Tight Enforcement of Information-Release Policies for Dynamic Languages

Aslan Askarov and Andrei Sabelfeld
(presented by Lindsey Kuper)
Motivation

• Securing applications written in dynamically typed languages is an important problem.

• We want to do better than noninterference.

• We want to handle dynamic languages.
 • In particular, we want to handle \texttt{eval}.

• We want tight enforcement: everything that the policy allows and nothing it doesn’t.

• \textit{Can we have our cake and eat it too?}
Security model
Security model

• Think of an attacker as trying to discover the contents of memory m.
Security model

- Think of an attacker as trying to discover the contents of memory m.
- There is some finite set, say, M, of things that m might be. At first, this set is the attacker’s knowledge k. As the attacker learns more, k shrinks. (It’s helpful to think of k as uncertainty.)
Security model

• Think of an attacker as trying to discover the contents of memory m.

• There is some finite set, say, M, of things that m might be. At first, this set is the attacker’s knowledge k. As the attacker learns more, k shrinks. (It’s helpful to think of k as uncertainty.)

• Under noninterference, k would have to always remain equal to M...
Security model

- Think of an attacker as trying to discover the contents of memory m.
- There is some finite set, say, M, of things that m might be. At first, this set is the attacker’s knowledge k. As the attacker learns more, k shrinks. (It’s helpful to think of k as uncertainty.)
- Under noninterference, k would have to always remain equal to M...
- But under a model that allows declassification, we just have to ensure that k remains at least as large as some set p representing our security policy.
Security model

• Think of an attacker as trying to discover the contents of memory \(m \).

• There is some finite set, say, \(M \), of things that \(m \) might be. At first, this set is the attacker’s knowledge \(k \). As the attacker learns more, \(k \) shrinks. (It’s helpful to think of \(k \) as uncertainty.)

• Under noninterference, \(k \) would have to always remain equal to \(M \)...

• But under a model that allows declassification, we just have to ensure that \(k \) remains at least as large as some set \(p \) representing our security policy.

• Events that may cause \(k \) to shrink form a sequence of low events \(\ell \).
Security model

• But under a model that allows declassification, we just have to ensure that k remains at least as large as some set p representing our security policy.

• Events that may cause k to shrink form a sequence of low events $\vec{\ell}$.
But under a model that allows declassification, we just have to ensure that k remains at least as large as some set p representing our security policy.

Events that may cause k to shrink form a sequence of low events ℓ.
Security model

• But under a model that allows declassification, we just have to ensure that k remains at least as large as some set p representing our security policy.

• Events that may cause k to shrink form a sequence of low events ℓ.
Security model

- But under a model that allows declassification, we just have to ensure that k remains at least as large as some set p representing our security policy.

- Events that may cause k to shrink form a sequence of low events ℓ.
Security model
Security model
Security model
Security model

- A low event ℓ is a change in the attacker’s ability to distinguish memories (i.e., an opportunity for k to shrink).

- Three kinds of low events:
 - (x, v), an assignment of v to low variable x
 - \downarrow, the program ends
 - ϵ, the empty low event

- An escape hatch is a declassified program expression by which knowledge about the contents of memory can escape to the attacker. E is a set of escape hatches.
The end
Definition of termination-sensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' \ I(E) \ m \} \]

\[k(c, i_L, \vec{\ell}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \rightarrow_{\vec{\ell}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{\ell} \) and initial low memory \(i_L \), denoted \(TSec(c, i_L, \vec{\ell}) \), if for all memories \(m \in k(c, i_L, \vec{\ell}) \) that produce \(\vec{\ell} \) we have:

\[\forall i . 1 \leq i \leq n . p(m, E_i) \subseteq k(c, m_L, \vec{\ell}_i) \]

where \(\vec{\ell}_i \) is the \(i \)-prefix of \(\vec{\ell} \), \(\vec{\ell} = \vec{\ell}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{\ell}_i \).
Definition of termination-sensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' \ I(E) \ m \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \xrightarrow{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TSec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \) we have:

\[\forall i \cdot 1 \leq i \leq n \cdot p(m, E_i) \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-sensitive security

\[p(m, E) = \{m' \mid m'_L = m_L \land m' \text{ I}(E) m\} \]

\[k(c, i_L, \vec{l}) = \{m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \xrightarrow{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TSec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \) we have:

\[\forall i. 1 \leq i \leq n \cdot p(m, E_i) \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-sensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' \ I(E) m \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \xrightarrow{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TSec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \) we have:

\[\forall i. \ 1 \leq i \leq n . \ p(m, E_i) \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
If termination-sensitivity is too strong a notion of security...

- ...we can define a notion of termination-insensitive security that ignores information leaks caused by termination.

- Before, we demanded that p, which represents the knowledge that the policy releases, was a subset of k, which represents the attacker's knowledge.

