
Implicit complexity for coinductive data:

a proof-theoretic characterization
of primitive corecursion

Daniel Leivant and Ramyaa Ramyaa
Indiana University

{leivant,ramyaa}@cs.indiana.edu

Abstract

We extend the framework of intrinsic the-
ories, which we developed for inductive data,
to encompass coinductive data as well. We
extend the fundamental theorem of intrinsic
theories for program termination (which links
computability to model-theory) from systems
of inductive data to coinductive data, that
is: an equational program P is type-correct
in the canonical (intended) structure iff P

(construed as a formula) entails the type-
correctness of P in all “data-exact” struc-
tures. For inductive data type-correctness
means termination, and for coinductive data
it means fairness.

Our main technical result is an implicit
characterization of primitive-corecursion: A
function is definable using primitive corecur-
sion iff its data-correctness is probable (in the
intrinsic theory) using coinduction only for
formulas in which data-predicates do not oc-
cur negatively. This is an analog for core-
cursion of Parson’s 1960 characterization of
the primitive recursive functions by provabil-
ity in arithmetic with induction restricted to
existential formulas.

1 Introduction

Coinductive algebras have been recognized for long
as an important foundational approach to processes
and dynamic systems. The significance of coinduc-
tive methods for general computing over data has
been illustrated more recently, for example [2, 3] have
demonstrated the use of streams of signed digits to
carry exact real-number computations.

Here we consider equational programs over coin-
ductive data, and more generally over “data-
systems”, which may be defined using both inductive
and co-inductive constructions. Equational programs
are particularly attractive to foundational studies, be-
cause of their immediate kinship with formal theories:
programs can be viewed as axioms, and computa-
tion as derivations in equational logic. Consequently,
equational programs are attractive for developing
methods of implicit complexity, that is machine-
independent characterizations of computational com-

plexity classes. For instance, there are illuminat-
ing characterizations of various complexity classes in
terms of the strength of proof methods needed to
prove termination (see e.g. [8, 11]). Such methods
are of particular interest for coinductive data, because
they are likely to clarify complexity notions that are
dual to traditional notions of computational complex-
ity (such as P-Time) for symbolic, i.e. inductive, data.

In this paper we first develop several building
blocks for this project. Referring to a notion of data-
systems, we consider the global semantics of pro-
grams, that is their behavior as “uninterpreted pro-
grams” over all structures for the vocabulary of any
given data-system. We developed this approach for
inductive data [10], and we consider here its extension
to data-systems in general, including coinductive con-
structions. This approach is orthogonal to the use of
category theoretical methods in the study of coinduc-
tion, and focuses instead on computational aspects.
It seems natural, however, to expect that natural re-
lations would be found between the two approaches,
Category Theory and Global Semantics.

The main technical result of this introdcutory
discussion is an Adequacy Theorem for the global
semantics of equational programs (over arbitrary
data-systems). This theorem establishes the equiv-
alence of the correctness of programs as they execute
over the intended algebraic/coalgebraic interpreta-
tion, and their correctness as they execute uniformly
over all structures. Here by “program correctness” we
mean, roughly, termination for inductive data, and
fairness for coinductive data.

An important benefit of streamlined proof systems
for reasoning about programs is their potential ap-
plication to characterize major computational com-
plexity classes. Such characterizations fall within the
realm of implicit computational complexity, a research
area that strives to delineate such classes without
reference to computing models, thereby gaining in-
sight into the significance of complexity classes, pro-
viding natural frameworks for programming within
given complexity boundaries, suggesting static analy-
sis tools for guaranteeing complexity, and suggesting
notions of complexity for new paradigms.

We proceed in this paper with a framework for a

1

foundational study of computating over coinductive
data in general, and using the schema of primitive
correcurrence in particular. The primitive recursive

functions, over the natural numbers, were character-
ized already in by Parsons [13], as being exactly the
functions that are provable in Peano Arithmetic us-
ing induction for existential formulas only. In [9, 10]
we developed a generic framework for reasoning about
equational computing over inductive data, and in [11]
we used it to show that the primitive recursive func-
tions are precisely the ones that are proved (in a sim-
ple sense) using induction restricted to data-positive
formulas, i.e. formulas in which atomic references to
data do not occur in negative positions (i.e. within
the negative scope of an odd number of implications
and negations).

Here we prove a dual result for coinductive data:
a primitive corecursive function over streams of dig-
its is fair (maps streams to streams) iff it is provable
using coinduction for positive formulas.

2 Intrinsic theories for induc-

tive and coinductive data

2.1 Data systems

We start out by setting a general framework for deal-
ing jointly with data-types that are defined using any
mix of induction and coinduction. Such frameworks
are well-known within typed lambda calculi, with op-
erators µ for smallest fixpoint and ν for greatest fix-
point. Our approach here is greared toward proof the-
oretic analysis, based on equational programs, which
we also examine in a model-theoretic context.

We define a constructor-vocabulary as a finite set
C of function identifiers, referred to as constructors,

each assigned an arity ≥ 0. (Constant constructors
have arity 0.) We posit an infinite set X of variables,

and an infinite set F of function-identifiers, dubbed
program-functions, and assigned arities ≥ 0 as well.
The sets C, X and F are, of course, disjoint.

If E is a set consisting of function-identifiers and
(possibly) variables, we write Ē for the terms gener-
ated from E by application: if g ∈ E is a function-
identifier of arity r, and t1 . . . tr are terms, then so is
g t1 · · · tr. We use informally the parenthesized no-
tation g(t1, . . . , tr), when convenient. We refer to C̄,
C ∪ X and C ∪ X ∪ F as the data-terms, base-terms

and program-terms, respectively.

