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I HIS BOOK ASKS A CENTRAL QUESTION: What is the cognitive structure

of sophisticated mathematical ideas? What are the simplest mathemati-
cal ideas, and how do we build on them and extend them to develop complex
mathematical ideas: the laws of arithmetic, set theory, logic, trigonometry, cal-
culus, complex numbers, and various forms of infinity—transfinite numbers,
infinitesimals, limits, and so on? Let us begin with the most fundamental as-
pects of number and arithmetic, the part we are all born with.

Number Discrimination by Babies

The very idca that babies have mathematical capacitics is startling. Mathemat-
ics is usually thought of as something inherently difficult that has to be taught
with homework and exercises. Yet we come into life prepared to do at least
some rudimentary form of arithmetic. Recent research has shown that babies
have the following numerical abilitics:

1. At three or four days, a baby can discriminate between collections of
two and three items (Antell & Keating, 1983). Under certain conditions,
infants can even distinguish three items from four (Strauss & Curtis,
1981; van Looshbrock & Smitsman, 1990).

2. By four and a half months, a baby “can tell” that one plus onc is two
and that two minus one is one (Wynn, 1992a).

3. Alittle later, infants “can tell” that two plus one is three and that three
minus one is two (Wynn, 1995).
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4. These abilities are not restricted to visual arrays. Babies can also dis-
criminate numbers of sounds. At three or four days, a baby can dis-
criminate between sounds of two or three syllables (Bijeljac-Babic,
Bertoncini, & Mechler, 1991).

5. And at about seven months, babies can recognize the numerical equiv-
alence between arrays of objects and drumbeats of the same number
{Starkey, Spelke, & Gelman, 1990).

How do we know that babies can make thesc numerical distinctions? Here is
one of the now-classic cxperimental procedures (Starkey & Cooper, 1980):
Slides were projected on a screen in front of babics sitting on their mother’s lap.
The time a baby spent looking at each slide before turning away was carefully
monitored. When the baby started looking elsewhere, a new slide appeared on
the screen. At first, the slides contained two large black dots. During the trials,
the baby was shown the same numbers of dots, though separated horizontally
by different distances. Aftcr a while, the baby would start looking at the slides
for shorter and shorter periods of time. This is technically called habituation;
nontechnically, the baby got bored.

The slides were then changed without warning to three black dots. Immedi-
ately the baby started to stare longer, exhibiting what psychologists call a longer
fixation time. The consistent difference of fixation times informs psychologists
that the baby could tell the differcnce between two and three dots. The experi-
ment was repeated with the three dots first, then the two dots. The results were
the same. Thesc experiments were first tricd with babies between four and five
months of age, but later it was shown that newborn babies at three or four days
showed the same results (Antell & Keating, 1983). These findings have been
replicated not just with dots but with slides showing objects of different shapes,
sizes, and alignments (Strauss & Curtis, 1981). Such experiments suggest that
the ability to distinguish small numbers is present in newborns, and thus that
there is at least some innate numerical capacity.

The ability to do the simplest arithmetic was established using similar
habituation techniques. Babies were tested using what, in the language of
developmental psychology, is called the violation of-expectation paradigm. The
question asked was this: Would a baby at four and a half months expect, given
the presence of onc object, that the addition of one other object would result in
the presence of two objects? In the experiment, one puppet is placed on a stage.
The stage is then covered by a screen that pops up in front of it. Then the baby
sees someone placing a second identical puppet behind the screen. Then the
screen is lowered. If there arc two puppets there, the baby shows no surprise;
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Sequence of ovents: 1+ 1= 101 9

1 Objact placexd in cago 2 Sereen comes up 3 Secord object added 4 Mand leaves empty
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Ihen either. (1) Possible Outcome Or (b) Impossible: Outcom:

5 scresn drops & revealn 5 SCr
2 =aling 2 objects 5 screen diops 5_reveuling 1 object
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Sequence of events: 2 - 1 =1 o 2

1. Objects placed in use 2. Saresn coes up 3. Empty band enters 4 One cbject removed

I N

Then either: (a) Possible Outcome Or

§ screwen drops .

{b) Impossible Outcome

6 revealing 1 object 5 screen drops

6. revealing 2 objects

FIGURE 1.1 A usual design for studying the arithmetic capabilities of in-
fants (Wynn, 1992a). These studies indicate that infants as young as four-
and-a-half months old have a primitive form of arithmetic, They react
normally to events in which 1 puppet + 1 puppet - 2 puppets or in which
2 puppets - 1 puppet = 1 puppet. But they exhibit startled reactions (e.g
systematically longer staring) for mmpossible outcomes in which | pupllne.ti
+ 1 puppet - 1 puppet or in which 2 puppets - 1 puppet = 2 puppets. »

that is, it doesn't look at the stage any longer than otherwisc. If there is onl
onc puppet, the baby looks at the stage for a longer time. Presumably, the 1'ea}-’
son is that the baby expected two puppets, not one, to be there. Sz’miizu‘ly the
baby stares longer at the stage 1f three puppets are there when the sercen is ,lowv
ered. The conclusion is that the haby can tell that one plus one is Suppu;cd to
be t_wq, not one or three (see Figure 1.1).
Similar experiments started with two puppets being placed on-stage, the

screen popping up to cover them, and then one puppet being visibly removed
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from behind the screen. The screen was then lowered. If there was only one pup-
pet there, the babies showed no surprise; that is, they didn't look at the screen
for any longer time. But if there were still two puppets on the stage after onc
had apparently been removed, the babices stared at the stage for a longer time.
They presumably knew that two minus one is supposed to leave one, and they
were surprised when it left two. Similarly, babies at six months cxpected that
two plus one would be three and that three minus one would be two. In order
to show that this was not an cxpectation bascd merely on the location of the
puppets, the same experiment was replicated with puppets moving on turnta-
bles, with the same results (Koechlin, Dchaene, & Mehler, 1997). These find-
ings suggest that babics use mechanisms more abstract than object location.

Finally, to show that this result had to do with abstract number and not par-
ticular objects, other cxperimenters had the puppets change to balls behind the
screen. When two balls appeared instead of two puppets, four- and five-month-
olds (unlike older infants) manifested no surprise, no additional staring at the
stage. But when onc ball or three balls appeared where two were cxpected, the
babics did stare longer, indicating surprise (Simon, Hespos, & Rochat, 1995).
The conclusion was that only number, not objcct identity, mattered.

In sum, newborn babies have the ability to discern the number of discrete, sep-
arate arrays of objects in space and the number of sounds produced sequentially
(up to three or four). And at about five months they can distinguish correct from
incorrect addition and subtraction of objects in space, for very small numbers.

The evidence that babics have these abilities is robust, but many questions
remain open. What cxactly are the mechanisms—ncurophysiological, psycho-
logical, and others—underlying these abilities? What are the exact situational
conditions under which these abilities can be confirmed experimentally? When
an infant’s expectations are violated in such experiments, exactly what expec-
tation is being violated? How do these abilities relate to other developmental
processes? And so on.

The experimental results to date do not give a complete picture. For example,
there is no clear-cut evidence that infants have a notion of order before the age
of fifteen months. If they indeed lack the concept of order before this age, this
would suggest that infants can do what they do without realizing that, say,
three is larger than two or that two is larger than one (Dehacene, 1997). In other
words, it is conceivable that babics make the distinctions they make, but with-
out a rudimentary concept of order. If so, when, exactly, does order emerge from
the rudiments of baby arithmetic—and how?

Despite the evidence discusscd, experimenters do not necessarily agree on
how to answer these questions and how to interpret many of the findings. The
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new field of baby arithmetic is going through the usual growing pains. (For a
brief summary, sce Bideaud, 1996.) But as far as the present book is concerned,
what matters is that such abilities do cxist at a very early age. We will refer to
these abilities as innate arithmetic. (This term has also been used in Butter-
worth, 1999, p. 108.}

Subitizing

All human beings, regardless of culturce or education, can instantly tell at a glance
whether there are one, two, or three objects before them. This ability is called
subitizing, from the Latin word for “sudden.” It is this ability that allows new-
born babies to make the distinctions discussed above. We can subitize—that is,
accurately and quickly discern the number of -up to about four objects. We can-
not as quickly tell whether there are thirteen as opposed to fourteen objects, or
even whether there are scven as opposed to cight. To do that takes extra time and
extra cognitive operations—grouping the objects into smaller, subitizable groups
and counting them. In addition to being able to subitize objects in arrays, we can
subitize sequences. For example, given a sequence of knocks or beeps or flashes
of light, we can accurately and quickly tell how many there are, up to five or six
(Davis & Pérussc, 1988). These results are well established in experimental stud-
ics of human perception, and have been for half a century {(Kaufmann, Lord, Reese,
& Volkmann, 1949). Kaufmann et al. observed that subitizing was a different
process from counting or estimating. Today therc is a fair amount of robust evi-
dence suggesting that the ability to subitize is inborn. A survey of the range of
subitizing experiments can be found in Mandler and Shebo (1982).

The classic subitizing experiment involves reaction time and accuracy. A num-
ber of items are flashed before subjects for a fraction of a second and they have to
report as fast as they can how many there are. As you vary the number of items
presented (the independent variable), the reaction time (the dependent variable) is
roughly about half a second {actually about 600 milliseconds} for arrays of three
items. After that, with arrays of four or five items, the reaction time begins in-
creasing linearly with the number of items presented {see Figure 1.2). Accuracy
varies according to the same pattern: For arrays of three or four items, there are
virtually no errors. Starting with four itcms, the error rate riscs linearly with the
number of items presented. Thesc results hold when the objects presented are in
different spatial locations. When they overlap spatially, as with concentric circles,
the results no longer hold (Trick & Pylyshyn, 1993, 1994).

There is now a clear consensus that subitizing is not merely a pattern-rccog-
nition process. However, the neural mechanism by which subitizing works is
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FIGURE L2 Fifty years ago, cxperimental studics established the human capacity for mak-
ing quick, error-free, and precise judgments of the numecrosity of small collections of items.
The capacity was called subitizing. The figure shows results for these judgments under three
experimental conditions. The levels of accuracy {top graphic) and rcaction time (bottom
graphic) stay stable and low for arrays of sizes of up to four items. The numbers increase dra-
matically for larger arrays (adapted from Mandler & Shebo, 1982).
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still in dispute. Randy Gallistel and Rochel Gelman have claimed that subitiz-
ing is just very fast counting—scrial processing, with visual attention placed on
each item (Gelman & Gallistel, 1978). Stanislas Dehaene has hypothesized in-
stead that subitizing is all-at-once; that is, it is accomplished via “parallel preat-
tentive processing,” which does not involve attending to each item one at a
time {Dchaene, 1997). Dehaenc’s evidence for his position comes from paticnts
with brain damage that prevents them from attending to things in their envi-
ronment serially and therefore from counting them. They can nonctheless
subitize accurately and quickly up to three items (Dehaene & Cohen, 1994).

The Numerical Abilitics of Animals

Animals have numerical abilities—not just primatcs but also raccoons, rats, and
even parrots and pigeons. They can subitize, estimate numbers, and do the sim-
plest addition and subtraction, just as four-and-a-half-month-old babics can.
How do we know? Since we can’t ask animals directly, indirect evidence must
be gathered experimentally.

Experimental methods designed to explore these questions have been con-
ceived for more than four decades (Mechner, 1958). Here is a demonstration for
showing that rats can learn to perform an activity a given number of times. The
task involves learning to estimatc the number of times required. The rats are
first deprived of food for a while. Then they are placed in a cage with two levers,
which we will call A and B. Lever B will deliver food, but only after lever A has
been pressed a certain fixed number of times—say, four. If the rat presscs A the
wrong number of times or not at all and then presses B, it is punished. The re-
sults show that rats learn to press A about the right number of times. If the
number of times is eight, the rats learn to press a number close to that—say,
seven to nine times.