- Now, we just require the part of p that contains progress knowledge to be a subset of k.
Definition of termination-insensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' I(E) m \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \xrightarrow{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TISec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \), we have: \(\forall i . 1 \leq i \leq n \).

\[p(m, E_i) \cap \bigcup_{\vec{l}'} k(c, m_L, \vec{l}_{i-1} \vec{l}') \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-insensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' \mathbin{I(E)} m \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \longrightarrow_{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(\text{TISec}(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \), we have: \(\forall i . 1 \leq i \leq n \).

\[p(m, E_i) \cap \bigcup_{\vec{l}'} k(c, m_L, \vec{l}_{i-1} \vec{l}') \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-insensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' \ I(E) \ m \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \rightarrow_{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TISec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \), we have: \(\forall i . \ 1 \leq i \leq n \).

\[p(m, E_i) \cap \bigcup_{\vec{l}'} \ k(c, m_L, \vec{l}_{i-1}' \vec{l}') \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-insensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' I(E) m \} \]
\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land \langle c, m, \emptyset \rangle \xrightarrow{\vec{l}} \langle c', m', E' \rangle \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TISec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \), we have: \(\forall i \cdot 1 \leq i \leq n \).

\[p(m, E_i) \cap \bigcup_{\vec{l}'} k(c, m_L, \vec{l}_{i-1} \vec{l}') \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-insensitive security

\[p(m, E) = \{ m' \mid m'_L = m_L \land m' \xrightarrow{I(E)} m \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \land (c, m, \emptyset) \xrightarrow{\vec{l}} (c', m', E') \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{l} \) and initial low memory \(i_L \), denoted \(TISec(c, i_L, \vec{l}) \), if for all memories \(m \in k(c, i_L, \vec{l}) \) that produce \(\vec{l} \), we have: \(\forall i . 1 \leq i \leq n \).

\[p(m, E_i) \cap \bigcup_{\vec{l}'} k(c, m_L, \vec{l}_{i-1} \vec{l}') \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Definition of termination-insensitive security

\[p(m, E) = \{ m' \mid m'_L = E \} \]

\[k(c, i_L, \vec{l}) = \{ m \mid m_L = i_L \} \]

A program \(c \) is secure of low events \(\vec{l} \) and initial state \(TISec(c, i_L, \vec{l}) \), if for all \(m \) that produce \(\vec{l} \), we have: \(\forall i . 1 \leq i \leq n \).

\[p(m, E_i) \cap \bigcup_{\vec{l}'} k(c, m_L, \vec{l}_{i-1} \vec{l}') \subseteq k(c, m_L, \vec{l}_i) \]

where \(\vec{l}_i \) is the \(i \)-prefix of \(\vec{l} \), \(\vec{l} = \vec{l}_n \) for some \(n \), and \(E_i \) is extracted from the configuration that generated the last event in \(\vec{l}_i \).
Enforcing termination-insensitive security

• A purely dynamic enforcement mechanism is all we need for this definition of security.

• We define the semantics of a monitor, which executes in sync with our program, with a set of monitor events.

• Our little language:

$$e ::= n \mid s \mid x \mid e \ op \ e$$

$$c ::= \text{skip} \mid x := e \mid x := \text{declassify}(e) \mid c; c$$

$$\mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{eval}(e)$$
Monitor events

• *nop*: program performs a **skip**
• *a(x, e)*: program assigns the value of *e* to *x*
• *d(x, e, m)*: program declassifies *e* into the variable *x*
in the context of memory *m*
• *b(e, c₁; c₂)*: program branches on *e* and is about to
enter *c₁* or *c₂*
• *we(e)*: program enters or skips a **while** loop with
guard *e* or runs **eval(e)**
• *f*: program has finished a conditional, loop, or **eval**
Monitor semantics for termination-insensitive enforcement

\[
\begin{align*}
\langle i, \text{st} \rangle & \xrightarrow{\text{nop}} \langle i, \text{st} \rangle \quad \frac{\text{lev}(e) \sqsubseteq \Gamma(x) \quad \text{lev}(\text{st}) \sqsubseteq \Gamma(x)}{\langle i, \text{st} \rangle \xrightarrow{a(x,e)} \langle i, \text{st} \rangle} \\
\langle i, \text{hd} : \text{st} \rangle & \xrightarrow{f} \langle i, \text{st} \rangle \quad \frac{\text{m}(e) = i(e) \quad \text{lev}(\text{st}) \sqsubseteq \Gamma(x)}{\langle i, \text{st} \rangle \xrightarrow{d(x,e,m)} \langle i, \text{st} \rangle} \\
\langle i, \text{st} \rangle & \xrightarrow{b(e,c)} \langle i, \text{lev}(e) : \text{st} \rangle \quad \langle i, \text{st} \rangle \xrightarrow{w(e)} \langle i, \text{lev}(e) : \text{st} \rangle
\end{align*}
\]