A data-system (over C) consists of

1. A list D1 . . .Dk (the order matters) of unary
relation-identifiers, where each Dn is designated

as either an inductive-predicate or a coinductive-

predicate, and associated a set Cn ⊆ C of con-
structors.

2. For each inductive-predicate Dn an inductive

definition: for c ∈ Cn, of arity r say, a data-

introduction rule, of the form

Q1(x1) · · · Qr(xr)

Dn(cx1 · · ·xr)

where each Qi is one of D1 . . . Dn. These rules
delineate the intended meaning of an inductive
Dn from below.

3. For each coinductive-predicate Dn a coinduc-

tive definition: for c ∈ Cn, of arity r say, r
data-elimination rules, of the form

Dn(cx1 · · ·xr)

Qi(xi)

where each Qi is one of D1 . . . Dn. These rules
delineate the intended meaning of a coinductive
Dn from above.

Example. Let C consist of the identifiers 0, 1, [], s, t,
and c, of arities 0,0,0,1,1, and 2, respectively. Con-
sider the following data-system, with two inductive
definitions, for the booleans and for the natural num-
bers, followed by a coinductive definition for the in-
finite s/t-words and for the streams of natural num-
bers, and finally an inductive definition of the lists of
such streams.

1. B(0) B(1)

2. N(0)
N(x)

N(sx)

3.
W (sx)

W (x)

W (tx)

W (x)

4.
S(cxy)

N(x)

S(cxy)

S(y)

5. L([])
S(x) L(y)

L(cxy)

Note that constructors are being reused for different
data-types. This is in agreement with our untyped,
generic approach, with the intended type-information
conveyed by the data-predicates. 2

The algebraic-interpretation [[D]] of a data-system
D is defined by successively interpreting each
inductive-predicate Dn as the initial algebra for Cn,

2

based on the interpretations of D1 . . . Dn−1, and —
dually — each coinductive Dn as the final coalgebra
for Cn. Thus, the algebraic interpretation is the in-
tended model of the data-system.

2.2 Intrinsic Theories

Intrinsic theories, introduced in [9, 10] for inductive
data, are skeletal first-order theories whose interest
lies in a natural and streamlined formalization of rea-
soning about equational computing. For example, the
intrinsic theory for the natural numbers is perfectly
suited for incorporating equational programs as ax-
ioms, and while it has the same provably computable
functions as Peano Arithmetic, it has a far more im-
mediate formalization of the notion of provable com-
putability. For background, rationale, and examples,
please see [10].

The intrinsic theory for a data-system D, IT(D),
has

1. The rules of D,

2. Injectiveness axioms stating that the construc-
tors are injective, i.e. for each c ∈ C, of arity
r,

∀x1 . . . xr y1 . . . yr c(~x) = c(~y) →
∧

i

xi = yi

3. Separation axioms stating that the constructors
have disjoint images:

∀~x ~y c~x 6= d~y

for each distinct constructors c,d.

4. Rules complementary to the rules of D:

• For each inductive data-predicate Dn as
above, a data-elimination (i.e. Induction)
rule: for any formula∗ ϕ ≡ ϕ[x], the rule
infering ϕ[t] from

(a) Dn(t) ,

(b) For each c ∈ Cn a derivation of
ϕ[cx1 · · ·xr] from the assumptions
Qϕ

1 (x1) . . . Qϕ
r (xr), where Qϕ

i (u) is
ϕ[u] if Qi is Dn, and is Qi(u) oth-
erwise. (These open assumptions are
closed by the inference.) We say then
that c has type (Q1, . . . , Qr) → Dn.

• For each coinductive data-predicate Dn, a
data-introduction (i.e. Coinduction) rule:
for any formula ϕ[x], the rule infers Dn(t)
from

(a) ϕ[t]

(b) For each c ∈ Cn (of arity r) and
i = 1 . . . r, a derivation of Qϕ

i (xi) from
the assumption ϕ[cx1 · · ·xr].

(c) A derivation of

In-Dn(x) ≡

∨

c∈Cn

∃y1 . . . yr x = c y1 · · · yr

from ϕ[x]. We refer to this implication
as the bounding condition.

Again, we say then that c has type
(Q1, . . . , Qr) → Dn.

Note that each constructor c has as many
types as there are Cn in which it appears.

Note. Our general approach here is model theoretic,
that is we consider arbitrary structures for the given
vocabulary (= signature). In particular, equality is
interpreted in each structure as true equality. It fol-
lows that the bounding-condition in the statement of
Coinduction is necessary. Consider for example the
coinductive data W built from unary function identi-
fiers s and t, i.e. the infinite words over {s, t}. Tak-
ing the eigen formula ϕ of Coinduction to be x = x,
we would get, absent the bounding-condition, that
∀x W (x), which is not valid in models of the intrinsic
theory for W .

From the injectiveness and separation axioms it
follows that it is innocuous to introduce identifiers for
destructor functions, δn,i (n = 1 . . . k, i ≤ the maxi-
mal arity of constructors in Cn), and posit as axioms
the equations

δn,i(cx1 · · ·xr)) = xi

The injectiveness axioms can then be dispensed with
(they become provable), and the formulas In-Dn in
the bounding-conditions above can be simplified by
stating the closure-subderivations using destructors
rather than the constructors.

∗We use the bracket notation ϕ[t] to stand for the correct substitution in ϕ of t for the free occurrences of some fixed variable
z.