To show that the relevant parameter is number and not just duration of time,
experimenters conceived further manipulations: They varied the degree of food
deprivation. As a result, some of the rats were very hungry and pressed the lever
much faster, in order to get food quickly. But despite this, they still learned to
press the lever close to the right number of times (Mechner & Guevrekian,
1962). In other serics of experiments, scientists showed that rats have an ability
to learn and generalize when dealing with numbcrs or with duration of time
(Church & Mcck, 1984).

Rats show even more sophisticated abilities, extending across different action
and sensory modalities. They can learn to estimate numbers in association not
just with motor actions, like pressing a bar, but also with the perception of tones



22 WHERE MATHEMATICS COMES FROM

or light flashes. This shows that the numerical estimation capacity of rats is not
limited to a specific sensory modality: It applies to number independent of
modality. Indeed, modalities can be combined: Following the presentation of a
sequence of, say, two tones synchronized with two light flashes (for a total of
four cvents), the rats will systematically respond to four (Church & Meck, 1984).

Nonhuman primates display abilitics that are ecven more sophisticated. Rhesus
monkeys in the wild have arithmetic abilities similar to those of infants, as re-
vealed by studies with the violation-of-expectation paradigm. For cxample, a
monkey was first presented with one eggplant placed in an open box. Then a par-
tition was placed in front of the eggplant, blocking the monkey’s view. Then a sec-
ond eggplant was placed in the box, in such a way that the monkey could see it
being put there. The partition was then removed to reveal either one or two egg-
plants in the box. The monkey looked significantly longer at the “impossible”
onc-cggplant case, reacting even morce strongly than the babies. According to the
primatologists’ interpretation, this was an indication that thec monkey expected
to sce two eggplants in the box (Hauser, MacNeilage, & Ware, 1996).

In another line of research, primatologists have found that a chimpanzec can
do arithmetic, combining simple physical fractions: one-quarter, onc-half, and
three-quarters. When one-quarter of an apple and one-half glass of a colored lig-
uid were presented as a stimulus, the chimpanzee would choose as a response a
three-quarter disc over a full disc (Woodruff & Premack, 1981).

Chimpanzcces have even been taught to use numerical symbols, although the
training required years of painstaking work. About twenty years ago at Kyoto
University, Japancse primatologists trained chimpanzees to use arbitrary visual
signs to characterize collections of objects (and digits to characterize numbers).
Onc of their best “students,” a chimpanzee named Ai, learned to report the
kind, color, and numerosity of collections of objects. For instance, she would ap-
propriately select sequences of signs, like “pencil-red-three” for a group of three
red pencils and “toothbrush-blue-five” for a collection of five blue toothbrushes
{Matsuzawa, 1985). Reaction-time data indicate that beyond the numbers threc
or four, Ai used a very humanlike serial form of counting. Recently Ai has made
improvements, mastering the labeling of collections of objects up to nine, as
well as ordering digits according to their numerical size (Matsuzawa, 1997).

Other researchers have shown that chimpanzeces are also able to calculate
using numerical symbols. For cxample, Sarah Boysen succeeded, through years
of training, in teaching her chimpanzee, Sheba, to perform simple comparisons
and additions. Shcba was progressively better able to match a collection of ob-
jects with the corresponding Arabic numeral, from 0 to 9. Sheba also lecarned to
choose, from among scveral collections of objects, the one correctly matching a
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given numeral. Later, using an ingenious experimental design, Boysen demon.-
strated that Sheba was able to mentally perform additions using symbols alone.
For cxample, given symbols “2” and “4,” Sheba would pick out the symbo] #g~
as a result [Boysen & Capaldi, 1993; Boysen & Berntson, 1996). Although these
impressive capacities require ycars of training, they show that our closest rela-
tive, the chimpanzee, shares with us a nontrivial capacity for at least some in-
nate arithmetic along with abilities that can be learned through long-term,
explicit, guided training,.

The Inferior Parictal Cortex

Up to now, we have mainly discussed human numerical capacities that are non-
symbolic, where numbers of objects and events were involved, but not symbols
for those numbers. Numbers are, of course, distinct from numerals, the symbols
for numbers. The capacity for using numerals is more complex than that for num-
ber alone, as we shall discuss below in detail. Moreover, there are two aspects of
the symbolization of number: written symbols (say, Arabic numcrals like “6") and
words, both spoken and written, for those symbols (say, “six”). The words and the
numerals have different grammatical structure. The grammatical structure of the
words is highly language-dependent, as can be seen from the English “eighty-one”
versus the French “quatre-vingt-un” (“four-twenty-one”). Thus, the capacity for
naming numbers involves a capacity for number plus two symbolic capacities—
one for written numerals and one for characterizing the structure of the (typically
complex) words for those numerals.

There is a small amount of evidence suggesting that the inferior parietal cor-
tex is involved in symbolic numerical abilities. One bit of evidence comes from
patients with Epilepsia arithmetices, a rare form of epileptic seizure that occurs
when doing arithmetic calculations. About ten cascs in the world have been
studied. In each case, the electroencephalogram (EEG) showed abnormalities in
the inferior parictal cortex. From the moment the patients started doing even
very simple arithmetic calculations, their brain waves showed abnormal rhyth-
mic discharges and triggered cpileptic fits. Other intellectual activities, such as
reading, had no ill effects. (For discussion, see Dehaenc, 1997, p. 191.)

A second picce of evidence comes from Mr. M, a patient of Laurcnt Cohen
and Stanislas Dehaene, who has a lesion in the inferior parietal cortex. Mr. M
cannot tell what number comes between 3 and 5, but he can tell perfectly well
what letter comes between A and C and what day comes betwecn Tuesday and
Thursday. Knowledge of number sequence has been lost, but other sequential
information is unaffected.
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Mr. M can correctly give names to numerals. Shown the symbol 5, he can re-
spond “five.” But he cannot do simple arithmetic. He says that two minus onc
makes two, that nine minus cight is seven, that threce minus one makes four.
He has lost the sense of the structure of integers. He also fails “bisection”
tasks—decciding which number falls in a given interval. Between three and five,
he places three. Between ten and twenty, he places thirty, then corrects his an-
swer to twenty-five. Yet his rote arithmectic memory is intact. He knows the
multiplication table by heart; he knows that three times nine is twenty-scven,
but fails when the result of addition goes beyond ten. Asked to add 8 + 5, he
cannot break 5 down into 2 + 3, to give (8 + 2} + 3, or 10 + 3. He has lost cvery
intuition about arithmetic, but he preserves rote memory. He can perform sim-
ple rote calculations, but he does not understand them:.

The inferior parietal cortex is a highly associative area, located anatomically
where neural connections from vision, audition, and touch come together—a lo-
cation appropriatc for numerical abilities, since they are common to all sensory
modalities. Lesions in this arca have been shown to affect not only arithmetic
but also writing, representing the fingers of the hand, and distinguishing right
from left. Mr. M has all these disabilities. However, some paticnts have only
one or another, which suggests that the inferior parietal cortex is divided into
microregions associated with cach.

Dehaenc (1997) asks why these capacities come togcther in a single region.
“What,” he asks, “is the relationship between numbers, writing, fingers, and
space?” He speculates as follows: Numbers arc connected to fingers because
children learn to count on their fingers. Numbers are related to writing because
they are symbolized by written numerals. Numbers are related to space in var-
ious ways; subitizing, for example, requires objects to be distributed over space,
and integers arc conceptualized as being spread in space over a number line.
And mathematical talent often correlates with spatial abilities. Thus, Dehaene
reasons that, despite limited evidence at present, it makes sense to conclude
that basic arithmetic abilities make major usc of the inferior parietal cortex.

Other mathematical abilities appear to involve other areas of the brain. For
ecxample, the prefrontal cortex, which is involved in complex structuring—com-
plex motor routines, plans, and so on—scems to be used in complex arithmetic
calculation, though not in rote memory (say, for multiplication tables). Patients
with frontal lesions have difficulty using the multiplication algorithm, adding
when they should multiply, forgetting to carry over, not processing digits in the
right order; in short, they are unable to carry out complex sequential operations
correctly.
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FIGURE 1.3 The left hemisphere of the human brain, showing where the angular gyrus is
in the inferior parietal cortex. This is an arca in which brain lesions appear to severely affect

arithmetic capacities.

The capacity for basic arithmetic is separate from the capacity for rote memo-
rization of addition and multiplication tables. Such rote abilities seem to be sub-
cortical, associated with the basal ganglia. One patient of Cohen and Dehaene has
a lesion of the basal ganglia and has lost many rote abilities: A former teacher and
devout Christian, she can no longer recite the alphabet, familiar nursery rhymes,
or the most common prayers. She has also lost the use of memorized addition a'nd
multiplication tables. Yet, with her inferior parietal cortex intact, she retains
other nonrote arithmetic abilitics. She can compare two numbers and find which
number falls in between them. And although she does not remember what two
times three is, she can calculate it by mentally counting three groups of two 'nb-
jects. She has no trouble with subtraction. This suggests that rote mathematical
abilities involve the subcortical basal ganglia and cortico-subcortical loOpS-. N

Not only is rote calculation localized separately from basic arithmctic ::lblllFICS
but algebraic abilities are localized separately from the capacity for basic arith-
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metic. Dehaenc (1997} cites a patient with a Ph.D. in chemistry who has acalcu-
lia, the inability to do basic arithmetic. For example, he cannot solve 2 - 3, 7 - 3,
9+ 3, or5- 4. Yet he can do abstract algebraic calculations. He can simplify (a - b)
/{b-a}into l and a - a - a into a?, and could recognize that {d/c) + a is not gener-
ally equal to (d + a) / (¢ + a). Dchaene concludes that algebraic calculation and
arithmetic calculation are processed in different brain regions.

From Brains to Minds and from
Basic Arithmetic to Mathematics

Very basic arithmetic uses at least the following capacities: subitizing, percep-
tion of simple arithmetic relationships, the ability to estimate numerosity with
close approximation (for bigger arrays), and the ability to use symbols, calculate,
and memorize short tables. At present, we have some idea of what areas of the
brain are active when we use such capacities, and we have some idea of which
of these capacitics are innate {for a general discussion, see Butterworth, 1999).

But that is not very much. First, it is not much of mathematics. In fact, when
compared to the huge edifice of mathematics it is almost nothing. Second,
knowing where is far from knowing how. To know what parts of the brain
“light up” when certain tasks are performed is far from knowing the ncural
mechanism by which those tasks are performed. Identifying the parts of the
brain involved is only a small, albeit crucial, part of the story.

For us, the hard question is how we go from such simple capacities to so-
phisticated forms of mathematics and how we employ ordinary cognitive mech-
anisms to do so. In the next chapter, we will introduce the reader to the basic
cognitive mechanisms that are needed to begin answering these questions and
that we will refer to throughout the book.

2

A Brief Introduction to

the Cognitive Science of
the Embodied Mind

The Cognitive Unconscious

Perhaps the most fundamental, and initially the most startling, result in cogni-
tive science is that most of our thought is unconscious—that is, fundamentally
inaccessiblc to our direct, conscious introspection. Most everyday thinking oc-
curs too fast and at too low a level in the mind to be thus accessible. Most cog-
nition happens backstage. That includes mathematical cognition.

We all have systems of concepts that we use in thinking, but we cannot con-
sciously inspect our conceptual inventory. We all draw conclusions instantly in
conversation, but we cannot consciously look at cach inference and our own in-
ference-drawing mechanisms while we arc in the act of inferring on a massive
scale second by second. We all speak in a language that has a grammar, but we
do not consciously put sentences together word by word, checking consciously
that we are following the grammatical rules of our language. To us, it seems
casy: We just talk, and listen, and draw inferences without effort. But what goes
on in our minds behind the scenes is enormously complex and largely unavail-
able to us.

Perhaps the most startling realization of all is that we have unconscious
memory. The very idea of an unconscious memory seems like a contradiction
in terms, since we usually think of remembering as a conscious process. Yet
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hundreds of experimental studies have confirmed that we remember without
being aware that we are remembering—that experiences we don't recall do in
fact have a detectable and sometimes measurable effcet on our behavior. (For an
exccllent overview, see Schacter, 1996.)