The stack, \(\text{st} \), handles implicit flow: \(\text{hd} : \text{st} \) pops the top security level, \(\text{lev}(e) : \text{st} \) pushes.
Monitor semantics for termination-insensitive enforcement

\[\langle i, st \rangle \xrightarrow{nop} \langle i, st \rangle\]

\[
\frac{lev(e) \sqsubseteq \Gamma(x) \quad lev(st) \sqsubseteq \Gamma(x)}{\langle i, st \rangle \xrightarrow{a(x,e)} \langle i, st \rangle}
\]

\[
\langle i, hd:st \rangle \xrightarrow{f} \langle i, st \rangle\]

\[
\frac{m(e) = i(e) \quad lev(st) \sqsubseteq \Gamma(x)}{\langle i, st \rangle \xrightarrow{d(x,e,m)} \langle i, st \rangle}
\]

\[
\langle i, st \rangle \xrightarrow{b(e,c)} \langle i, lev(e):st \rangle \quad \langle i, st \rangle \xrightarrow{we(e)} \langle i, lev(e):st \rangle
\]

The stack, \(st \), handles implicit flow:

- \(hd : st \) pops the top security level,
- \(lev(e) : st \) pushes.
Monitor semantics for termination-insensitive enforcement

The stack, st, handles implicit flow:

- $hd : st$ pops the top security level,
- $lev(e) : st$ pushes.
Monitor semantics for termination-insensitive enforcement

\[
\begin{align*}
\langle i, st \rangle & \xrightarrow{n_{op}} \langle i, st \rangle \\
\frac{\text{lev}(e) \sqsubseteq \Gamma(x) \quad \text{lev}(st) \sqsubseteq \Gamma(x)}{\langle i, st \rangle \xrightarrow{a(x,e)} \langle i, st \rangle} \\
\langle i, st \rangle & \xrightarrow{f} \langle i, st \rangle \\
\frac{m(e) = i(e) \quad \text{lev}(st) \sqsubseteq \Gamma(x)}{\langle i, st \rangle \xrightarrow{d(x,e,m)} \langle i, st \rangle} \\
\langle i, st \rangle & \xrightarrow{b(e,c)} \langle i, \text{lev}(e) : st \rangle \\
\langle i, st \rangle & \xrightarrow{we(e)} \langle i, \text{lev}(e) : st \rangle
\end{align*}
\]

The stack, \(st \), handles implicit flow:
\(\text{hd} : st \) pops the top security level, \(\text{lev}(e) : st \) pushes.
Monitor semantics for termination-insensitive enforcement

\[\langle i, st \rangle \xrightarrow{\text{nop}} \langle i, st \rangle \]

\[\frac{\text{lev}(e) \sqsubseteq \Gamma(x) \quad \text{lev}(st) \sqsubseteq \Gamma(x)}{\langle i, st \rangle \xrightarrow{a(x,e)} \langle i, st \rangle} \]

\[\langle i, hd: st \rangle \xrightarrow{f} \langle i, st \rangle \]

\[\frac{m(e) = i(e) \quad \text{lev}(st) \sqsubseteq \Gamma(x)}{\langle i, st \rangle \xrightarrow{d(x,e,m)} \langle i, st \rangle} \]

\[\langle i, st \rangle \xrightarrow{b(e,c)} \langle i, \text{lev}(e): st \rangle \]

\[\langle i, st \rangle \xrightarrow{we(e)} \langle i, \text{lev}(e): st \rangle \]

The stack, \(st \), handles implicit flow:

\(hd : st \) pops the top security level,

\(\text{lev}(e) : st \) pushes.
Monitor semantics for termination-insensitive enforcement

The stack, st, handles implicit flow:

- $hd : st$ pops the top security level,
- $lev(e) : st$ pushes.
Monitor semantics for termination-insensitive enforcement

The stack, st, handles implicit flow:

- $hd : st$ pops the top security level,
- $lev(e) : st$ pushes.
Enforcing termination-sensitive security

• More difficult to enforce than termination-insensitive security. For example:
 • if \(h \) then \(l := 1 \) else skip
 • while \(h \) do skip

• We’ll need to do static analysis (not much, but just enough)
 • We’ll update the monitor semantics to accommodate this change
Primitive calls for static analysis