3

2.3 Equational programs

As in [9, 10], we use an equational computation
model, in the style of Herbrand-Gödel, familiar
from the extensive literature on algebraic seman-
tics of programs. There are easy translations be-
tween equational programs and the program-terms of
Moschovakis’s FLR0 [12]; however, equational pro-
grams integrate easily into logical calculi, because
they can be construed as equational theories; codi-
fying them as terms is a redundancy, since the com-
putational behavior of such terms is itself spelled out
using equations or rewrite-rules.

Given a data-system as above, a program-equation

is an equation of the form f(t1 . . . tk) = q, where f

is a program-function of arity k, t1 . . . tk are base-
terms, and q is a program-term. The identifier f is
dubbed the lead-function of the equation, and the tu-
ple 〈t1 . . . tk〉 its case. Two program-equations are
compatible if they have distinct lead functions, or else
have cases that cannot be unified. A program-body is
a finite set of pairwise-compatible program-equations.
A program (P, f) consists of a program-body P and a
program-function f, dubbed the program’s principal-

function. We identify a program with its program-
body when in no danger of confusion. We write VP

for the vocabulary of P , i.e. C augmented with the
program-functions used in P .

It is easy to define the denotational semantics of
an equational program for (the algebraic interpre-
tation of) inductive data, since such data is finite.
For example, if (P, f) is a program for a unary func-
tion over N, then it computes the partial function
f : N ⇀ N when f(p) = q just in case the equa-
tion f(p̄) = q̄ is derivable from P in equational logic,
where n̄ is the n’th numeral, i.e. ss · · · s0 with n s’s
(see e.g. [10] for generalizations and detail).

Since coinductive data is (in general) infinite,
defining the semantics of equational programs must
refer to finite information about the output. It must
also refer to the data-objects not as syntactic terms
that can be present in equations, but as values bound
to variables.

We posit then a structure S (for the vocabulary
of a data-system D), and define the partial function
computed by a program (P, f) by refering to the in-
terpretation of the constructors in S. We say that a
program (P, f) (with f unary, say) computes over S
the partial-function† f : |S| ⇀ |S| if the following are
equivalent:

1. f(a) = b, for a, b ∈ |S|;

2. S∗, [x, y := a, b] |= f(x) = y for all expansions
of S to the vocabulary of P , which satisfy P .

By the semantic completeness of equational logics
this is equivalent to to the following definition. Con-
sider fresh auxiliary variables, one variable va for each
a ∈ |S|. Let the diagram of S be the theory

Diag(S) = {va = cvb1 · · · vbr
| a = cb1 · · · br}

Then (P, f) computes f : |S| ⇀ |S| iff for every
a, b ∈ |S| we have f(a) = b iff the equation f(va) = vb

is derivable in equational logic from P ∪ Diag(D).
Note. A program (Q,g) whose principal-function g

is of arity 0 is a data-definition. For example, the
singleton programs {f = ss0} and {g = sg} are data-
definition of the natural number 2 (in unary) and of
the infinite word sss · · · , respectively. The singleton
program {h = j(0)} is also a data-definition, as is
the program consisting of h = j(0) and of equations
that engender a non-terminating computation of j for
input 0. However, the former two data-definitions
can be used to prove in the intrinsic theory that the
objects defined are a natural number and an infinite
word, respectively, in any structure, whereas nothing
of interest can be said about the objects defined by
the latter two data-definitions.

3 Global semantics of programs

over inductive data

3.1 Global semantics for equational
programs

The concept of global relations, which was present
implicitly in mathematical logic for long, came to
prominence in Finite Model Theory in the 1980s.

Let C be a collection of structures. A global re-

lation (of arity r) over C is a mapping P that as-
signs to each structure S in C an r-ary relation over
the universe |S| of S. For example, if C is the col-
lection of all structures over a given vocabulary V ,
then a first-order V -formula ϕ, with free variables
among x1 . . . xr , defines the predicate λx1 . . . xrϕ that
to each V -structure S assigns the relations‡.

{〈a1 . . . ar〉 | S, [~x := ~a] |= ϕ}

†We write |S| for the universe of S, and use ⇀ for partial functions
‡The notion that a formula delineates uniformly subsets of structures is implicit already in early formalizations of Set Theory,

for instance in Frege’s Comprehension Principle and, in particular, in Fraenkel and Skolem’s Axiom of Replacement. In relation to
collections of first order structures the notion was used by Tarski [15] and in [1]. Alternative phrases used for it include generalized

relations, data base queries, global relations, global predicates, uniformly defined relations, predicates over oracles, and predicates.

4

A global r-ary function over C is defined analo-
gously. For example, each λ-term with identifiers in
V as primitives, defines a global function over the
class of V -structures. E.g., if c, f and g are V -
identifiers for functions of arity 0,1 and 2 respectively,
then the term λx,1 , x2 g(f(x1), g(x2, c)) defines the
global function that to each V -structure S assigns the
mapping 〈a1, a2〉 7→ g(f(x1), g(x2, c)), where c, f and
g are the interpretations in S of the identifiers c, f
and ttg.

The starting point of Descriptive Computational
Complexity [6] is that programs used as acceptors de-
fine global relations. When those global relations can
be defined also by certain logical formulas, one ob-
tains machine-independent characterizations of com-
putational complexity classes. For instance, Fagin [5]
and Jones & Selman [7] proved that a predicate P
over finite structures is defined by a program running
in nondeterministic polynomial time (NP) iff it is de-
fined by a purely existential second order formula.