What has not been done so far is to extend the study of the cognitive uncon-
scious to mathematical cognition—that is, the way we implicitly understand
mathematics as we do it or talk about it. A large part of unconscious thought
involves automatic, immediate, implicit rather than explicit understanding—
making sense of things without having conscious access to the cognitive mecha-
nisms by which you make sense of things. Ordinary everyday mathematical sense-
making is not in the form of conscious proofs from axioms, nor is it always the
result of explicit, conscious, goal-oriented instruction. Most of our everyday math-
ematical understanding takes place without our being able to explain exactly what
we understood and how we understood it. Indecd, when we use the term “under-
standing” throughout this book, this automatic unconscious understanding is the
kind of understanding we will be referring to, unless we say otherwise.

Therefore, this book is not about those areas of cognitive science concerned
with conscious, goal-oriented mathematical cognition, like conscious ap-
proaches to problem solving or to constructing proofs. Though this book may
have implications for those important ficlds, we will not discuss them here.

Our enterprise here is to study everyday mathematical understanding of this
automatic unconscious sort and to ask a crucial question: How much of math-
ematical understanding makes use of the same kinds of conceptual mechanisms
that are used in the understanding of ordinary, nonmathematical domains? Are
the same cognitive mechanisms that we use to characterize ordinary ideas also
used to characterize mathematical ideas?

We will argue that a great many cognitive mechanisms that are not specifi-
cally mathematical arc uscd to characterize mathematical ideas. These include
such ordinary cognitive mechanisms as those used for the following ordinary
ideas: basic spatial relations, groupings, small quantitics, motion, distributions
of things in spacc, changes, bodily orientations, basic manipulations of objects
(e.g., rotating and stretching), itcrated actions, and so on.

To be more specific, we will suggest that:

» Conceptualizing the technical mathematical concept of a class makes
usc of the everyday concept of a collection of objects in a bounded re-
gion of space.

* Conceptualizing the technical mathematical concept of recursion
makes use of the everyday concept of a repeated action.
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o Conceptualizing the technical mathematical concept of complex arith-
metic makes use of the everyday concept of rotation.

o Conceptualizing derivatives in calculus requires making use of such
everyday concepts as motion, approaching a boundary, and so on,

From a nontechnical perspective, this should be obvious. But from the tech-
nical perspective of cognitive science, one must ask:

Exactly what everyday concepts and cognitive mechanisms are used in ex-
actly what ways in the unconscious conceptualization of technical ideas in
mathematics?

Mathematical idea analysis, as we will be developing it, depends crucially on
the answers to this question. Mathcmatical ideas, as we shall see, are often
grounded in everyday experience. Many mathematical ideas are ways of math-
ematicizing ordinary ideas, as when the idea of a derivative mathematicizes the
ordinary idca of instantaneous change.

Since the cognitive science of mathematics is a new discipline, not much is
known for sure right now about just how mathematical cognition works. Our
job in this book is to explore how the general cognitive mechanisms used in
everyday nonmathematical thought can create mathematical understanding
and structure mathematical idcas.

Ordinary Cognition and Mathematical Cognition

As we saw in the previous chapter, it appears that all human beings are born
with a capacity for subitizing very small numbers of objects and events and
doing the simplest arithmetic—the arithmetic of very small numbers. More-
over, if Dehaene (1997) is right, the inferior parictal cortex, especially the angu-
lar gyrus, “plays a crucial role in the mental representation of numbers as
quantities” (p. 189). In other words, there appears to be a part of the brain in-
nately spccialized for a sense of quantity—what Dehaene, following Tobias
Dantzig, refers to as “the number sense.”

But there is a lot more to mathematics than the arithmetic of very small
numbers. Trigonometry and calculus arc very far from “three minus onc equals
two.” Even realizing that zero is a number and that negative numbers are num-
bers took centuries of sophisticated development. Extending numbers to the ra-
tionals, the reals, the imaginaries, and the hyperreals requires an enormous
cognitive apparatus and goes well beyond what habies and animals, and even a
normal adult without instruction, can do. The remainder of this book will be
concerned with the embodied cognitive capacities that allow one to go from in-
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nate basic numcrical abilities to a deep and rich understanding of, say, college-
level mathematics.

From the work we have done to date, it appears that such advanced mathe-
matical abilities arc not independent of the cognitive apparatus used outside
mathematics. Rather, it appcars that the cognitive structure of advanced math-
ematics makes use of the kind of conceptual apparatus that is the stuff of ordi-
nary everyday thought. This chapter presents prominent examples of the kinds
of everyday conceptual mechanisms that arc central to mathematics—cspe-
cially advanced mathematics—as it is embodied in human beings. The mecha-
nisms we will be discussing are (a) image schemas, (b) aspectual schemas, (c)
conceptual metaphor, and {d) conceptual blends.

Spatial Relations Concepts and Image Schemas

Every language has a system of spatial relations, though they differ radically
from language to language. In English we have prepositions like in, on, through,
above, and so on. Other languages have substantially different systems. How-
ever, research in cognitive linguistics has shown that spatial relations in a given
language dccompose into conceptual primitives called image schemas, and
these conceptual primitives appear to be universal.

For example, the English word on, in the sense used in “The book is on the
desk,” is a composite of three primitive image schemas:

¢ The Above schema (the book is above the desk])
* The Contact schema (the book is in contact with the desk)
» The Support schema (the book is supported by the desk)

The Above schema is orientational; it specifies an orientation in space relative
to the gravitational pull onc feels on one’s body. The Contact schema is one of a
number of topological schemas; it indicates the absence of a gap. The Support
schema is force-dynamic in nature; it indicates the direction and nature of a force.
In general, static image schemas fall into one of these categorics: orientational,
topological, and force-dynamic. In other languages, the primitives combinc in dif-
ferent ways. Not all languages have a single concept like the English on. Even in
a language as close as German, the on in on the table is rendered as auf, while the
on in on the wall (which docs not contain the Above schema) is translated as an.

A common image schema of- great importance in mathematics is the Con-
tainer schema, which occurs as the central part of the meaning of words like in
and out. The Container schema has threc parts: an Interior, a Boundary, and an
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Exterior. This structurce forms a gestalt, in the sense that the parts make no
sense without the whole. There is no Interior without a Boundary and an Exte-
rior, no Exterior without a Boundary and an Interior, and no Boundary without
sides, in this casc an Inside and an Outside. This structure is topological in the
sense that the boundary can be made larger, smaller, or distorted and still re-
main the boundary of a Container schema.

To get schemas for the concepts In and Out, more must be added to the Con-
tainer schema. The concept In requires that the Interior of the Container schema
be “profiled”’—that is, highlighted or activated in some way over the Extcerior and
Boundary. In addition, a figure/ground distinction must be added. For example, in
a1 sentence like “The car is in the garage,” the garage is the ground; that is, it is
the landmark rclative to which the car (the figure) is located. In cognitive lin-
guistics, the ground in an image schema is called the Landmark, and the figure is
called the Trajector. Thus, the In schema has the structure:

o Container schema, with Interior, Boundary, and Exterior
o Profiled: the Interior
e Landmark: the Interior

Image schemas have a special cognitive function: They are both perceptual
and conceptual in naturc. As such, they provide a bridge between language and
reasoning on the one hand and vision on the other. Image schemas can fit visual
perception, as when we see the milk as being in the glass. They can also be im-
posed on visual scenes, as when we see the bees swarming in the garden, where
there is no physical container that the bees are in. Because spatial-relations
terms in a given language name complex image schemas, image schemas are the
link between language and spatial perception.

In addition, complex image schemas like In have built-in spatial “logics” by
virtue of their image-schematic structures. Figure 2.1 illustrates the spatial
logic built into the Container schema. In connection with this figure, consider
the following two statements:

1. Given two Container schemas A and 8 and an object X, if A is jin B and
Xisin A, then X is in B.

2. Given two Container schemas A and B and an object Y, if A is in B and
Y is outside of B, then Y is outside of A.

We don't have to perform deductive operations to draw these conclusions.
They are self-evident simply from the images in Figure 2.1. Because image
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schemas have spatial logics built into their imagistic structure, they can function
as spatial concepts and be used directly in spatial rcasoning. Reasoning about
space scems to be done directly in spatial terms, using image schemas rather than
symbols, as in mathematical proofs and deductions in symbolic logic.

Ideas do not tloat abstractly in the world. Idcas can be created only by, and in-
stantiated only in, brains. Particular ideas have to be gencrated by neural structures
in brains, and in order for that to happen, exactly the right kind of neural processes
must take place in the brain’s neural circuitry. Given that image schemas are con-
ceptual in nature—that is, they constitute ideas with a structure of a very special
kind—they must arise through ncural circuitry of a very special kind.

Terry Regier (1996) has used the techniques of structured connectionism to
build a computational neural model of a number of image schemas, as part of a
neural simulation of the learning of spatial-relations terms in various languages.
The rescarch involved in Regier’'s simulation makes certain things clear. First,
topographic maps of the visual field are needed in order to link cognition to vi-
sion. Second, a visual “filling-in” mechanism (Ramachandran & Gregory, 1991),
in which activation spreads from outside to inside in a map of the visual field,
will, in combination with other ncural structures required, yield the topological
properties of the Container schema. Third, orientation-scnsitive cell assemblies
found in the visual cortex are employed by oricntational schemas. Fourth, map
comparisons, requiring neural connections across maps, are needed. Such map-
comparison structures are the locus of the relationship between the Trajector and
the Landmark. Whatever changes arc made in future models of spatial-relations
concepts, it appears that at least these features will be needed.

Here is the importance of this for embodied mathematics: The concept of
containment is central to much of mathematics. Closced sets of points are con-
ceptualized as containers, as are bounded intervals, geometric figures, and so on.
The concept of orientation is equally central. It is used in notions like angles,
dircction of change (tangents to a curve), rotations, and so on. The concepts of
containment and orientation are W@Mﬁnatl}@l@cs but are used in
thought and language gcncralli Like any other concepts, these arise only via
neural mechanisms in the right kind of neural circuitry. It is of special interest
that the neural circuitry we have evolved for other purposes is an inherent part”|
of mathematics, which suggests that embodied mathematics docs not cxist in-
dependently of other embodied concepts used in cveryday life. Instead, mathe-
matics makes use of our adaptive capacities—our ability to adapt other
cognitive mechanisms for mathematical purposes.

Incidentally, the visual system of the brain, where such neural mechanisms
as orientational cell assemblies reside, is not restricted to vision. It is also the
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locus of mental imagery. Mental imagery experiments, using fMRI techniques,
have shown that much of the visual system, down to the primary visual cortex,
is active when we crcate mental imagery without visual input. The brain’s vi-
sual system is also active when we dream (Hobson, 1988, 1994). Moreover, con-
genitally blind pcople, most of whom have the visual system of the brain intact,
can perform visual imagery cxperiments perfectly well, with basically the same
results as sighted subjects, though a bit slower (Marmor & Zaback, 1976; Car-
penter & Eisenberg, 1978; 7imler & Keenan, 1983; Kerr, 1983). In short, one
should not think of the visual system as operating purely on visual input. Thus,
it makes ncurological sense that structures in the visual system can be used for
conceptual purposes, cven by the congenitally blind.

Moreover, the visual system is linked to the motor system, via the prefrontal
cortex {Rizzolatti, Fadiga, Gallese, & Fogassi, 1996; Gallese, Fadiga, Fogassi, &
Rizzolatti, 1996). Via this connection, motor schemas can be uscd to trace out
image schemas with the hands and other parts of the body. For example, you can
use your hands to trace out a seen or imagined container, and correspondingly
you can visualize the structure of something whose shape you trace out with
your hands in the dark. Thus, congenitally blind people can get “yisual” image-
schematic information from touch. Image schemas are kinesthetic, going be-
yond mecre seeing alone, even thbﬁgh they use ncural structures in the visual
system. They can serve general conceptual purposes and are cspecially well
suited for a role in mathematical thought.