- Things we might want to know about an expression e statically:
 - $\text{vars}(e)$, the set of variables in e
 - $\text{noeval}(e)$ holds if no eval statements occur in e
 - $\text{noloop}(e)$ holds if no while loops occur in e
 - $\text{upd}(e)$, the set of variables assigned to in e
 - $\text{lev}(c)$, lowest level of a variable assigned in c
Updated monitor semantics for termination-sensitive enforcement

\[\langle st, U \rangle \xrightarrow{nop} \langle st, U \rangle \quad \langle hd: st, U \rangle \xrightarrow{f} \langle st, U \rangle \]

\[
\frac{\text{lev}(st) = L \implies \text{lev}(e) \subseteq \text{lev}(x)}{\langle st, U \rangle \xrightarrow{a(x,e)} \langle st, U \cup \{x\} \rangle}
\]

\[
\frac{\text{lev}(e) \subseteq \text{lev}(c) \quad \text{lev}(e) = L \implies U' = \emptyset}{\text{lev}(e) = H \implies \text{noeval}(c) \land \text{noloop}(c) \land U' = \text{upd}(c)}
\]

\[
\frac{\text{vars}(e) \cap U = \emptyset}{\langle st, U \rangle \xrightarrow{d(x,e,m)} \langle st, U \cup \{x\} \rangle}
\]

\[
\frac{\text{lev}(e) = L}{\langle st, U \rangle \xrightarrow{we(e)} \langle L : st, U \rangle}
\]
Updated monitor semantics for termination-sensitive enforcement

\[\langle st, U \rangle \xrightarrow{\text{nop}} \langle st, U \rangle \quad \langle \text{hd: } st, U \rangle \xrightarrow{f} \langle st, U \rangle \]

\[
\frac{\text{lev}(st) = L \implies \text{lev}(e) \subseteq \text{lev}(x)}{
\langle st, U \rangle \xrightarrow{a(x,e)} \langle \text{st, } U \cup \{x\} \rangle}
\]

\[
\frac{\text{lev}(e) \subseteq \text{lev}(c) \quad \text{lev}(e) = L \implies U' = \emptyset}{\langle st, U \rangle \xrightarrow{\text{b(e,c)}} \langle \text{lev(e): st, } U \cup U' \rangle}
\]

\[
\frac{\text{vars}(e) \cap U = \emptyset}{\langle st, U \rangle \xrightarrow{d(x,e,m)} \langle \text{st, } U \cup \{x\} \rangle}
\]

\[
\frac{\text{lev}(e) = L}{\langle st, U \rangle \xrightarrow{\text{we(e)}} \langle L: st, U \rangle}
\]
Updated monitor semantics for termination-sensitive enforcement

\[
\begin{align*}
\langle st, U \rangle \xrightarrow{\text{nop}} & \langle st, U \rangle \\
\langle hd : st, U \rangle \xrightarrow{f} & \langle st, U \rangle \\
\end{align*}
\]

\[
\begin{align*}
\text{lev}(st) = L \implies & \text{lev}(e) \subseteq \text{lev}(x) \\
\langle st, U \rangle \xrightarrow{a(x,e)} & \langle st, U \cup \{x\} \rangle \\
\text{lev}(e) \subseteq & \text{lev}(c) \quad \text{lev}(e) = L \implies U' = \emptyset \\
\text{lev}(e) = H \implies & \text{noeval}(c) \land \text{noloop}(c) \land U' = \text{upd}(c) \\
\langle st, U \rangle \xrightarrow{b(e,c)} & \langle \text{lev}(e) : st, U \cup U' \rangle \\
\text{vars}(e) \cap & U = \emptyset \\
\langle st, U \rangle \xrightarrow{d(x,e,m)} & \langle st, U \cup \{x\} \rangle \\
\text{lev}(e) = L \quad & \langle st, U \rangle \xrightarrow{\text{we}(e)} \langle L : st, U \rangle
\end{align*}
\]
Updated monitor semantics for termination-sensitive enforcement

\[\langle st, U \rangle \xrightarrow{\text{nop}} \langle st, U \rangle\]
\[\langle \text{hd: } st, U \rangle \xrightarrow{f} \langle st, U \rangle\]

\[
\frac{\text{lev}(st) = L \implies \text{lev}(e) \subseteq \text{lev}(x)}{
\langle st, U \rangle \xrightarrow{a(x,e)} \langle st, U \cup \{x\} \rangle}
\]

\[
\begin{align*}
\text{lev}(e) \subseteq \text{lev}(c) & \quad \text{lev}(e) = L \implies U' = \emptyset \\
\text{lev}(e) = H \implies \text{noeval}(c) \land \text{noloop}(c) \land U' = \text{upd}(c)
\end{align*}
\]

\[
\langle st, U \rangle \xrightarrow{b(e,c)} \langle \text{lev}(e) : st, U \cup U' \rangle
\]

\[
\begin{align*}
\text{vars}(e) \cap U = \emptyset & \quad \text{lev}(e) = L \\
\langle st, U \rangle \xrightarrow{d(x,e,m)} \langle st, U \cup \{x\} \rangle & \quad \langle st, U \rangle \xrightarrow{we(e)} \langle L : st, U \rangle
\end{align*}
\]
Updated monitor semantics for termination-sensitive enforcement

\[\langle st, U \rangle \xrightarrow{\text{nop}} \langle st, U \rangle \]
\[\langle \text{hd: } st, U \rangle \xrightarrow{f} \langle st, U \rangle \]