We focus here on global semantics for (“unin-
terpreted”) equational programs, for arbitrary data-
systems. That approach, developed for inductive data
in [10], is of interest for a number of reasons. Gen-
erally, the global semantics approach is an interest-
ing alternative to the “intended-structure” approach:
the latter tackles the issue of program divergence
through the development of Domain Theory, whereas
the former bypasses the issue by invoking uniformity
through all structures (see Corollary 2 below).

Also, under the global semantics approach the no-
tion of correctness of programs is simple, direct, and
informative. Here a program over inductive data is
said to be correct if it maps, in every structure, in-
ductive data to inductive data. This turns out to be
equivalent to the program termination (for all input)
in the intended structure (e.g. N). For program over
co-inductive data, which we address here, correctness
will turn out to be equivalent to fairness: if the input
is a stream, then the program will have an output as
a stream, without stalling in producing new entries.

The simple, global, and uniform notion of
program-correctness also enables a simple proof the-
oretic treatment of program-correctness. For exam-
ple, one can define for programs over N a rudimen-
tary theory of data (the “intrinsic theory of N” in
[10]), with no reference to numeric functions such as
addition or multiplication, with the result that the
provably-correct programs compute precisely all the
provably-recursive functions of Peano Arithmetic.

Our aim here is to initiate a similar approach for
equational computing over co-inductive data.

3.2 Adequacy of Global semantics for
inductive data

It is easy to define the intended semantics of equa-
tional programs over inductive data, such as natural
numbers or strings. The universe is the initial algebra,
and computation proceeds using equations as rewrite
rules. For instance, if (P, f) is a program for a unary
function over N, (using a vocabulary V that includes
the identifiers s and 0 for successor and zero), then
P defines over the canonical structure N the partial
function f determined by

f(p) = q iff P ⊢= f(p̄) = q̄

where provability is in equational logic.
The global semantics of such equational programs

is defined analogously, within structures, with the dif-
ference that the principal function-identifier of the
program is always interpreted as a total function.
That is, if S is a V -structure which models P (i.e.
such that all equations in P are valid in S), then
f(p) = q implies that S |= f(p̄) = q̄.§, but the term
f(p̄) will always have a value in S, albeit not the de-
notation of a numeral.

The converse implication also holds, leading to the
following (see [10] for generalizations):

Theorem 1 (Semantic Adequacy Theorem for In-
ductive Data) [10] If (P, f) is an equational program
that computes a partial function f : N ⇀ N, then
f(p) = q iff S |= f(p̄) = q̄ in all models S of P .

Let S be a structure over the functional vocab-
ulary V above, augmented with a single unary rela-
tional identifier N. We say that S is data-correct if

[[N]]S = {[[n̄]]S |n ∈ N}

that is, if N is interpreted in S as the set of denotations
of numerals. A consequence of Theorem 1 is

Corollary 2 An equational program (P, f) over N

computes a total function iff the formula N(x) →
N(f(x)) is valid in every data-correct model of P .

The proof in [10] of the non-trivial direction of
Theorem 1 proceeds by constructing a “test-model”
for the program P . One starts with an extended term
model, using all identifiers of the program P as well
the the constructor, and taking its quotient over are
the equivalence relation of equality-derived-from P .

4 Global semantics of program
§We write n̄ for the n’th numeral, i.e. ss · · · s0 with n s’s.

5

for data systems

4.1 Global semantics in the presence of
coinductive data

The canonical semantics of equational programs
over data-systems is obtained, of course, by the in-
cremental construction of algebraic interpretations for
the data-types, as initial algebras or final co-algebras.

We define the global semantics of such programs,
using equational logic as an operational model. Here
we need to refer to possibly infinitely many struc-
ture elements. For example, if a is a 01-stream, and
(P, f) is a program, the value computed within a V -
structure S for the stream f(a) is generally a stream,
whose finite initial segments are obtained in equa-
tional logic using P , as well as a finite amount of
information about initial segments of a. Thus, the
equational computing must refer to names for iter-
ated tails of the inputs stream a and of the output
streams f(a) in S. That is, given a V -structure S
we posit a collection of fresh constant identifiers va

for each a in the universe |S| of S. The Diagram

of S is the set Diag(S) consisting of the equations
va = cvb1 · · ·vbr

that are true in S.
If t and t′ are closed terms, E is a set (not nec-

essarily finite) of equations, we write E ⊢ t =1 t′

if there is a constructor c (of arity r) and terms
t1 . . . tr, t

′
1 . . . t′r such that the equations t = ct1 . . . tr

and t′ = ct′1 . . . t′r are derivable in equational logic
from E . We write E ⊢∗ t = t′ if E ⊢ ∆t =1 ∆t′ for
every multi-destructor ∆, where a multi-destructor

is the composition of destructors. Intuitively, E ⊢∗

t = t′ when for every subterm-address ∆ E pro-
vides a computation that establish that t and t′ have
the same constructor at that address. When t and
t′ evaluate to purely inductive (i.e. finite) values,
then E ⊢∗

= t = t′ can be shown to be equivalent to
E ⊢= t = t′ (i.e. straightforward provability in equa-
tional logic).

4.2 Adequacy of global semantics for
general data-systems

We now proceed to construct, given a program
(P, f) over a data-system D, a canonical model M(P)
to serve as a “test-structure” for the program. We
start with the admitting fresh constant-identifiers ea

for each element a of the algebraic interpretation of
the data-system. We define the formal diagram of D
to be the set of equations

FDiag(D) = {ea = ceb1 · · · ebr
| a = cb1 · · · br}

Let T (P) be the set of formal terms generated
from the identifiers ea using the program-functions
occurring in P and the constructors.

