restrict the options presented to the user to a smaller set of
useful options by the use of appropriate cost functions. An
important consideration is that this process should not leak
any information that would compromise system security or
confidentiality. This is achieved by using a meta-policy to
represent the required protection for the policies themselves.
We present qualitative performance results from a prototype
implementation.

We are currently extending our prototype for integration
with Gaia, our operating environment for ubiquitous com-
puting environments. This will allow us to evaluate Know
with more extensive, and real, policies with actual users. Fu-
ture work in the area of selecting appropriate cost functions

is also indicated. Apart from the system-selected cost func-
tion that our prototype implementation uses, user-selected
cost functions may be useful since different users may as-
sign different levels of difficulty to the same task. Artificial
intelligence techniques such as learning or planning algo-
rithms [23] might also be helpful to learn a user’s prefer-
ences. Another question of interest is the feedback mecha-
nism, since ubiquitous computing environments use a vari-
ety of mechanisms for users to interact with them, and text
messages on a display monitor may not always be available
or appropriate for system feedback. Audible feedback may
reveal one user’s feedback to other nearby users, which may
not be appropriate.

Lastly, we believe that research in the area of providing
useful feedback to denied users has been vastly neglected,
and to the best of our knowledge this is the first attempt at
integrating policy feedback with policy protection.

7. ACKNOWLEDGMENTS

We thank Sariel Har-Peled and Mahesh Viswanathan for
helpful comments and the anonymous reviewers for their
useful feedback.

8. REFERENCES

[1] Beate Bollig and Ingo Wegener. Improving the
variable ordering of OBDDs is NP-complete. IEEE
Trans. on Computers, 45(9):993-1001, Sept. 1996.

[2] Piero Bonatti, Ernesto Damiani, and Pierangela
Samarati. A component-based architecture for secure
data publication. In Proceedings of 17th Annual
Computer Security Applications Conference (ACSAC),
New Orleans, LA, December 2001.

[3] Piero A. Bonatti and Pierangela Samarati. A uniform
framework for regulating service access and
information release on the Web. Journal of Computer
Security, 10(3):241-271, 2002.

[4] Kenneth M. Butler, Don E. Ross, Rohit Kapur, and
M.Ray Mercer. Heuristics to compute variable
orderings for efficient manipulation of ordered binary
decision diagrams. In Proceedings of the 28th
conference on ACM/IEEE Design Automation, pages
417-420, San Francisco, CA, June 1991.

[5] David Eppstein. Finding the k shortest paths. In Proc.
85th Symp. Foundations of Computer Science, pages
154-165. IEEE, November 1994.

[6] Masahiro Fujita, Yusuke Matsunaga, and Taeko
Kakuda. On variable ordering of binary decision
diagrams for the application of multi-level logic
synthesis. In Proceedings of the conference on
European Design Automation, pages 50-54,
Amsterdam, The Netherlands, February 1991. IEEE
Computer Society Press.

[7] Jonathan Graehl. kbest, a C++ library for efficiently
finding the k shortest paths in a graph. Available from
http://jonathan.graehl.org/kbest.zip.

[8] Takashi Horiyama and Shuzo Yajima. Exponential
lower bounds on the size of OBDDs representing
integer divistion. In Proceedings ISAAC, pages
163-172, 1997.

[9] Brad Johanson, Armando Fox, and Terry Winograd.
The Interactive Workspaces project: Experiences with

(11]

(12]

(14]

(15]

(16]

(17]

(18]

(19]

ubiquitous computing environments. I[EEE Pervasive
Computing magazine, 1(2):67-74, Apr—Jun 2002.
Hakan Kvarnstrom, Hans Hedbom, and Erland
Jonsson. Protecting security policies in ubiquitous
environments using one-way functions. In D.Hutter

et al., editors, Security in Pervasive Computing 2003,
volume 2802 of LNCS, pages 71-85. Springer-Verlag,
Heidelberg, 2003.

J. Lind-Nielsen. BuDDy — a binary decision diagram
package. Technical Report I'T-TR: 1999-028, Technical
University of Denmark, 1999.

P. Orponen and H. Mannila. On approximation
preserving reductions: Complete problems and robust
measures. Technical Report C-1987-28, University of
Helsinki, Dept. of Computer Science, 1987.

Shipra Panda and Fabio Somenzi. Who are the
variables in your neighborhood. In Proc. International
Conference on Computer-Aided Design (ICCAD ’95),
San Jose, CA, November 1995.

R.E.Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, C-35(8):677-691, 1986.

Manuel Roméan, Christopher K. Hess, Renato
Cerqueira, Anand Ranganathan, Roy H. Campbell,
and Klara Nahrstedt. GaiaOS: A middleware
infrastructure to enable Active Spaces. I[EEE
Pervasive Computing, pages 74-83, Oct—Dec 2002.
Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems. In
Proceedings of the IEEE, volume 63, pages 1278-1308,
September 1975.

Geetanjali Sampemane, Prasad Naldurg, and Roy H.
Campbell. Access control for Active Spaces. In
Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pages 343-352,
Las Vegas, NV, December 2002.

Mark Weiser. The computer for the 21st century.
Scientific American, pages 94-104, September 1991.
William H. Winsborough and Ninghui Li. Safety in
automated trust negotiation. In Proceedings of the
2004 IEEE Symposium on Security and Privacy, pages
147-160, Oakland, CA, May 2004. IEEE Press.
Ka-Ping Yee. User interaction design for secure
systems. In Proceedings of the 4th International
Conference on Information and Communications
Security, pages 278-290. Springer-Verlag, 2002.

Ting Yu and Marianne Winslett. A unified scheme for
resource protection in automated trust negotiation. In
Proceedings of the IEEE Symposium on Security and
privacy, pages 110-122, May 2003.

Ting Yu, Marianne Winslett, and Kent E. Seamons.
Supporting structured credentials and sensitive
policies through interoperable strategies for
automated trust negotiation. ACM Trans. Inf. Syst.
Secur., 6(1):1-42, 2003.

Terry Zimmerman and Subbarao Kambhampati.
Learning-assisted automated planning. AI Magazine,
24(2):73-96, 2003.

Mary Ellen Zurko and Richard T. Simon.
User-centered security. In Proceedings of the Workshop
on New Security Paradigms (NSPW), pages 27-33,
Lake Arrowhead, CA, September 1996.

http://jonathan.graehl.org/kbest.zip

	Introduction
	Background
	Architecture
	Cost Functions
	Meta-Policies
	A Useful Cost Function

	Implementation
	Evaluation

	Discussion and Related Work
	Conclusions
	Acknowledgments
	REFERENCES -9pt