\[
\begin{align*}
\text{lev}(st) = L & \implies \text{lev}(e) \subseteq \text{lev}(x) \\
\langle st, U \rangle & \xrightarrow{a(x,e)} \langle st, U \cup \{x\} \rangle
\end{align*}
\]

\[\begin{align*}
\text{lev}(e) \subseteq \text{lev}(c) & \quad \text{lev}(e) = L \implies U' = \emptyset \\
\text{lev}(e) = H & \implies \text{noeval}(c) \land \text{noloop}(c) \land U' = \text{upd}(c)
\end{align*}\]

\[\begin{align*}
\langle st, U \rangle & \xrightarrow{b(e,c)} \langle \text{lev}(e) : st, U \cup U' \rangle \\
\text{vars}(e) \cap U & = \emptyset \\
\langle st, U \rangle & \xrightarrow{d(x,e,m)} \langle st, U \cup \{x\} \rangle \\
\text{lev}(e) = L & \implies \langle st, U \rangle \xrightarrow{we(e)} \langle L : st, U \rangle
\end{align*}\]
Updated monitor semantics for termination-sensitive enforcement

\[\langle st, U \rangle \xrightarrow{\text{nop}} \langle st, U \rangle\]

\[\langle hd: st, U \rangle \xrightarrow{f} \langle st, U \rangle\]

\[
\begin{align*}
\text{lev}(st) = L & \implies \text{lev}(e) \subseteq \text{lev}(x) \\
\langle st, U \rangle & \xrightarrow{a(x,e)} \langle st, U \cup \{x\} \rangle
\end{align*}
\]

\[
\begin{align*}
\text{lev}(e) & \subseteq \text{lev}(c) \\
\text{lev}(e) = L & \implies U' = \emptyset \\
\text{lev}(e) = H & \implies \text{noeval}(c) \land \text{noloop}(c) \land U' = \text{upd}(c) \\
\langle st, U \rangle & \xrightarrow{b(e,c)} \langle \text{lev}(e) : st, U \cup U' \rangle
\end{align*}
\]

\[
\begin{align*}
\text{vars}(e) \cap U = \emptyset & \\
\langle st, U \rangle & \xrightarrow{d(x,e,m)} \langle st, U \cup \{x\} \rangle
\end{align*}
\]

\[
\begin{align*}
\text{lev}(e) = L & \\
\langle st, U \rangle & \xrightarrow{we(e)} \langle L : st, U \rangle
\end{align*}
\]
Updated monitor semantics for termination-sensitive enforcement

\[\langle st, U \rangle \xrightarrow{\text{nop}} \langle st, U \rangle \quad \langle \text{hd}: st, U \rangle \xrightarrow{f} \langle st, U \rangle \]

\[
\frac{\text{lev}(st) = L \Rightarrow \text{lev}(e) \subseteq \text{lev}(x)}{
\langle st, U \rangle \xrightarrow{a(x,e)} \langle st, U \cup \{x\} \rangle}
\]

\[
\begin{align*}
\text{lev}(e) \subseteq \text{lev}(c) & \quad \text{lev}(e) = L \Rightarrow U' = \emptyset \\
\text{lev}(e) = H & \Rightarrow \text{noeval}(c) \land \text{noloop}(c) \land U' = \text{upd}(c)
\end{align*}
\]

\[\langle st, U \rangle \xrightarrow{\text{b}(e,c)} \langle \text{lev}(e): st, U \cup U' \rangle \]

\[
\frac{\text{vars}(e) \cap U = \emptyset}{\langle st, U \rangle \xrightarrow{d(x,e,m)} \langle st, U \cup \{x\} \rangle}
\]

\[
\frac{\text{lev}(e) = L}{\langle st, U \rangle \xrightarrow{\text{we}(e)} \langle L : st, U \rangle}
\]
Support for input/output

• Our goal: a notion of security that can accept programs that \texttt{eval} their input.

• We’ll have to deal with more than just initial memory i.

• We’ll also need to update our notions of attacker knowledge and indistinguishability.
Support for input/output

• Communication channels \hat{L} and \hat{H}, each comprising an input stream and an output stream

• New language primitives for input and output

• Two new kinds of low events:
 • (I, x, v), when input v is received into variable x
 • $(0, v)$, when value v is output

• Escape hatches become pairs (e, r), where r is the length of the input history
Support for input/output

Indistinguishability relation:

\[(m_1, \hat{H}_1) I(E, \hat{L}, hist) (m_2, \hat{H}_2) \Leftrightarrow \forall (e, r) \in E . m_1^{hist[r]}(e) = m_2^{hist[r]}(e)\]

where

- \(hist = (ch_n, x_n):(ch_{n-1}, x_{n-1}):\ldots:(ch_1, x_1)\),
- \(r \leq n\),
- \(hist[r] = (ch_r, x_r):(ch_{r-1}, x_{r-1}):\ldots:(ch_1, x_1)\),
- \(m_j^{hist[r]} = memupd(m, \hat{L}, \hat{H}_j, hist[r]), j = 1, 2\)