There are many image schemas that characterize concepts important for math-
ematics: centrality, contact, closeness, balance, straightness, and many, many

more. Image schemas and their logics are essential to mathematical reasoning.

)

Motor Control and Mathematical 1deas

One might think that nothing could be further from mathematical ideas than
motor control, the neural system that governs how we move our bodies. But
certain recent discoveries about the relation between motor control and the
human conceptual system suggest that our neural motor-control systems may
be centrally involved in mathematical thought. Thosc discoveries have been
made in the field of structured connectionist neural modcling.

Building on work by David Bailey (1997), Srini Narayanan (1997) has observed
that neural motor-control programs all have the same superstructure:

e Readiness: Before you can performa bodily action, certain conditions of
readiness have to be met [¢.g., you may have to reorient your body, stop
doing something else, rest for a moment, and so on}.
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.This might look superficially like a flow diagram uscd in classical ¢
S(T'lence. But Narayanan's model of motor-control systems differs in n;rll;lput'er
nificant respects: It operates in rcal time, is highly resource- and ¢ ont.
dependent, has no central controller or clock, and can operate concurrent?nte'):;
ol;l?cr pmcessgs, accepting information from them and providing informaZc::,llto
;u:r:t, i}cg?idslgu;;tll;en Zodcl, these are all necessary properties for the smooth

g r-control system.

Ol?e might think the motor-control system would have nothing whateve
do with concepts, cspecially abstract concepts of the sort cxpresqeg in th o,
mars of languages around the world. But Narayanan has obscrvéd that t}?'gmm-
eral motor-control schema has the same structure as what linguists hav . %Tnd
aspect—the. general structuring of events. Everything that we perceive oi i;isk
;)lf) ce:stan action or event is conceptualized as having that structure. We reason
o ;1[ ,L;I;lzttsh:sj) Szt;;nsa:; lieenjlral fusing(;uch al structure. And languages

it the wo ans of encoding such a structure in their gram-

?;ZT:OZ‘:?:;;TOZE;;E thk te}lls us is that the same neural structure usged in
S 1otor schemas can also be used to reason about events

arayanan, 1997).

We wiu call such a structure an Aspect schema.

CI()n‘clnt the most remarkable of Narayanan’s results is that exactly the same
?1 y]i;:; vx:li?er;lt Cxﬁtml S.)’St.féll?n 1119(1(:1(:(1 in his work can carry out a complex bod-
e ement W ;:n tI})ll?Vl ing m]?ut. to.njmscles, or carry out a rational infer-
e v sygten{;s forob d(4,lnmscl.es is inhibited. What this means is that neural
o f . 0 ily mlmlons have the same characteristics nceded for ra-

inference in the domain of aspect—that is, the structure of events.
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Among the logical entailments of the aspectual system are two inferential
patterns important for mathematics:

o The stage characterizing the completion of a process is further along
relative to the process than any stage within the process itself.
e There is no point in a process further along than the completion stage

of that process.

These fairly obvious inferences, as we shall sce in Chapter & on infinity, take
on considerable importance for mathematics.

Verbs in the languages of the world have inherent aspectual structure, which
can be modificd by various syntactic and morphological means. What is called
imperfective aspect focuses on the internal structure of the main process. Perfec-
tive aspect conceptualizes the event as a whole, not looking at the intcrnal struc-
ture of the process, and typically focusing on the completion of the action. Some
verbs are inherently imperfective, like breathe or live. The iterative activity of
breathing and the continuous activity of living—as w¢ conceptualize them—do
not have completions that are part of the concept. Just as the neural motor-control
mechanism governing breathing docs not have a completion (stopping, as in hold-
ing onc’s breath, is quite different from completion), so the concept is without a
notion of completion. Death follows living but is 10t the completion of living, at
Jeast in our culture. Dcath is conceptualized, rather, as the cutting-off of life, as
when a child is killed in an auto accident: Death follows life, but lifc is not com-
pleted. And you can say, “ have lived” without meaning that your lifc has been
completed. Thus, an inhcrently imperfective concept is one that is conceptual-
ized as being open-ended—as not having a completion.

There are two ways in which processes that have completions can be concep-
tualized: The completion may be cither (1) internal to the process or (2} external
to the process. This is not a matter of how the natural world really works but of
how we conceptualize it and structure it through language. Take an example of
case 1: If you jump, there are stages of jumping——namely, taking off, moving
through the air, and landing. Landing completes the process of jumping. The com-
pletion, landing, is conceptualized as part of the jumping, as internal to what

“jump’’ means. There is a minimally contrasting case that exemplifies case 2: fly-
ing. In the everyday concept of flying, as with birds and planes, landing is part of
the conceptual frame. Landing follows flying and is a completion of flying. But
landing is not conceptualized as part of flying. Landing is a completion of flying
but it is external to flying. The distinction between an internal completion, as in
jump, and an external completion, as in fly, is crucial in aspect.
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FIGURE 2.2 The Source-Path-Goal schema. We conceptualize linear motion using a con-

a in which there is a moving entity (called a trajector), a source of motion, a

ceptual schem
aching that

trajectory of motion {called a path}, and a goal with an unrealized trajectory appro
s a logic inherent in the structure of the schema. For example, if you are at a

goal. There i
s on that path.

given location on a path, you have been at all previous location

« If you have traversed a route to a current location, you have been at all

previous locations on that route.
« If you travel from A to B and from B to C, then you have traveled from

A to C.
o 1If there is a direct route from A to B and you are moving along that route

toward B, then you will keep getting closer to B.
e If X and Y are traveling along a dircct route from A to B and X passes Y,

then X is further from A and closer to B than Y is.

The Source-Path-Goal schema is ubiquitous in mathematical thought. The
very notion of a directed graph (sce Chapter 7), for cxample, is an instance of the
Source-Path-Goal schema. Functions in the Cartesian plane are often conceptu-
alized in terms of motion along a path—as when a function is described as
“going up,” “reaching” a maximum, and “going down” again.

One of the most important manifestations of the Source-Path-Goal schema
in natural language is what Len Talmy (1996, 2000) has called fictive motion. In

THe COGNITIVE SCIENCE OF THE EMBODIED MIND

39

one form of fictive motion, a line is thought of in terms of motion trac:
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FIGURE 2.3 Conceptual composition of schemas. The English expressions “into” and “out

of" have composite meanings. “In” profiles the interior of a (.’onfaincr schema, \;J!;])lef);’out:'
profiles the exterior. “To” profiles the goal of the Source-Path-Goal s‘chcvma, w.11 9 rv(:/n:h
profiles the source. With “into” (a), the interior is the goal and the exterior 1s the source. Wi
“out of " (b), the interior is the source and the exterior is the goal.
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non has been studicd scientifically for more than two decades and is in general
as well established as any result in cognitive scicnce (though particular details
of analyses are open to further investigation). One of the major results is that
metaphorical mappings are systematic and not arbitrary.

Affection, for example, is understood in terms of physical warmth, as in sen-
tences like “She warmed up to me,” “You've been cold to me all day,” “He gave
me an icy stare,” “They haven'’t yet broken the ice.” As can be seen by this ex-
ample, the metaphor is not a matter of words, but of conceptual structure. The
words are all different (warm, cold, icy, ice), but the conceptual relationship is
the same in all cases: Affection is conceptualized in terms of warmth and dis-
affection in terms of cold.

This is hardly an isolated example:

e Importance is conceptualized in terms of size, as in “This is a big
issue,” “He’s a giant in thc meatpacking business,” and “It’s a small
matter; we can ignore it.”

e Similarity is conceptualized in terms of physical closeness, as in “These
colors are very close,” “Our opinions on politics are light-years apart,”
“We may not agree, but our views are in the same ballpark,” and “Qver
the years, our tastes have diverged.”

» Difficulties are conceptualized as burdens, as in “I'm weighed down by
responsibilities,” “I've got a light load this semester,” and “He’s over-
burdened.”

* Organizational structure is conceptualized as physical structure, as in
“The theory is full of holes,” “The fabric of this society is unraveling,”
“His proposed plan is really tight; everything fits together very well.”

Hundreds of such conceptual metaphors have been studied in detail. They arc
extremely common in everyday thought and language (sec Lakoff & Johnson,
1980, 1999; Grady, 1998; Nunez, 1999). On the whole, they are used uncon-
sciously, cffortlessly, and automatically in cveryday discourse; that is, they are
part of the cognitive unconscious. Many arisc naturally from correlations in our
commonplace cxperience, especially our experience as children. Affection cor-
relates with warmth in the experience of most children. The things that are im-
portant in their lives tend to be big, like their parents, their homes, and so on.
Things that are similar tend to occur close together: trees, flowers, dishes,
clouds. Carrying something heavy makes it difficult to move and to perform
other activities. When we examine a complex physical object with an intcrnal
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structure, we can perceive an organization in it. Not all conceptual metaphors
arise in this way, but most of the basic ones do.

Such correlations in experience are special cases of the phenomenon of con-
flation (see C. Johnson, 1997). Contlation is part of embodied cognition. It is the
simultancous activation of two distinct areas of our brains, each concerned
with distinct aspects of our experience, like the physical expericnce of warmth
and the emotional expericnce of affection. In a conflation, the two kinds of ex-
pericnce occur inseparably. The coactivation of two or more parts of the brain
generates a single complex experience—an cxperience of affection-with-
warmth, say, or an expcrience of difficulty-with-a-physical-burden. It is via such
conflations that ncural links across domains are developed—Ilinks that often re-
sult in conceptual metaphor, in which one domain is conceptualized in terms
of the other.

Each such conceptual metaphor has the same structure. Each is a unidircc-
tional mapping from entities in one conceptual domain to corresponding enti-
ties in anothcr conceptual domain. As such, conceptual metaphors are part of
our system of thought. Their primary function is to allow us to reason about
relatively abstract domains using the inferential structure of relatively concrete
domains. The structure of image schemas is prescrved by conceptual metaphor-
ical mappings. In metaphor, conceptual cross-domain mapping is primary;
metaphorical language is secondary, deriving from the conceptual mapping.
Many words for source-domain concepts also apply to corresponding target-
domain concepts. When words for source-domain concepts do apply to corre-
sponding target concepts, they do so systematically, not haphazardly.

To see how the inferential structurce of a concrete source domain gives struc-
ture to an abstract target domain, consider the common conceptual metaphor
that States Are Locations, as in such expressions as “I'm in a depression,” “He's
close to hysteria; don’t push him over the edge,” and “I finally came out of my
funk.” The source domain concerns bounded regions in physical space. The tar-
get domain is about the subjective expericnce of being in a statc.

STATES ARE LOCATIONS

Source Domain Turget Domain
Srace STATES

Bounded Regions in Space — States

Here is an example of how the patterns of inference of the source domain are
carried over to the target domain.
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If you're in a bounded region,
you're not out of that -
bounded region.

If you're in a state,
you’re not out of that staye

If you're out of a bounded reyion,
you're not in that bounded region.

If you're out of a state,
you're not in that state.

If you're deep in a bounded region, If you're deep in a state

you are far from being out of = you are far from being out
that bounded region. of that state.

If you are on the edge of a
bounded region, you arc close —
to being in that hounded region.

If you are on the edge of a state
’

you are close to being

in that state.