Consider the relation ≈P that holds between two
terms t, t′ ∈ T (P) if P, FDiag(D) ⊢∗

= t = t′. Clearly,
this is an equivalence relation. The universe of M(P)
is the quotient T (P)/(≈P), The constructors and
program-functions are interpreted in M(P) via sym-
bolic application: the interpretation of a function-
identifier g, unary say, maps an equivalence-class [t]≈
to the equivalence class [gt]≈.

Finally, each data-predicate Dn is interpreted as

[[Dn]]M = {[ea] | a ∈ [[Dn]] }

Next we generalize the definition of data-correct
structures to arbitrary D. We say that S is data-

correct if

1. Each inductive data-predicate Dn is interpreted
in S as the smallest subset of |S| which is closed
under the data-introduction rules of the data-
system D (for Dn).

2. Each coinductive data-predicate Dn is inter-
preted in S as the largest subset of |S| which
is

(a) Contained in the image of all constructors
in Cn, i.e. a subset of ∪c∈Cn

c(|S|); and

(b) Is closed under the data-elimination rules
of the data-system D (for Dn).

(Note that S may have a multitude of elements
corresponding to the same element of [[Dn]].)

Lemma 3 M(P) is a data-correct model of P .

Theorem 4 Let (P, f) be a program over a data-
system D, with f k-ary. The following are equivalent.

1. The program (P, f) computes on [[D]] a partial-
function that maps inputs a1 ∈ Dn1

, . . . , ak ∈
Dnk

to an output in Dn0
. (I.e. non-terminating

or aborting computations might occur only for
inputs of different data-types.)

2. The formula

∀x1 . . . xk

∧

i

Dni
(xi) → Dni

(f~x)

is true in M(P).

3. The formula above is true in all data-correct
models of P .

6

Proof Outline. (1) implies (3) since the equational
computation of P over [[D]] remains correct in every
data-correct model of P .

To prove that (3) implies (2), we use the Lemma
above. The quotient construction is designed pre-
cisely to achieve that.

Finally, (2) implies (1) by the way we define the
interpretation in M(P) of the predicates Dn. 2

Theorem 4 justifies a concept of provable correct-
ness of programs: (P, f) is provable correct in a given
formal theory if the formula above is not merely true
in all data-exact models of P , but is indeed provable
from (the universal closure of) P, as an axiom. We
will present such theories and analyze their proof the-
oretic strength in a future paper.

In the next section we prove that the provable
functions of the intrinsic theory for streams of digits
are precisely the functions over such streams that are
definable using the schema of primitive corecursion.

5 Primitive Corecursion

5.1 The class of primitive corecursive

functions

We say that a function f over N is defined by recur-

rence if it is given by the schema

f(0, ~y) = g0(~y)

f(s(z), ~y) = gs(f(z, ~y, z, ~y)

This conveys the algorithmic paradigm of decompos-
ing the input by eager evaluation, so as to rebuild
the output from initial components. Slightly more
generally, in a data system as above with just one
predicate, which is inductive, the definition has, for
each constructor c of type Dr → D a clause

f(c(x1 . . . xr), ~y) = gc(e1 . . . er, ~y)

where each ei is f(xi, ~y). Here each gc is an already-
defined function of the correct arity; that is, for each
data-object x we obtain f(x, ~y) by interpreting each
occurrence of a constructor c as the function gc (pa-
rameterized by ~y). A function over the given data-
system is primitive-recursive if it is obtained by re-
peated use of explicit definitions and the schema of
recurrence.

The schema of corecurrence is the dual of recur-
rence: it conveys the algorithmic paradigm of build-
ing up the output while decomposing the (possibly
infinite) input by a lazy evaluation. This is easily ex-
pressed for simple forms of coinductive data. Suppose

C is a coalgebra (a unique coinductive predicate D)
based on just one constructor c, of type (Q, D) → D,
where Q is not D; then corecurrence is the schema

f(x, ~y) = c(f(g(x, ~y), ~y), g′(x, ~y))

Since c is the only available constructor here, this is
conveyed referring to the two destructors for c, say δ0

and δ1:

δ0 f(x, ~y) = f(g(x, ~y), ~y)

δ1 f(x, ~y) = g′(x, ~y)

However, using destructors prevents us from spec-
ifying the output’s main constructor, whenever there
is more than just one constructor present. While we
focus in the sequel on the case of a single constructor
(cons for lists of digits), let us state a corecurrence
principle that applies to a coinductive predicate Dn

based on a set Cn consisting of k constructors. We in-
voke the function Case(u0, u1, . . . , uk) which returns
ui if the main constructor of u0 is the i-th constructor
in Cn (under some canonical ordering).

A function f is then defined by corecurrence from
the functions h, gi below if

f(x, ~y) = Case(h(x, ~y), e1, . . . , ek)

where each ei is of the form d(b1 . . . br) for some con-
structor d with type (Q1, . . . , Qr) → D, with each
bj being of form f(gj(x, ~y), ~y) if Qj is D, and of the
form gj(x, ~y) otherwise.¶ A function over the given
data-system is primitive corecursive if it is obtained
by repeated use of explicit definitions and the schema
of corecurrence.
Example. Digit Streams form a simple data system
of the kind mentioned above: cons is the unique non-
constant constructor, which we denote by an infixed
colon. The remaining constructs are the 0-ary 0 and
1, and the data-predicates are the inductive (and fi-
nite) D (digits) and the coinductive S (streams))).
The rules are

D(0) D(1)
D(x) S(y)

S(x : y)

The constructor cons has the the two destructors
hd : S → D and tl : S → S.