“When in doubt, add another environment to your relation.”
- Stevie Strickland
Definition of termination-sensitive security in the presence of I/O

\[k(c, i_L, \hat{L}, \vec{\ell}) = \{ (m, \hat{H}) \mid m_L = i_L \land \langle c, m, \emptyset, \hat{L}, \hat{H}, \epsilon \rangle \rightarrow \vec{\ell} \langle c', m', E', \hat{L}', \hat{H}', \text{hist}' \rangle \} \]

\[p(m, \hat{L}, \hat{H}, E, \text{hist}) = \{ (m', \hat{H}') \mid m_L = m'_L \land (m, \hat{H}) I(E, \hat{L}, \text{hist}) (m', \hat{H}') \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{\ell} \), initial low-memory \(i_L \), and initial low-communication environment \(\hat{L} \), denoted \(TSec(c, i_L, \hat{L}, \vec{\ell}) \), if for all environments \((m, \hat{H}) \in k(c, i_L, \hat{L}, \vec{\ell}) \) that produce low events \(\vec{\ell} \) we have:

\[\forall i. 1 \leq i \leq n . p(m, \hat{L}, \hat{H}, E_i, \text{hist}_i) \subseteq k(c, m_L, \hat{L}, \vec{\ell}_i) \]

where \(\vec{\ell}_i \) is the i-prefix of \(\vec{\ell} \), \(\vec{\ell} = \vec{\ell}_n \) for some \(n \), and \(E_i \) and \(\text{hist}_i \) are extracted from the configuration that generated the last event in \(\vec{\ell}_i \).
Definition of termination-sensitive security in the presence of I/O

\[
k(c, i_L, \hat{L}, \ell) = \{ (m, \hat{H}) \mid m_L = i_L \land \langle c, m, \emptyset, \hat{L}, \hat{H}, \epsilon \rangle \rightarrow \langle c', m', E', \hat{L}', \hat{H}', \text{hist}' \rangle \}\]

\[
p(m, \hat{L}, \hat{H}, E, \text{hist}) = \{ (m', \hat{H}') \mid m_L = m'_L \land (m, \hat{H}) I(E, \hat{L}, \text{hist}) (m', \hat{H}') \}\]

A program \(c \) is secure with respect to a sequence of low events \(\ell \), initial low-memory \(i_L \), and initial low-communication environment \(\hat{L} \), denoted \(TSec(c, i_L, \hat{L}, \ell) \), if for all environments \((m, \hat{H}) \in k(c, i_L, \hat{L}, \ell) \) that produce low events \(\ell \) we have:

\[
\forall i. 1 \leq i \leq n . p(m, \hat{L}, \hat{H}, E_i, \text{hist}_i) \subseteq k(c, m_L, \hat{L}, \ell_i)
\]

where \(\ell_i \) is the \(i \)-prefix of \(\ell \), \(\ell = \ell_n \) for some \(n \), and \(E_i \) and \(\text{hist}_i \) are extracted from the configuration that generated the last event in \(\ell_i \).
Definition of termination-sensitive security in the presence of I/O

\[k(c, i_L, \hat{L}, \hat{\ell}) = \{ (m, \hat{H}) \mid m_L = i_L \land \langle c, m, \emptyset, \hat{L}, \hat{H}, \epsilon \rangle \xrightarrow{\ell} \langle c', m', E', \hat{L}', \hat{H}', \text{hist}' \rangle \} \]

\[p(m, \hat{L}, \hat{H}, E, \text{hist}) = \{ (m', \hat{H}') \mid m_L = m'_L \land (m, \hat{H}) I(E, \hat{L}, \text{hist}) (m', \hat{H}') \} \]

A program \(c \) is secure with respect to a sequence of low events \(\hat{\ell} \), initial low-memory \(i_L \), and initial low-communication environment \(\hat{L} \), denoted \(TSec(c, i_L, \hat{L}, \hat{\ell}) \), if for all environments \((m, \hat{H}) \in k(c, i_L, \hat{L}, \hat{\ell}) \) that produce low events \(\hat{\ell} \) we have:

\[\forall i. 1 \leq i \leq n . \ p(m, \hat{L}, \hat{H}, E_i, \text{hist}_i) \subseteq k(c, m_L, \hat{L}, \hat{\ell}_i) \]

where \(\hat{\ell}_i \) is the i-prefix of \(\hat{\ell} \), \(\hat{\ell} = \hat{\ell}_n \) for some \(n \), and \(E_i \) and \(\text{hist}_i \) are extracted from the configuration that generated the last event in \(\hat{\ell}_i \).
Definition of termination-sensitive security in the presence of I/O

\[k(c, i_L, \hat{L}, \vec{\ell}) = \{(m, \hat{H}) \mid m_L = i_L \land \langle c, m, \emptyset, \hat{L}, \hat{H}, \epsilon \rangle \rightarrow_\vec{\ell} \langle c', m', E', \hat{L}', \hat{H}', \text{hist}' \rangle \} \]

\[p(m, \hat{L}, \hat{H}, E, \text{hist}) = \{(m', \hat{H}') \mid m_L = m'_L \land (m, \hat{H}) \xrightarrow{I(E, \hat{L}, \text{hist})} (m', \hat{H}') \} \]