Throughout this book we will use the common convention that ng f
metaphorical mappings are given in the form “A Is B,” as in “Statl‘nej-\o
Bounded Regions in Space.” It is important to distinguish between such LS' r»e
for rr_letaphorical mappings and the metaphorical mappings themselves udtlll? L]j
are given in the form “B — A,” as in “Bounded Regions in Space — Statcsl "’VHjacre
lt.:]g; :*.ource domain is to the lcft of the arrow and the target domain is to the

An cno;mous amount of our everyday abstract reasoning ariscs through such
Fneta'phorlcal cross-domain mappings. Indeed, much of what is often ¢ 1% ‘dsiu-
1cal' inference is in fact spatial inference mapped onto an abstract 1'a o 1 c(ljg_
main. Consider the logic of the Container schema. There is a con*:glcal .
metaphor, Categories Are Containers, through which we understand anonp -
as l?elng a bounded region in space and members of the catcgory as bei Catbe'gory
inside that bounded region. The metaphorical mapping is stated as foﬁiars,-ems

CATEGORIES ARE CONTAINERS
b -
Target Domuain

CATEGORIES

Source Domain
CONTAINERS

Bounded regions in space - Categories

Objects inside the

bounded regions - Category members

One bounded region
inside another

A subcategory of
a larger category
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Suppose we apply this mapping to the two inference patterns mentioned above £ ‘
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that characterize the spatial logic of the Container schema, as follows:

Source Domain
CONTAINER SCHEMA INFERENCES

Turget Domain
CATEGORY INFERENCES

Excluded Middle
Every object X is either in
Container schema A or out —
of Container schema A.
Modus Ponens

Given two Container schemas
A and B and an object X, if Ais —
in Band X is in 4, then X is in B.

Hypothetical Syllogism

Given three Container schemas

A, B, and C, if A is in B and —

Bisin C, then A isin C.

Modus Tollens
Given two Container schemas
A and B and an object Y, if A is
in B and Y is outside B, then
Y is outside A.

Excluded Middle

Every entity X is either in
category A or out of category A.

Modus Ponens
Given two categories A and B
and an entity X, if Aisin B
and X isin A, then X is in B.

Hypothetical Syllogism

Given three categories A, B and
C,if Aisin Band Bis in C,
then A is in C.

Modus Tollens
Civen two categories A and B
and an entity Y, if A is
in B and Y is outside B,
then Y is outside A.
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The point here is that the logic of Containcr schemas is an cmbodied spatial
logic that arises from the ncural characterization of Container schemas. The ex-
cluded middle, modus ponens, hypothetical syllogism, and modus tollens of
classical categories are metaphorical applications of that spatial logic, since the
Categorics Are Containers metaphor, like conceptual metaphors in general, pre-
serves the inferential structure of the source domain.

Moreover, therc are important entailments of the Categorics Are Containers
metaphor:

The overlap of the interiors The conjunction of

of two bounded regions ’ two categorics
The totality of the interiors of The disjunction
two bounded regions - of two categories

)\ \r@?“ : l,'k‘f\\

®
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B
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FIGURE 2.4 Venn diagrams. Here is a common set of Venn diagrams of the sort one finds
in texts on classes and sets, which are typically conceptualized metaphorically as containers
and derive their logics from the logic of conceptual Container schemas. When one “yisual-
izes” classes and sets in this way, one is using cognitive Container schemas in the visualiza-
tion. The diagrams depict various mathematical ideas: (a) the relation B C A;(b)AUB; (c)A
N B; [d) the diffcrence A\B; [e) the symmetric difference A A B; {f) the complement ¢; A and
(g) A N (B U C), which equals (4 N B) U (A N C). o

In short, given the spatial logic of Container schemas, the Catcgories Are Con-
tainers metaphor yields an everyday version of what we might call folk Boolean
logic, with intcrsections and unions. That is why the Venn diagrams of Boolean
logic look so natural to us (see Figure 2.4), although there are differences between
folk Boolean logic and technical Boolean logic, which will be discussed in Chap-
ter 6. Folk Boolean logic, which is conceptual, arises from a perceptual mecha-
nism—the capacity for perceiving the world in terms of contained structures,

From the perspective of the embodied mind, spatial logic is primary and the
abstract logic of categories is secondarily derived from it via conceptual
metaphor. This, of course, is the very opposite of what formal mathematical
‘logic suggests. It should not be surprising, therefore, that embodied mathemat-
ies will look very different from disembodicd formal mathematics,

Metaphors That Introduce Elements

COpceptual mctaphors do not just map preexisting elements of the source do-
fnain onto preexisting elements of the target domain. They can also introduce
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new elements into the target domain. Consider, for cxample, the concept of
love. There is a common metaphor in the contemporary Western world in
which Love Is a Partnership. Herc is the mapping.

Love Is A PARTNERSHIP

Source [Domiain
BUSINESS

e

Turget Domain
Love

-

Partners — Lovers

Partnership - Love relationship

Wealth - Well-being

. “Profits” from the love

Profits from the business - . .

relationship
. »Work” put into the

Work for the business - pure

relationship

Sharing of “work” put into
the relationship

Sharing of “profits” from
the relationship

Sharing of work for the business —

Sharing of profits from
. —
the business

Love need not always be conceptualized via this metaphor as a partnership.
Romeo and Juliet’s love was not a partnership, nor was Tristan and Isolde’s.
Similarly, love in many cultures around the world is not conceptualized in
terms of business—and it need not be so conceptualized for individual cases in
the Western world. But this is a common metaphorical way of understanding
love—so common that it is sometimes taken as literal. For example, sentences
like “TI'm putting all the work into this relationship and you're getting every-
thing out of it,” "It was hard work, but worth it,” and “The relationship was 50
unrewarding that it wasn't worth the effort” are so commonplace in discussions
of love relationships that they are rarely noticed as metaphorical at all.

From the perspective of this book, there is an extremely important feature of
this metaphor: It introduces clements into the target domain that are not inher-
ent to the target domain. It is not inherent in love-in-itself that there be “work in
the relationship,” “profits {increascs in well-heing) from the relationship,” and a
“sharing of relationship work and profits.” Romeo and Julict would have been
aghast at such ideas. These ideas are elements introduced into the target domain
by the Love Is a Partnership metaphor, and they don’t exist there without it.

The fact that metaphors can introduce elements into a target domain is ex-
tremely important for mathematics, as we shall see later when we take up var-

ious forms of actual infinity (Chapter 8).

- %

oS

Tue COGNITIVE SCIENCE OF THE EMBODIED MIND
47

Evidence

> t ] d A3 5 > .
Over the past two decades, an enormous range of empirical evidence has bee
een

collectc,d. that supports this view of conceptual metaphor. The evid .
from various sources: : cnce comes

o generalizations over polysemy (cases wherc the same word ha Iti
systematically related meanings) e multiple

. generghzatiuns over infcrence patterns (cascs where source and

domains have corresponding inference patterns) e et

novel cases -(new examples of conventional mappings, as in p

song, advertisements, and so on) (see Lakoff & Turner, 1,985 pocty

» psychological cxperiments (see Gibbs, 1994) , |

¢ historical semantic change (sce Swect’scr 1990)

. spontgneous gesture {sce McNeill, 1992), '

e American Sign Language (sce Taub, 1997)

e child language development (sec C. Johnson, 1997)

» discourse coherence (see Narayanan, 1997) /

e cross-linguistic studies. ,

For a thorough discussion of such evidence, see Lakoff and Johnson, 1999

Sophisticated Mathematical Ideas

Sophisti d i
basi " aricte;lted r?natk;;mlancs, as we have pointed out, is a lot more than just
metic. Mathematics extend
: _ s the use of numb
Dusle ¢ : mbers to many other
e gt,u;r e;(allnple, the numerical study of angles (trigonometry), the r);umeri
IYti; ; yofc 1)angcd(calculus), the numerical study of geometric';l forms (ana
scometry), and so on. We wi i ‘ topics
. ill argue, in our discussi
e keome : ’ ) rgue, scussion of all these topics
and mo fr, ha;) co.n(,ep.tual mectaphor is the central cognitive mechanism ofp ex
ension 1 om a.slllc arithmetic to such sophisticated applications of number
w isti :
e C,O : will argue that a sophisticated understanding of arithmetic itself
e nceptual metaphors using nonnumerical mathematical source do
.g., ge : i A |
metaphurg.;i,q gl?m«l,try a‘nd.set theory). We will argue further that conceptual
e theorﬂf alb;x t 1e‘prmc1pal cognitive mechanism in the attempt to provide
- ical foundations for mathematics i
thoory et matics and in the understanding of set
Finally, it s i
he qbsia ,:ho}!ﬂdf bgcome clear in the course of this discussion that much of
cring ol o Lt 1011]1 of higher mathematics is a consequence of the systematic lay-
etaphor upon metaphor, often over the course of centuries




Each metaphorical layer, as we shall sce, carries inferential structure sys.
tematically from source domains to target domains—systematic structure that
gets lost in the layers unless they are revealed by detailed mctaphorical analy.
sis. A good part of this book is concerncd with such metaphorical decompos;.
tion of sophisticated mathematical concepts. Becausc this kind of study has
never been done before, we will not be able to offer the extensive forms of evi.
dence that have becn found in decades of studics of conceptual metaphor i
everyday language and thought. For this reason, we will limit our study to cases
that arc relatively straightforward—cases where the distinctness of the source
and target domains is clear, where the correspondences across the domains have
been well established, and where the inferential structures are obvious.

Conceptual Blends

A conceptual blend is the conceptual combination of two distinct cognitive struc-
tures with fixed correspondences between them. In mathematics, a simple casc is
the unit circle, in which a circle is superimposed on the Cartesian plane with the
following fixed correspondences: (a) The center of the circle is the origin (0,0), and
(b) the radius of the circle is 1. This blend has entailments that follow from these
correspondences, together with the inferential structure of both domains. For ex-
ample, the unit circle crosses the x-axis at (1,0) and {~1,0), and it crosscs the y-axis
at (0,1) and (0,-1). The result is more than just a circle. It is a circle that has a fixed
position in the plane and whose circumference is a length commensurate with
the numbers on the x- and y-axcs. A circle in the Euclidean plane, where there are
no axes and no numbers, would not have these propertics.

When the fixed correspondences in a conceptual blend are given by a
metaphor, we call it a metaphorical blend. An example we will discuss exten-
sively below is the Number-Line Blend, which uses the correspondences estab-
lished by the metaphor Numbers Are Points on a Line. In the blend, new
entitics are creatcd—namely, number-points, entities that are at once numbers
and points on a line (s¢e Fauconnicer 1997; Turner & Fauconnier, 1995; Faucon-

nicr & Turner, 1998). Blends, mectaphorical and nonmetaphorical, occur 3

throughout mathematics.
Many of the most important ideas in mathematics are metaphorical conceptual

blends. As will become clear in the case-study chapters, understanding mathe:
matics requires the mastering of extensive networks of metaphorical blends.

Symbolization

B 1m’_

words for'the concepts. The words (e.g., “eighty-five” or ”quutrc-vingt-cmq”;
are part of some natural language, not mathematics proper.

In embodicd mathematics, mathematical symbols, like 27, n, or e® are me.

' - - ‘ 4] G ar-
mgfu'] by virtue of the n?athematlcal concepts that they attach to. Those math-
ematical concepts are given in cognitive terms (e.g., image schemas, imagined
geometrical shapes; metaphorical structures, like the number line; and 50 on)
. e " . - !
and those cognitive structurcs will ultimately require a neural account of hnw,
the brain creatcs them on the basis of neural structurc and bodily and social ex-
perience. To L.mderstand a mathematical symbol is to associate it with a con-
cept—something meaningful in human cognition that is ultimately grounded in
experience and created via neural mechanisms.

As Stanislas Dchacene observed in the case of Mr. M—and as many of us ex
perienced in grade school—numerical calculation may be performed with or
without genuine understanding. Mr. M could remember his multiplication ta-
bles, but they were essentially meaningless to him.