Since there is a single non-consant constructor
here, corecurrence can be formulated using the de-
structors, as the template:

hd(f(x, ~y)) = g0(x, ~y)

tl(f(x, ~y)) = f(g1(x, ~y), ~y

¶This definition is for a directed data-system. A further refinement is needed for the fully general case.

7

For example, we can define by corecurrence a func-
tion even:

hd(even(x)) = hd(x); tl(even(x))even(tl(tl(x))).

The function even is fair, in the sense that it maps
streams to streams. More precisely, in every model S
of the data-system, expanded to interpret even while
satisfying its equational definition, if S(x) holds for x
bound to an object a, then S(even(x)).

The fairness of even can be proved using the fact
that hd(even(x)) and tl(tl(x))) do not use even(x).
This is the guardedness condition described in [4]

We consider here only streams over a finite sets,
or more generally coinductive data built from initial
predicates that are finite; this excludes for example
streams of natural numbers, which are studied in a
category-theoretic setting for example in [16, 17].

5.2 Data-positive coinduction cap-

tures corecurrence

Consider intrinsic theories, as defined above. A for-
mula is data positive if no data-predicate occurs in it
in a negative position. (Recall that a position in a
formula is negative if it is in the negative (premise)
scope of an odd number of implications (where we
consider each negation ¬ϕ to be ϕ→⊥). A formula
is data-free if it has no occurrence of a data-predicate.
In [11] we showed that a function over N is primitive
recursive iff it is provably correct in the intrinsic the-
ory for N, with induction restricted to data-positive
formulas.‖

Here we prove a similar characterization for the
class of primitive corecursive functions. For simplic-
ity, we refer to the intrinsic theory for the data-system
Sm of streams of booleans, based on minimal logic.
We write IT+ for that theory, with coinduction re-
stricted to data-positive formulas.

Lemma 5 If f is defined by corecurrence from func-
tions provable in IT+ the f is provable in IT+.

Proof. Suppose f defined by

hd(f(x)) = g0(x) tl(f(x)) = f(g1(x))

Let (P0, g0) and (P1, g1) be programs (with no com-
mon function-identifiers) that are provable in IT+,
with D0 a derivation of D(g0(x)) from S(x) and P0,
and D1 deriving S(g1(x)) from S(x) and P1. Consider

(P, f) where P is P0 ∪ P1 augmented with the core-
cursive definition of f from g0 and g1. Then S(f(x))
is derived from S(x) and P as follows. Let ϕ[z] be
∃y S(y)∧f(y) = z. Note that ϕ is data-positive. Then
S(f(x)) is derived from assumptions S(x) and P by
coinduction on ϕ, since we have the three premises of
coinduction:

• From S(x) we have ϕ[f(x)],

• D0 establishes ϕ[u] → D(g0(u)).

• To prove ϕ[u] → ϕ[tl(u)], assume ϕ[u], i.e.
S(v) ∧ f(v) = u for a fresh variable v. Then
S(g1(v)) by D1, and tl(u) = tl(f(v)) = f(g1(v))
by So ϕ[tl(u)] with y taken to be g1(v).

2

6 Corecurrence captures data-

positive coinduction

6.1 Derivations as data

A known technique for showing that the provable
functions of a given deductive formalism have a
certain complexity is by showing that two proof-
manipulation processes fall within that complex-
ity class: the conversion of deductions of function-
correctness into some normal form, and the extraction
from such normal form the output of the functions
considered.

The latter step is particularly transparent when
data is represented directly in proof structure. This
is particularly clear for intrinsic theories for induc-

tive data, such as the natural numbers. For example,
writing N for the data-predicate for N, a normal proof
of N(t) for a closed term t consists of a sequence of
formulas N(t0) . . . N(tk) (where f0 is 0 and tk is t),
where each N(ti+1) follows from N(ti) either by the
rule N(x)/N(s(x)) or by an instance of the Equal-
ity Rule deriving with main premise ti = ti+1. Thus
the value of t can be trivially extracted from the nor-
mal proof (and corresponds formally to the structure
of the derivation via a suitable variant of the Curry-
Howard morphism). A proof Π[x] of N(x) → N(f(x))
(from an equational program for f), with x a free vari-
able, can then be used as an algorithm for computing
f : for input k, we augment∗∗ Π[k̄] by the trivial proof
of N(k̄) to obtain a proof of N(f(k̄); normalizing that
proof we obtain a proof from which the value of f(k)
is extracted trivially.

‖This holds regardless to whether the logic is classical, constructive, or minimal. For classical logic the result holds also if
induction is allowed for an analogous notion of data-negative formulas.

∗∗Recall that k̄ is the numeral s
[k](0).

8

To apply this technique to coinductive data,
we are naturally led to consider derivations whose
structure represents infinite data, i.e. infinite deriva-
tions. Well-founded infinite derivations (such as ω-
proofs of arithmetic or ω-logic) are unproblematic and
well-known, but the derivations we need are inher-
ently non-well-founded. Of course, non-well-founded
derivations are generally inconsistent, since any for-
mula ϕ can be derived by a non-well-founded natural
deduction that alternates between deriving ϕ from
ϕ ∧ ⊤ and vice versa. However, by insisting on sim-
ple structural conditions on non-well-founded deriva-
tions, we will be able to ensure their soundness (let
alone consistency).

We consider as a separate rule a degenerate
form of coinduction, deriving S(t) (for a term t)
from D(hd(t)) and S(tl(bft)), which we dub stream-
reconstruction, or Reconstruction for short. Recon-
struction is easily justified by coinduction for the
(data-positive) formula ϕ[z] ≡ D(hd(z)) ∧ S(tl(z)).
(Note that more general forms of coinduction derive
S(t) without actually evaluating t, and thus have
no bearing on the use of infinite branches to emu-
late data.) We then consider derivations in which ev-
ery (infinite) branch eventually consist of reconstruc-
tion rules only.†† We dub such derivations admissible.