A program \(c \) is secure with respect to a sequence of low events \(\vec{\ell} \), initial low-memory \(i_L \), and initial low-communication environment \(\hat{L} \), denoted \(\overline{TSec(c, i_L, \hat{L}, \vec{\ell})} \), if for all environments \((m, \hat{H}) \in k(c, i_L, \hat{L}, \vec{\ell}) \) that produce low events \(\vec{\ell} \) we have:

\[\forall i. \ 1 \leq i \leq n. \ p(m, \hat{L}, \hat{H}, E_i, \text{hist}_i) \subseteq k(c, m_L, \hat{L}, \vec{\ell}_i) \]

where \(\vec{\ell}_i \) is the i-prefix of \(\vec{\ell} \), \(\vec{\ell} = \vec{\ell}_n \) for some \(n \), and \(E_i \) and \(\text{hist}_i \) are extracted from the configuration that generated the last event in \(\vec{\ell}_i \).
Updated monitor semantics for enforcement in the presence of I/O

\[
\begin{align*}
\text{lev}(st) &= L \implies U' = U \setminus \{x\} \\
\text{lev}(st) &= H \implies U' = U \\
\langle st, U, ct \rangle &\xrightarrow{\text{in}(x,v)} \langle st, U', \text{lev}(st) \sqcup ct \rangle \\
\text{lev}(st) &= L \implies \text{lev}(e) \sqsubseteq \text{lev}(ch) \\
\langle st, U, ct \rangle &\xrightarrow{\text{out}(ch,e)} \langle st, U, ct \rangle \\
\text{vars}(e) \cap U &= \emptyset \\
\text{lev}(ct) &\sqsubseteq \text{lev}(x) \\
\langle st, U, ct \rangle &\xrightarrow{d(x,e,m)} \langle st, U \cup \{x\}, ct \rangle \\
\text{lev}(e) &\sqsubseteq \text{lev}(c) \\
\text{lev}(e) &= L \implies U' = \emptyset \\
\text{lev}(e) &= H \implies \text{noeval}(c) \land \text{noloop}(c) \\
\text{land}U' &= \text{upd}(c) \land ct' = \text{inputs}(c) \\
\langle st, U, ct \rangle &\xrightarrow{b(e,c)} \langle \text{lev}(e) : st, U \cup U', ct \sqcup ct' \rangle
\end{align*}
\]

Two new monitor events:
\[
\text{in}(x,v)
\]
\[
\text{out}(ch,e)
\]

And updates to two existing events.
Updated monitor semantics for enforcement in the presence of I/O

Two new monitor events:

\[\text{in}(x, v) \]

\[\text{out}(ch, e) \]

And updates to two existing events.

\[
\begin{align*}
&\text{lev}(st) = L \Rightarrow U' = U \setminus \{x\} \\
&\text{lev}(st) = H \Rightarrow U' = U \\
&\langle st, U, ct \rangle \xrightarrow{\text{in}(x, v)} \langle st, U', \text{lev}(st) \sqcup ct \rangle
\end{align*}
\]

\[
\begin{align*}
&\text{lev}(st) = L \Rightarrow \text{lev}(e) \sqsubseteq \text{lev}(ch) \\
&\langle st, U, ct \rangle \xrightarrow{\text{out}(ch, e)} \langle st, U, ct \rangle
\end{align*}
\]

\[
\begin{align*}
&\text{vars}(e) \cap U = \emptyset \quad \text{lev}(ct) \sqsubseteq \text{lev}(x) \\
&\langle st, U, ct \rangle \xrightarrow{\text{d}(x, e, m)} \langle st, U \cup \{x\}, ct \rangle
\end{align*}
\]

\[
\begin{align*}
&\text{lev}(e) \sqsubseteq \text{lev}(c) \quad \text{lev}(e) = L \Rightarrow U' = \emptyset \\
&\text{lev}(e) = H \Rightarrow \text{noeval}(c) \land \text{noloop}(c) \\
&\text{land}U' = \text{upd}(c) \land ct' = \text{inputs}(c)
\end{align*}
\]

\[
\langle st, U, ct \rangle \xrightarrow{b(e, c)} \langle \text{lev}(e) : st, U \cup U', ct \sqcup ct' \rangle
\]
Updated monitor semantics for enforcement in the presence of I/O

Two new monitor events:

\[\text{in}(x, v) \]

\[\text{out}(ch, e) \]