The mcaning gf mathematical symbols is not in the symbols alone and how
they can be manipulated by rule. Nor is the meaning of symbols in the inter-
prgtatmn of the symbols In terms of sct-theoretical models that are themselves
uninterpreted. Ultimately, mathematical mcaning is like everyday meaning. It
is part of embodicd cognition. &

. Th]z l;a§ important consequences for the teaching of mathematics. Rote learn-
ing ar; rllfl is not cr.lough. It lcaves out understanding. Similarly, deriving theo-
rcmr rom formal axioms via purely formal rules of proof is not enough. It, too
Lalil] cave out understanding. The point is not to be able to prove that ew = —1, but/
rat gr, to be able to prove it knowing what e~ means, and knowing why e¢m l/
ont asi : j is of short
o tg basis Qf wbat €% means, not just on the basis of the formal proof. In short
vhat is required is an adequate mathematical idea analysis to show why e = —l,
gtven our understanding of the ideas involved
Euler's equation, en+ | = tic ‘
~ q ion, en + I'=0, tics together many of the most central ideas in clas.
sical mathematics. Yet on the surface it invol ‘
o shoss heos o on the ¢ volves only numbers: e, x, ;, 1, and 0.
I (115 €quation ties together ideas, we must have a theory of mathe
cal ideas and 1 ici i -
el a theory of how they are mathematicized in terms of numbers
ur interest, of course, goes be 1j : .
ercsted 1 , yond just e as such. Indeed, we are also in-
S all-too- i i
e too-common conception that mathematics is about calcula
lon and about formal proofs f fi i ini :
eas and oot o rom formal axioms and definitions and not about
ISt i i
ot undora inding. From the perspective of embodied mathematics, ideas
Standing are what mathematics is centrally about.

As we have noted, there is a critical distinction to be made among mathemati- &
cal concepts, the written mathematical symbols for those concepts, and the 3




3

Embodied Arithmetic:
The Grounding Metaphors

AluTHMETlc 1S A LOT MORE THAN SUBITIZING and the elementary nu-
merical capacities of monkeys and newborn babies. To understand what

arithmetic is from a cognitive perspective, we need to know much morc. Why
does arithmetic have the properties it has? Where do the laws of arithmetic come
from? What cognitive mechanisms arc needed to go from what we are born with
to full-blown arithmetic? Arithmetic may seem easy once you've learned it, but
there is an awful lot to it from the perspective of the embodied mind.

What Is Special About Mathematics?

As subsystems of the human conceptual system, arithmetic in particular and
mathematics in general are special in several ways. They are:

® precise,

* consistent,

e stable across time and communities,

» understandable across cultures,

* symbolizable,

e calculable,

e generalizable, and

o effective as general tools for description, explanation, and prediction in
a vast number of everyday activities, from business to building to sports
to science and technology.
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Any cognitive theory of mathematics must take these special properties into
account, showing how they are possible given ordinary human cognitive capac-

ities. That is the goal of this chapter.

The Cogpnitive Capacitics Needed for Arithmetic

We are born with a minimal innate arithmetic, part of which we share with other
animals. It is not much, but we do come cquipped with it. Innate arithmetic in-
cludes at least two capacities: (1) a capacity for subitizing—instantly recognizing
small numbers of items—and (2) a capacity for the simplest forms of adding and
subtracting small numbers. (By “number” here, we mean a cardinal number, a
number that specifies how many objects there are in a collection.) When we
subitize, we have already limited ourselves to a grouping of objects in our visual
ficld and we are distinguishing how many objects there are in that grouping.

In addition, we and many animals (pigeons, parrots, raccoons, rats, chim-
panzees) have an innatc capacity for “numerosity”—the ability to make consis-
tent rough estimates of the number of objects in a group.

But arithmetic involves more than a capacity to subitize and estimate. Subitiz-
ing is certain and precise within its range. But we have additional capacities that
allow us to extend this certainty and precision. To do this, we must count. Here
are the cognitive capacities needed in order to count, say, on our fingers:

* Grouping capacity: To distinguish what we are counting, we have to be
able to group discrete elements visually, mentally, or by touch.

¢ Ordering capacity: Fingers come in a natural order on our hands. But
the objects to be counted typically do not come in any natural order in
the world. They have to be ordered—that is, placed in a sequence, as if
they corresponded to our fingers or were spread out along a path.

* Pairing capacity: We nced a cognitive mechanism that enables us to se-
quentially pair individual fingers with individual objects, following the
sequence of objects in order.

* Memory capacity: We nced to keep track of which fingers have been
used in counting and which objects havc been counted.

* Exhaustion-detection capacity: We need to be able to tell when there
are “no more” objects left to be counted.

* Cardinal-numbecr assignment: The last number in the count is an ordinal
number, a number in a sequence. We need to be able to assign that ordi-
nal number as the sizc—the cardinal number—of the group counted. That
cardinal number, the size of the group, has no notion of scquence in it.
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« Independent-order capacity: We need to realize that the cardinal num-
ber assigned to the counted group is independent of the order in which
the elements have been counted. This capacity allows us to see that the
result is always the same.

When these capacities are used within the subitizing range between [ and 4,
we get stable results because cardinal-number assignment is done by subitizing,
say, subitizing the fingers used for counting.

To count beyond four—the range of the subitizing capacity—we need not only
the cognitive mechanisms listed above but the following additional capacities:

o Combinatorial-grouping capacity: You need a cognitive mechanism
that allows you to put together perceived or imagined groups to form
larger groups.

o Symbolizing capacity: You nced to bc able to associate p]}zgigwm-

L~ Dbols (or words) with numbers {which are conceptual entities). -

But subitizing and counting are the bare beginnings of arithmetic. To go be-
yond them, to characterize arithmetic operations and their properties, you nced
much richer cognitive capacities:

» Metaphorizing capacity: You nced to be able to conceptualize cardinal
numbers and arithmetic operations in terms of your cxperiences of var-
jous kinds—experiences with groups of objects, with the part-whole
structure of objects, with distances, with movement and locations, and
SO on.

¢ Conceptual-blending capacity. You need to be able to form correspon-
dences across conceptual domains (e.g., combining subitizing with
counting) and put together different conceptual metaphors to form
complex metaphors.

Conceptual metaphor and conceptual blending are among the most basic cog-
nitive mechanisms that take us beyond minimal innatc arithmetic and simple
counting to the elementary arithmetic of natural numbers. What we have found
is that there are two types of conceptual metaphor used in projecting from
subitizing, counting, and the simplest arithmetic of newborns to an arithmetic
of natural numbers.

The first are what we call grounding metaphors—metaphors that allow you to
project from everyday experiences (like putting things into piles) onto abstract

SR R~ R T
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concepts (like addition). The second are what we call linking metaphors, which
link arithmetic to other branches of mathematics—for example, metaphors that
allow you to conceptualize arithmetic in spatial terms, linking, say, geometry to
arithmetic, as when you conceive of numbers as points on a linc.

Two Kinds of Metaphorical Mathematical Ideas

Since conceptual metaphors play a major role in characterizing mathematical
ideas, grounding and linking metaphors provide for two types of metaphorical
mathematical ideas:

1. Grounding metaphors yield basic, directly grounded ideas. Examples:
addition as adding obijccts to a collection, subtraction as taking objects
away from a collection, sets as containers, members of a set as objccts
in a container. These usually require little instruction.

2. Linking metaphors vyield sophisticated ideas, sometimes called ab-
stract ideas. Examples: numbers as points on a line, geometrical figures
as algebraic equations, operations on classes as algebraic operations.
These require a significant amount of explicit instruction.

This chapter is devoted to grounding metaphors. The rest of the book is de-
voted primarily to linking metaphors.

Incidentally, there is another typce of metaphor that this book is not about at
all: what we will call extraneous metaphors, or metaphors that have nothing
whatever to do with cither the grounding of mathematics or the structurc of
mathematics itself. Unfortunately, the term “metaphor,” when applied to
mathematics, has mostly referred to such extraneous metaphors. A good cxam-
ple of an extraneous metaphor is the idea of a “step function,” which can be
drawn to look like a staircase. The staircase image, though helpful for visuali-
zation, has nothing whatever to do with either the inherent content or the
grounding of the mathematies. Extrancous metaphors can be eliminated with-
out any substantive change in the conceptual structure of mathematics,
whereas climinating grounding or linking metaphors would make much of the
conceptual content of mathematics disappear.

Preserving Inferences About Everyday Activities

Since conceptual metaphors preserve inference structure, such metaphors allow
us to ground our understanding of arithmetic in our prior understanding of ex-
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tremely commonplace physical activities. Our understanding of elementary
arithmetic is bascd on a corrclation between (1) the most basic lifef'a'l aspects of
arithmetic, such as subitizing and counting, and (2} everyday act1v1.tws, such as
collecting objects into groups or piles, taking objects apart and putting them to-
gether, taking steps, and so on. Such correlations allow us tq fgrm metaphors by
which we greatly extend our subitizing and counting capacities. o

One of the major ways in which metaphor prescrves intercncg is via the
preservation of image-schema structure. For example, the formation of a col-
lection or pile of objects requires conceptualizing that collection as a con-
tainer—that is, a bounded region of space with an interior, an exterior, and a
boundary—either physical or imagined. When we conceptualize‘numbcrs as
collections, we project the logic of collections onto numbers. In this way, expe-
ricnces like grouping that correlate with simple numbers give further logical
structure to an expanded notion of number.

The Metaphorizing Capacity

The metaphorizing capacity is central to the extension of aritl.unctic beyond
mcre subitizing, counting, and the simplest adding and subtractn?g. Becausc.e of
its centrality, we will look at it in considerable detail, starting with tbe Ar1th~
metic Is Object Collection metaphor. This is a grounding metaphpr, in that it
grounds our conception of arithmetic directly in an cveryday activity.

No metaphor is more basic to the extension of our concept of number from
the innate cardinal numbers to the natural numbers (the positive integers). The
reason is that the correlation of grouping with subitizing and counting the cle-
ments in a group is pervasive in our experience from earlicst childho?d. .

Let us now begin an extensive guided tour of everything involved in thls ap-
parently simple metaphor. As we shall see, even the simplest and most 1ntmgve
of mathematical metaphors is incredibly rich, and so the tour will be extensive.

Arithmetic As Object Collection

If a child is given a group of three blocks, she will naturally subitize them auto-
matically and unconsciously as being three in number. If one is taken ayvay, she
will subitize the resulting group as two in number. Such everyday experiences of
subitizing, addition, and subtraction with small collections of objects involve cor-
relations between addition and adding objects to a collection and betwgcn sub-
traction and taking objects away from a collection. Such regular correlgtmns, we
hypothesize, result in neural connections between sensory-motor physical opera-
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tions like taking away objects from a collection and arithmetic operations like the
subtraction of one number from another. Such ncural connections, we believe,
constitute a conceptual metaphor at the neural level—in this case, the metaphor
that Arithmetic Is Object Collection. This mectaphor, we hypothesize, is learncd
at an carly age, prior to any formal arithmetic training. Indced, arithmetic train-
ing assumes this unconscious conceptual (not linguistic!) metaphor: In teaching
arithmetic, we all take it for granted that the adding and subtracting of numbers
can be understood in terms of adding and taking away objects from collections,
Of course, at this stage all of these are mental operations with no symbols! Cal-
culating with symbols requires additional capacities.

The Arithmetic Is Object Collection metaphor is a precise mapping from the
domain of physical objects to the domain of numbers. The metaphorical map-
ping consists of

1. the source domain of object collection (based on our commonest expe-
riences with grouping objects);

2. the target domain of arithmetic (structured nonmetaphorically by
subitizing and counting); and

3. a mapping across the domains (based on our experience subitizing and
counting objects in groups). The mctaphor can be stated as follows:

ArRITHMETIC Is OBjecT COLLECTION

Source Domain
OnJECT COLLECTION

Target Domain
ARITHMETIC

Collections of objects

. - Numbers
of the same size

The size of the collection —  The size of the number
Bigger —  Greater

Smaller ‘ —  Less

The smallest collection —  The unit (One)

Putting collections together ~ —  Addition

Taking a smaller collection

: Subtraction
from a larger collection

Linguistic Examples of the Metaphor

We can sec evidence of this conceptual metaphor in our everyday language. The
word add has the physical meaning of physically placing a substance or a num-
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ber of objects into a container {or group of objects), as in “Add sugar to my cof-
fee,” “Add some logs to the fire,” and “Add onions and carrots to the soup.”
Similarly, take . .. from, take ... out of, and take ... away have the physical
meaning of removing a substance, an object, or a number of objects from some
container or collection. Examples include “Take some books out of the box,”
“Take some water from this pot,” “Take away some of these logs.” By virtuc of
the Arithmetic Is Object Collection metaphor, these expressions are used for
the corresponding arithmetic operations of addition and subtraction.