Admissible derivations are sound, because infinite se-
quences of reconstructions are obviously sound.

The collection of all derivations with finite and in-
finite branches, whether sound or not, is trivially de-
finable as coinductive data, over which we can (and
will) use corecurrence.

We refer to the usual notion of logical detours in
natural deductions, and the corresponding reduction
operations [14, 11]. as well as data-detour, consisting
of data-introduction (coinduction) followed by data-
elimination. Such detours are easily eliminated (by
reductions dual to the ones used for induction [14].
For the case of streams of digits we have, for exam-
ple,

· · ·
ϕ[a : t]

ϕ[z]
· · ·

D(hd(z)

ϕ[z]
Π[z]

ϕ[tl(z)]

S(a : t)

S(t)

reduces to

· · ·
ϕ[a : t]

Π′[a : t]
ϕ[t)]

ϕ[z]
· · ·

D(hd(z)

ϕ[z]
· · ·

ϕ[tl(z)]

S(t)

where Π′[a : t] is Π[a : t] suitably augmented with
equality rules.

However, in contrast to derivations for induc-

tive data, the absence of detours in intrinsic theories
for coinductive data does not yet allow direct data-
extraction. A formula S(t) for closed t can be derived
by an instance of coinduction, with the evaluation of
t implied abstractly rather than concretely. This is a
direct manifestation of the lazy evaluation of the out-
put stream, and is similar to an unevaluated thunk in
programs.

Just as the concrete value of the stream is ob-
tained by actually evaluating its entries, a “concrete
proof” of S(t) is obtained from the coinduction de-
riving S(t) by unfolding it into an infinite tower of
instances of Reconstruction. To start,

Π0

ϕ[t]

ϕ[z]
Π1[z]

D(hd(z))

ϕ[z]
Π2[z]

ϕ[tl(z)]

S(t)

reduces to

Π0

ϕ[t]
Π1[t]

D(hd(t))

Π0

ϕ[t]
Π2[t]

ϕ[tl(t)]

ϕ[z]
Π1[z]

D(hd(z))

ϕ[z]
Π2[z]

ϕ[tl(z)]

S(tl(t)

S(t) (1)

And repeating the process we unfold the given coin-
duction into an infinite derivation built from instances
of Reconstruction. Note that if the given derivations
Πi are admissible (let alone finite), then the resulting
infinite derivation will also be admissible.

We are thus interested in strictly-normal deriva-
tions, defined to be admissible derivations with no
logical detours, no coinductions, and no data-detour
(but possibly with instances of Reconstruction). A
strictly-normal derivation of S(x), with no data-
positive assumptions, and proving S(t) for some term
t, must end with an instance of Equality Elimination
or Reconstruction. In either case, we obtain from the
derivation the successive values of the digits in t.

Recall that we wish to obtain from a derivation
Π[x] of S(fx) from the assumption S(x) (x a variable)
a method of calculating, given an input stream σ, the
output stream fσ (determined by the equational pro-
gram P for f). It remains to explain how to treat an
input stream σ to be bound to x: since σ is arbitrary,
it has no syntactic representation in the formalism.
The conceptually easiest approach is to think of the
binding of x to an arbitrary σ semantically. That
is, we treat x as a constant identifier, and consider

††More general forms of derivations would remain sound, but they are not needed for our purpose.

9

the theory IT+[σ], obtained by augmenting the the-
ory IT+ with the set Diag(σ) (the “diagram” of σ)

consisting of all equations of the form hd[n](x) = σn,

where hd[n](z) stands for hd(tl · · · tl(z) · · ·) with n tl’s,
and where σn is the n’th digit in σ. To calculate fσ
we then refer to the derivation Π[x], and normalize

it while replacing derivations of formulas D(hd[n](x))
from assumption S(x) by the Equation Elimination

hd[n](x) = σn D(σn)

D(hd[n](x))

This yields a derivation Π′[x] of S(f(x)), based on
binding x to σ, from which we can read the value
f(σ).

Note that virtually the same algorithm can be con-
strued syntactically (in the spirit of the main proof
in [11]), as follows. Assuming given the diagram
Diag(σ), we can describe an admissible derivation Πσ

of S(x), and therefore of the derivation Π”[x] obtained
from the given derivation Π[x] of S(f(x)) from S(x)
by augmenting each S(x) as assumption by its proof
Πσ. The normal form of Π”[x] is then essentially the
same as the normal form of Π′[x] above.

6.2 Data-positive provability implies

primitive corecurrence

Theorem 6 (Normalization) Let Π be a derivation
of IT+, proving a formula ϕ from open assumptions
Γ. There is a function νΠ, defined by corecurrence
on arbitrary derivations (see §6.1) that maps normal
admissible derivations for the data-positive formulas
in Γ to a strictly-normal admissible derivation Π∗ of
the formula ϕ from the data-free formulas in Γ.

A proof outline is given in the appendix.
If the main inference of Π is Coinduction, with

immediate subderivations Π0, Π1, Π2, then νΠ(~Ξ) is
obtained by defining corecursively, as in the reduction
(1) above, the unfolding of the augmented derivation,

using the strictly-normal derivations νΠi
(~Ξ). Note

that the resulting infinite derivation has no new de-
tours, in contrast to the unfolding of inductive data
(see [11]). 2

It should be noted that Π∗ can be specified as a
tree of inference rules, without displaying the entire
syntactic object at each node of the proof-tree. This
is important in the proof of the following.