And updates to two existing events.

\[\text{vars}(e) \cap U = \emptyset \quad \text{lev}(ct) \sqsubseteq \text{lev}(x) \]

\[\langle st, U, ct \rangle \xrightarrow{\text{in}(x, v)} \langle st, U', \text{lev}(st) \sqcup ct \rangle \]

\[\text{lev}(st) = L \implies U' = U \setminus \{x\} \]
\[\text{lev}(st) = H \implies U' = U \]

\[\text{lev}(st) = L \implies \text{lev}(e) \sqsubseteq \text{lev}(ch) \]

\[\langle st, U, ct \rangle \xrightarrow{\text{out}(ch, e)} \langle st, U, ct \rangle \]

\[\text{lev}(e) \sqsubseteq \text{lev}(c) \quad \text{lev}(e) = L \implies U' = \emptyset \]
\[\text{lev}(e) = H \implies \text{noleval}(c) \land \text{noloop}(c) \]
\[\text{land}U' = \text{upd}(c) \land ct' = \text{inputs}(c) \]

\[\langle st, U, ct \rangle \xrightarrow{b(e, c)} \langle \text{lev}(e) : st, U \cup U', ct \sqcup ct' \rangle \]
Updated monitor semantics for enforcement in the presence of I/O

Two new monitor events:

\[\text{in}(x, v) \]

\[\text{out}(ch, e) \]

And updates to two existing events.

\[\text{lev}(st) = L \implies U' = U \setminus \{x\} \]
\[\text{lev}(st) = H \implies U' = U \]
\[\langle st, U, ct \rangle \xrightarrow{\text{in}(x,v)} \langle st, U', \text{lev}(st) \sqcup ct \rangle \]

\[\text{lev}(st) = L \implies \text{lev}(e) \sqsubseteq \text{lev}(ch) \]
\[\langle st, U, ct \rangle \xrightarrow{\text{out}(ch,e)} \langle st, U, ct \rangle \]

\[\text{vars}(e) \cap U = \emptyset \quad \text{lev}(ct) \sqsubseteq \text{lev}(x) \]
\[\langle st, U, ct \rangle \xrightarrow{\text{d}(x,e,m)} \langle st, U \cup \{x\}, ct \rangle \]

\[\text{lev}(e) \sqsubseteq \text{lev}(c) \quad \text{lev}(e) = L \implies U' = \emptyset \]
\[\text{lev}(e) = H \implies \text{noeval}(c) \land \text{noloop}(c) \]
\[\text{land}U' = \text{upd}(c) \land ct' = \text{inputs}(c) \]
\[\langle st, U, ct \rangle \xrightarrow{b(e,c)} \langle \text{lev}(e) : st, U \cup U', ct \sqcup ct' \rangle \]
Updated monitor semantics for enforcement in the presence of I/O

Two new monitor events:

\[\text{in}(x, v) \]

\[\text{out}(ch, e) \]

And updates to two existing events.

\[\text{lev}(st) = L \implies U' = U \setminus \{x\} \]
\[\text{lev}(st) = H \implies U' = U \]
\[\langle st, U, ct \rangle \xrightarrow{\text{in}(x, v)} \langle st, U', \text{lev}(st) \sqcup ct \rangle \]
\[\text{lev}(st) = L \implies \text{lev}(e) \sqsubseteq \text{lev}(ch) \]
\[\langle st, U, ct \rangle \xrightarrow{\text{out}(ch, e)} \langle st, U, ct \rangle \]
\[\text{vars}(e) \cap U = \emptyset \quad \text{lev}(ct) \sqsubseteq \text{lev}(x) \]
\[\langle st, U, ct \rangle \xrightarrow{d(x, e, m)} \langle st, U \cup \{x\}, ct \rangle \]
\[\text{lev}(e) \sqsubseteq \text{lev}(c) \quad \text{lev}(e) = L \implies U' = \emptyset \]
\[\text{lev}(e) = H \implies \text{noeval}(c) \land \text{noloop}(c) \]
\[\text{land}U' = \text{upd}(c) \land ct' = \text{inputs}(c) \]
\[\langle st, U, ct \rangle \xrightarrow{b(e, c)} \langle \text{lev}(e) : st, U \cup U', ct \sqcup ct' \rangle \]
Relation to localized delimited release

• All programs that satisfy localized delimited release (see: Sabelfeld and Sands, “Dimensions and Principles”) satisfy our definition of termination-insensitive security.

• The converse is not true. For instance:

 \[
 h' := 0; \text{if } h \text{ then } l := \text{declassify}(h') \text{ else } l := 0
 \]
An example

```
1 while l {
2    // get location from a high channel
3    input (user_location, H);
4    // make the location public
5    ploc := declassify (user_location);
6    output(ploc, L);
7    // Get new code that redraws the map
8    input (code, L);
9    eval (code) // run the code
10  }
```
(exit)