If you add 4 apples to 5 apples, how many do you have? If you take 2 ap-
ples from 5 apples, how many apples are left? Add 2 to 3 and you have
5. Take 2 from 5 and you have 3 Jeft.

It follows from the metaphor that adding yields something bigger (morc) and
subtracting yiclds something smaller (less). Accordingly, words like big and small,
which indicate size for objects and collections of objects, are also uscd for numbers,
as in “Which is bigger, 5 or 7" and “Two is smaller than four.” This metaphor is
so deeply ingrained in our unconscious minds that we have to think twice to real-
ize that numbers are not physical objects and so do not literally have a size.

Entailments of the Metaphor

The Arithmetic Is Object Collection metaphor has many entailments. Each
arises in the following way: Take the basic truths about collections of physical
objects. Map them onto statcments about numbers, using the metaphorical
mapping. The result is a set of “truths” about the natural numbers under the
operations of addition and subtraction.

For example, suppose we have two collections, A and B, of physical objects,
with A bigger than B. Now supposc we add the same collection C to each. Then
A plus G will be a bigger collection of physical objects than B plus C. This is a
fact about collections of physical objects of the same size. Using the mapping
Numbers Are Collections of Objects, this physical truth that we experience in
grouping objects becomes a mathematical truth about numbers: If A is greater
than B, then A + C is greater than B + C. All of the following truths about num-
bers arise in this way, via the metaphor Arithmetic Is Object Collection.

The Laws of Arithmetic Are Metaphorical Entailments

In each of the following cases, the metaphor Arithmetic Is Object Collection
maps a property of the source domain of object collections (stated on the left)
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to a unique corresponding property of the target domain of numbers (stated on
the right). This metaphor extends propcrties of the innate subitized numbers |
through 4 to an indefinitely large collection of natural numbers. In the cases
below, you can sce clearly how properties of object collections are mapped by
the metaphor onto propertics of natural numbers in general.

MAGNITUDE

Object collections have a
magnitude

-

Numbers have a magnitude

STABILITY OF RESULTS FOR ADDITION

Whenever you add a fixed
object collection to a sccond
fixed object collection,

you get the same result.

Whenever you add a fixed
number to another fixed
number, you get the
same result.

STABILITY OF RESULTS FOR SUBTRACTION

Whenever you subtract a fixed
object collection from a
second fixed object collection,
you get the same result.

Whencver you subtract a fixed
number from another

fixed number, you

get the same result.

INVERSE OPERATIONS

For collections: Whenever

you subtract what you added,
or add what you subtracted,
you get the original collection.

For numbers: Whenever

you subtract what you added,
or add what you subtracted,
you get the original number.

UnirorM ONTOLOGY

Object collections play

three roles in addition.
* what you add to somcthing;
* what you add something to;
* the result of adding.
Despite their differing roles,
they all have the same nature
with respect to the operation
of the addition of object collections.

Numbers play three

roles in addition.

¢ what you add to something;
¢ what you add something to;
¢ the result of adding,.
Despite their differing roles,
they all have the same nature
with respect to the operation
of the addition of numbers.
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CLOSURE FOR ADDITION

The process of adding an object
collection to another object
collection yields a third

object collection.

The process of adding
— a number to a number
yiclds a third number.

UNLIMITED ITERATION FOR ADDITION

You can add numbers
indefinitely.

You can add object
collections indefinitely.

LimITED ITERATION TOR SUBRTRACTION

You can subtract object
collections from other
object collections until
nothing is left.

You can subtract numbers
— from other numbers
‘until nothing is left.

SEQUENTIAL OPERATIONS

You can do combinations
of adding and subtracting
numbers.

You can do combinations
of adding and subtracting —
object collections.

Equational Properlies

EQuALITY OF RESULT

You can obtain the same
resulting number via
different operations.

You can obtain the same
resulting object collection —
via different operations.

PRESERVATION OF EQUALITY

For object collections,

adding equals to cquals -
yields cquals.

For object collections,

subtracting equals from —
equals yields equals.

For numbers, adding equals
to equals yields cquals.

For numbers, subtracting
equals from cquals
yiclds equals.

COMMUTATIVITY

For numbers, adding A to B
gives the same result as
adding B to A.

For object collections,
adding A to B gives the -
same result as adding B to A.
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ASSOCIATIVITY

For object collections, adding

B to C and then adding A to

the result is cquivalent to adding
A to B and adding C to that result.

For numbers, adding B to C and
then adding A to the resuly is
equivalent to adding A to B
and adding C to that resy]t,

Relationship Properties

LiNEAR CONSISTENCY

For object collections, if
A is bigger than B, then
B is smaller than A.

For numbers, if
—  Ais greater than B,
then B is less than A.

LINEARITY

If A and B are two object
collections, then either A

If A and B are two numbers,
then either A is greater than B,

is bigger than B, or B is - .
' D18E ! or B is greater than A, or A and B
bigger than A, or A and B .
. are the same magnitude.
are the same size.
SYMMETRY

If collection A is the same
sizc as collection B, then
B is the samec size as A.

If number A is the same
—  magnitude as number B, then
B is the same magnitude as A.

TRANSITIVITY

For object collections, if
A is bigger than B and B is
bigger than C, then A is
bigger than C.

For numbers, if

A is greater than B

and B is greater than C,
then A is greater than C.

In order for there to be a metaphorical mapping from object collections to
numbers, the entailments of such a mapping must be consistent with the prop-
ertics of innate arithmetic and its basic cxtensions. This rudimentary form of

arithmetic has some of these propertics

for example, uniform ontology, lincar

consistency, linearity, symmetry, commutativity, and preservation of equality.
The Arithmetic Is Object Collection metaphor will map the object-collection
version of these propertics onto the version of these properties in innate arith-

metic (e, 2+ 1=1+2)
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However, this metaphor will also cxtend innate arithmetic, adding properties
that the innate arithmetic of numbers | through 4 does not have, becausc of its
limited range—namely, closure (c.g., under addition) and what follows from clo-
surc: unlimited iteration for addition, sequential operations, equality of result,
and preservation of equality. The metaphor will map these properties from the
domain of object collections to the expanded domain of number. The result is
the clementary arithmetic of addition and subtraction for natural numbers,
which goes beyond innate arithmetic.

Thus, the fact that there is an innate basis for arithmetic does not mean that
all arithmetic is innate. Part of arithmetic arises from our experience in the
world with object collections. The Arithmctic Is Objcet Collection metaphor
arises naturally in our brains as a result of rcgularly using innate ncural arith-
metic while interacting with small collections of objects.

Extending Elementary Arithmetic

The version of the Arithmetic Is Object Collection metaphor just stated is limited
to conceptualizing addition and subtraction of numbers in terms of addition and
subtraction of collections. Operations in one domain (using only collections) are
mapped onto operations in the other domain (using only numbers). There is no
single operation characterized in terms of clements from both domains—that is,
no single operation that uses both numbers and collections simultaneously.

But with multiplication, we do need to refer to numbers and collections
simultaneously, since understanding multiplication in terms of collections
requires performing operations on collections a certain number of times.
This cannot be done in a domain with collections alone or numbers alone. In
this respect, multiplication is cognitively more complex than addition or
subtraction.

The cognitive mechanism that allows us to extend this metaphor from addi-
tion and subtraction to multiplication and division is metaphoric blendiny.
This is not a new mechanism but simply a consequence of having mctaphoric
mappings.

Recall that each mctaphoric mapping is charactcrized neurally by a fixed set
of connections across conceptual domains. The results of inferences in the
source domain are mapped to the target domain. If both domains, together with
the mapping, arc activated at once (as when one is doing arithmetic on object
collections), the result is a metaphoric blend: the simultaneous activation of
two domains with connections across the domains.
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Two Versions of Multiplication and Division

Consider 3 times 5 in terms of collections of objects:

» Supposc we have 3 small collections of 5 objects each. Suppose we pool
these collections. We get a single collection of 15 objects.

o Now supposc we have a big pile of objects. If we put 5 objects in a box
3 times, we get 15 objects in the box. This is repeated addition: We
added 5 objects to the box repeatedly-—3 times.

In the first case, we are doing multiplication by pooling, and in the second by
repeated addition.

Division can also be characterized in two corresponding ways, splitting up
and repeated subtraction:

» Suppose we have a single collection of 15 objects, then we can split it
up into 3 collections of 5 objects each. That is, 15 divided by 3 is 5.

» Suppose again that we have a collection of 15 objects and that we re-
peatedly subtract 5 objects from it. Then, after 3 repeated subtractions,
there will be no objects left. Again, 15 divided by 3 is 5.

In each of these cases we have used numbers with only addition and subtrac-
tion defined in order to characterize multiplication and division metaphorically
in terms of object collection. From a cognitive perspective, we have uscd a
metaphoric blend of object collections together with numbers to extend the
Arithmetic Is Object Collection metaphor to multiplication and division.

We can state the pooling and iteration extensions of this metaphor precisely
as follows:

THE POOLING/SPLITTING EXTENSION OF
THE ARITHMETIC Is OBJECT COLLECTION METAPHOR

Source Domain Target Domain
TuEe OBJECT-COLLECTION/

ARITHMETIC BLEND

ARITITMETIC

The pooling of A subcollections
of siz¢ B to form an overall —  Multiplication (A - B = C}
collection of size C.

The splitting up of a collection
of size C into A subcollections —  Division (C + B = A)
of size B.
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THE ITERATION EXTENSION OF THE ARITHMETIC
Is OpjecT COLLECTION METAPHOR

Source Domain Target Domain

THE OBJECT-COLLECTION/

ARITHMETIC
ARITHMETIC BLEND
The repeated addition
(A times) of a collection of +  Multiplication (4 - B = C) i

size B to yield a collection

of size C.

The repeated subtraction

of collections of size B from

an i.nltlal ‘cglllectlon of §lze C ~  Division (C. = B = A
until the initial collection i
is exhausted. A is the number
of times the subtraction occurs.

Note that in each case, the result of the operation is given in terms of the size

ASSOCIATIVITY FOR MULTIPLICATION

Pooling A collections of

size B and pooling that
numbcr of collections of size
C gives a collection of

the same resulting size as
pooling the number of A
collections of the size of the
collection formed by pooling
B collections of size C.

Multiplying A times B

and multiplying the

result times C gives the
—  same number as

multiplying A timcs the

result of multiplying

B times C.

DISTRIBUTIVITY OF MULTIPLICATION OVER ADDITION

First, pool A collections of the
size of the collection formed by
adding a collection of sizc B to
a collection of size C. This gives
a collection of the same size as
adding a collection formed by
pooling A collections of sizc B

First, multiply A times

the sum of B plus C.

This gives the same number
as adding the product of

A timcs B to the

product of A times C.

of the collection as it is understood in the source domain of collections. Since
the result of a multiplication or division is always a collection of a given size,
multiplication and division (in this metaphor) can be combined with the
addition and subtraction of collections to give further results in terms of
collections.

What is interesting about these two equivalent metaphorical conceptions of
multiplication and division is that they arc both defined relative to the number-
collection blend, but they involve different ways of thinking about operating on
collections.

These metaphors for multiplication and division map the propertics of the
source domain onto the target domain, giving rise to the most basic properties
of multiplication and division. Let us consider the commutative, associative,

and distributive properties.

COMMUTATIVITY FOR MULTIPLICATION

Pooling A collections of
size B gives a collection of
the samc resulting size as

Multiplying A times B gives
-~ the same resulting number as
multiplying B times A.

pooling B collections of sizc A.

to A collections of size C.