Theorem 7 (Extraction) Let Π be a strictly-normal
admissible derivation of formula S(f(x)) from some
equational program P and S(x). Further assume that

Π as a tree of (names of) inference-rules, is primitive
corecursive (over streams of digits). Then function f
computed by P is primitive corecursive (over streams
of digits).

A proof outline is given in the appendix.
Combining the two theorems above we have:

Theorem 8 Let (P, f) be an equational program,
such that S(x)→S(fx) is provable in IT+ augmented
with P . Then the function f computed by P is prim-
itive corecursive.

References

[1] Jon Barwise and Yanis Moschovakis. Global in-
ductive definability. Journal of Symbolic Logic,
43:521–534, 1978.

[2] Ulrich Berger. From coinductive proofs to exact
real arithmetic. In CSL, pages 132–146, 2009.

[3] Alberto Ciaffaglione and Pietro Di Gianantonio.
A certified, corecursive implementation of exact
real numbers. Theor. Comput. Sci., 351(1):39–
51, 2006.

[4] Thierry Coquand. Infinite objects in type theory.
In TYPES, pages 62–78, 1993.

[5] Ronald Fagin. Generalized first order spec-
tra and polynomial time recognizable sets. In
R. Karp, editor, Complexity of Computation,
pages 43–73. SIAM-AMS, 1974.

[6] Neil Immerman. Descriptive and computational
complexity. In FCT, pages 244–245, 1989.

[7] N.G. Jones and A.L. Selman. Turing machines
and the spectra of first-order formulas. Journal

of Symbolic Logic, 39:139–150, 1974.

[8] Daniel Leivant. A foundational delineation
of poly-time. Information and Computation,
110:391–420, 1994.

[9] Daniel Leivant. Intrinsic theories and computa-
tional complexity. In D. Leivant, editor, Logic

and Computational Complexity, LNCS, pages
177–194, Berlin, 1995. Springer-Verlag.

[10] Daniel Leivant. Intrinsic reasoning about func-
tional programs I: First order theories. Annals

of Pure and Applied Logic, 114:117–153, 2002.

[11] Daniel Leivant. Intrinsic reasoning about func-
tional programs II: unipolar induction and
primitive-recursion. Theor. Comput. Sci., 318(1-
2):181–196, 2004.

10

[12] Yiannis N. Moschovakis. The formal language of
recursion. J. Symb. Log., 54(4):1216–1252, 1989.

[13] Charles Parsons. On a number-theoretic choice
schema and its relation to induction. In A.
Kino, J. Myhill, and R. Vesley, editors, Intuition-

ism and Proof Theory, pages 459–473. North-
Holland, Amsterdam, 1970.

[14] D. Prawitz. Natural Deduction. Almqvist and
Wiksell, Uppsala, 1965.

[15] Alfred Tarski. Some notions and methods on
the borderline of algebra and metamathemat-
ics. In Proceedings of the International Congress

of Mathematicians I, pages 705–720, Providence,
RI, 1952. American Mathematical Society.

[16] Tarmo Uustalu and Varmo Vene. Primitive
(co)recursion and course-of-value (co)iteration,
categorically. Informatica, 10:5–26, 1999.

[17] Varmo Vene and Tarmo Uustalu. Functional pro-
gramming with apomorphisms (corecursion). In
In 9th Nordic Workshop on Programming The-

ory, 1998.

Appendix: Technical proofs.

Proof outline for Theorem 6

Let Π be the given normal derivation of IT+. We
reason by discourse-level structural induction on Π.

If Π is an axiom, data-free assumption, or Equal-
ity Introduction, then νΠ is Π itself.

If Π is a data-positive assumption, then νΠ is the
identity function.

Π extends its immediate subderivation Π′ by ∨-
Introduction, then νΠ maps the input derivations Ξi

to the derivation obtained by ∨-introduction from

the derivation νΠ′(~Ξ). The definition of νΠ is sim-
ilar when the main inference of Π is any other logical
introduction rule, or Equality Elimination.

If the main inference of Π is elimination, then it
may itself engender a detour when derivations of data-
positive assumptions are grafted on Π. If that hap-
pens, then the reduct of the resulting detour can be
construed as the value of νΠ′ for suitable input, for
some immediate subderivation Π′ of Π, and we invoke
νP′ (see [11] for detail). If no new detour appear at
the root, then νΠ is defined as for the case for the
introduction-rules above.

If the main inference of Π is Coinduction, with
immediate subderivations Π0, Π1, Π2, then νΠ(~Ξ) is
obtained by defining corecursively, as in the reduction
(1) above, the unfolding of the augmented derivation,

using the strictly-normal derivations νΠi
(~Ξ). Note

that the resulting infinite derivation has no new de-
tours, in contrast to the unfolding of inductive data
(see [11]). 2

Proof outline for Theorem 7

Since Π is strictly normal, all formulas therein are
equations or of the form S(t) for some term t, and all
inferences are instances of Reconstruction and Equa-
tion rules. (Recall that strictly normal derivations
use no coinduction, which we replace by streams of
reconstructions). Moreover, we can assume w.l.o.g.
(by contracting cascading equations) that subsequent
instances of Reconstruction are separated by at most
one Equation Elimination.

This Π consists of a trunk of instances of Recon-
structions, with spikes consisting of finite subderiva-
tions for formulas D(·), all having the same structure.
The assumption S(x) is used in Π to infer D(t) for

terms t = hd[n](x); the value of each such term is
given as σn. 2

2

11