MULTIPLICATIVE IDENTITY

Pooling one collection of
sizc A results in a collection -
of size A.

Pooling A collections of size
one yields a collection of size A.

Multiplying one times A yields A

- Multiplying A times one yields A.

INVERSE OF MULTIPLICATION

Splitting a collection of
size A into A subcollections -
yields subcollections of size one.

Dividing A by A yiclds one.

In cach case, a true statement about collections is projected by the metaphor in
the pooling/splitting cxtension onto the domain of numbers, yielding a truc
statement about arithmetic. The same will work for iterative extension (i.e., re-
peated addition and repeated subtraction).

Thus, the Arithmetic Is Ohject Collection metaphor extends our understand-
ing of number from the subitized numbers of innate arithmetic and from sim-
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ple counting to the arithmetic of the natural numbers, grounding the extension
of arithmetic in our everyday cxperience with groups of physical objects.

Zero

The Arithmetic Is Object Collection metaphor does, however, leave a problem.
What happens when we subtract, say, seven from seven? The result cannot be un-
derstood in terms of a collection. In our cveryday expericnce, the result of taking
a collection of seven objects from a collection of scven objects is an abscnce of any
objects at all—not a collection of objects. If we want the result to be a number,
then in order to accommodate the Arithmetic Is Object Collection metaphor we
must conceptualize the absence of a collection as a collection. A new conceptual
metaphor is necessary. What is needed is a metaphor that creates something out
of nothing: From the absence of a collection, the metaphorical mapping creates a
unique collection of a particular kind—a collection with no objects in it.

THE ZERO COLLECTION METAPHOR

The lack of objects to form .
. —  The empty collection
a collection

Given this additional mctaphor as input, the Arithmetic Is Object Collection
metaphor will then map the empty collection onto a number—which we call
“zero.”

This new mectaphor is of a type common in mathematics, which we will call
an entity-creating metaphor. In the previous case, the conceptual metaphor cre-
ates zcro as an actual number. Although zero is an extension of the object-
collection metaphor, it is not a natural extension. It does not arise from a
correlation between the experience of collecting and the experience of subitiz-
ing and doing innate arithmetic. It is therefore an artificial metaphor, concocted
ad hoc for the purpose of extension.

Once the metaphor Arithmetic Is Object Collection is cxtended in this way,
more properties of numbers follow as entailments of the metaphor.

ADDITIVE IDENTITY

Adding the empty collection

to a collection of size A yiclds —  Adding zero to A yields A.
a collection of size A.

Adding a collection of sizc A

to the empty collection yields -~  Adding A to zero yields A.
a collection of size A.
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INVERSE OF ADDITION

Taking a collection of size A
away from a collcection of sizec A —
yields the empty collection.

Subtracting A from A
yields zero.

These metaphors ground our most basic extension of arithmetic—from the
innate cardinal numbers to the natural numbers plus zero. As is well known,
this understanding of number still leaves gaps: It does not give a meaningful
characterization of 2 minus 5 or 2 divided by 3. To fill those gaps we nced fur-
ther entity-creating metaphors, e.g., metaphors for the negative numbers. We
will discuss such metaphors shortly.

At this point, we have cxplored only onc of the basic grounding metaphors
for arithmetic. There are three more to go. It would be unnecessarily repetitive
to go into each in the full detail given above. Instead, we will sketch only the
essential features of these metaphors.

Arithmetic As Object Construction

Consider such commonplaces of arithmetic as these: “Five is made up of two plus
three.” “You can factor 28 into 7 times 4.” “If you put 2 and 2 together, you get 4.”
How is it possible to understand a number, which is an abstraction, as being
“madc up,” or “composed of,” other numbers, which are “put together” using
arithmetic opcerations? What we are doing here is conceptualizing numbers as
wholes made up of - parts, The parts are other numbers. And the opcerations of
arithmetic provide the patterns by which the parts fit together to form wholes.
Here is the metaphorical mapping used to conceptualize numbers in this way.

ARITHMETIC Is OBJECT CONSTRUCTION

Source Domain Target Domain

OsjeCcT CONSTRUCTION ARITHMETIC
gak;)lzc(t)? (L(l,r(l)lrzs:ztixjxg of ultimate Numbers
The smallest whole object —  The unit (onc)
The size of the object —  The size of the number
Bigger —  Greater
Smaller —  Less
Acts of object construction —  Arithmetic operations

. The result of an arithmetic

A constructed object -

opceration
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A whole object — A whole number

Putting objccts together

with other objects to form —  Addition
larger objects

Taking smaller objects

from larger objects to form —  Subtraction

other objects

As in the case of Arithmetic Is Object Collection, this metaphor can be ex-
tended in two ways via metaphorical blending: fitting together/splitting up and
itcrated addition and subtraction.

THE FITTING TOGETHER/SrLITTING Ur EXTENSION

The fitting together of A parts
of size B to form a whole —
object of size C

Multiplication (A - B = C]

The splitting up of a whole
object of size C into A parts
of size B, a number that
corresponds in the blend to

~an object of size A, which
is the result

Division (C + B = A)

THE ITERATION EXTENSION

The repeated addition

(A times) of A parts of
size B to yield a whole
object of size C

—  Multiplication (A - B = C)

The repeated subtraction

of parts of size B from an
initial object of size C until
the initial object is exhausted.
The result, A, is the number of
times the subtraction occurs.

Division (C + B = A

Fractions are understood metaphorically in terms of the characterizations of di-
vision (as splitting) and multiplication (as fitting together}.
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FrRACTIONS

A part of a unit object {made
by splitting a unit object into -~
n parts)

A simple fraction (1/n)

An object made by fitting
together m parts of size 1/n — A complex fraction (m/n)

These additional metaphorical mappings yield an important entailment about
number based on a truth about objects.

If you split a unit object
into n parts and then you fit
the nn parts together again,
you get the unit object back.

If you divide 1 by n and multiply
—  the result by n, you get 1.
Thatis, 1/n-n=1.

In other words, 1/n is the multiplicative inverse of n.
As in t_he case of the object-collection metaphor, a special additional
mctaphor is necded to conceptualize zero. Since the lack of an object is not an

object, it should not, strictly speaking, correspond to a number. The zero object
metaphor is thus an artificial metaphor.

THE ZERO OBJECT METAFPHOR

The Lack of a Whole Object -  Zero

. The object-construction metaphor is intimately related to the object-collec-
tion metaphor. The reason is that constructing an object necessarily requires
collecting the parts of the object together. Every whole made up of parts is a col-
lectif)11 of the parts, with the added condition that the parts are assembled ac-
cording to a certain pattern. Since object construction is a morc specific version
of object collection, the metaphor of Arithmetic As Object Construction is a
more specific version of the metaphor of Arithmetic As Object Collection. Ac-
cordingly, the objcct-construction metaphor has all the inferences of the object-
f:ollection metaphor—the inferences we stated in the previous section. It differs
in that it is extended to characterize fractions and so has additional ihferences—
for example, (1/n) - n = 1.

It also has metaphorical entailments that characterize the decomposition of
numbers into parts.
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Whole objccts are composites Whole numbers are composites
of their parts, put together —. of their parts, put together by
by certain opcrations. certain operations.

It is this metaphorical entailment that gives rise to the ficld of number theory,
the study of which numbers can be decomposed into other numbers and opera-

tions on them.

The Measuring Stick Metaphor

The oldest (and still often used) method for designing buildings or physically
laying out dimensions on the ground is to use a measuring stick or string—a
stick or string taken as a unit. These are physical versions of what in geometry
are called line segments. We will refer to them as “physical scgments.” A dis-
tance can be measured by placing physical scgments of unit length end-to-end
and counting them. In the simplest case, the physical scgments are body parts:
fingers, hands, forearms, arms, feet, and so on. When we put physical scgments
end-to-end, the result is another physical segment, which may be a real or en-
visioned tracing of a line in space.

In a wide range of languages throughout the world, this concept is repre-
sentced by a classifier morpheme. In Japanese, for example, the word hon (liter-
ally, “a long, thin thing”) is used for counting such long, thin objects as sticks,
canes, pencils, candles, trecs, ropes, baseball bats, and so on—including, of
course, rulers and measuring tapes. Even though English does not have a single
word for the idea, it is a natural human concept.

THE MEASURING STICK METAPHOR

Turget Domain
ARITHMETIC

Source Domain
TuEi USE OF A MEASURING STICK

Physical segments {consisting

. . -»  Numbers
of ultimate parts of unit length)

The basic physical scgment — One

The length of the physical segment - The size of the number
Longer - Greater

Shorter —  Less

Acts of physical scgment placement —  Arithmetic operations
The result of an
arithmetic operation

A physical segment —
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putting physical scgments together

end-to-end with other physical

segments to form longer

physical scgments

—  Addition

Taking shorter physical segments
from larger physical scgments to  —  Subtraction
form other physical segments

As in the previous two metaphors, there are two ways of characterizing multi-
plication and division: fitting together/dividing up and itcrated addition and
subtraction.

THE FitTING TOGETHER/D1viDING Up EXTENSION

The fitting together of A physical

segments of length B to form a —  Multiplication (A - B = C)
line segment of length C

The splitting up of a physical

segment C into A parts of length B.

A is a number that corresponds ~  Division (C + B = A)

in the blend to a physical segment

of length A, which is the result.

TuE ITERATION EXTENSION

The repeated addition (A times)
of A physical segments of
length B to form a physical
segment of length C.

—  Multiplication (A - B = ()

The repeated subtraction of

physical segments of length B

from an initial physical scgment

of length C until nothing is left - Division (C + B = A
of the initial physical segment.

The result, A, is the number of

times the subtraction occurs.

As i o , .
s in the case of the object-construction metaphor, the physical scgment

metaphor can be extended to define fractions.
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FRACTIONS

A part of a physical segment [made

by splitting a single physical — A simple fraction (1/n)
scgment into n equal parts)

A physical segment made by

fitting together {end-to-end) — A complex fraction (m/n)
m parts of size 1/n

Just as in the objcct-construction metaphor, this metaphor needs to be ex-
tended in order to get a conceptualization of zero.

The lack of any physical segment —  Zero

Up to this point, the measuring stick metaphor looks very much like the object-
construction mectaphor: A physical segment can be seen as a physical object,
even if it is an imagined line in space. But physical segments arc very special
“constructed objects.” They are unidimcnsional and they are continuous. In
their abstract version they correspond to the line segments of Euclidean geom-
etry. As a result, the blend of the source and target domains of this metaphor
has a very special status. It is a blend of line (physical) segments with numbers
specifying their length, which we will call the Number/Physical Segment
blend.

Moreover, once you form the blend, a fateful entailment arises. Recall that
the metaphor states that Numbers Are Physical Segments, and that given this
metaphor you can characterize natural numbers, zero, and positive complex

fractions (the rational numbers) in terms of physical scgments. That is, for cvery.

positive rational number, this metaphor (given a unit length) provides a unique
physical segment. The mctaphorical mapping is unidirectional. It does not say
that for any line segment at all, there is a corresponding number.

But the blend of source and target domains goes beyond the metaphor itself
and has new entailments. When you form a blend of physical segments and
numbers, constrained by the measuring stick metaphor, then within the blend
there is a one-to-onc correspondence between physical scgments and numbers.
The fateful entailment is this: Given a fixed unit length, it follows that for every
physical segment there is a numbecr.

Now consider the Pythagorcan thcorem: Inm A2 + B2 = (%, let € be the
hypotenuse of a right triangle and A and B be the lengths of the other sides. Let
A=1and B =1. Then C? = 2. The Pythagoreans had already proved that C could
not be expressed as a fraction—that is, that it could not be a rational number—
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FIGURE 3.1 The measuring stick metaphor al-
lows one to form physical segments of particular
numerical lengths. In the diagram, taken from
Theodorus of Cyrene (fourth century B.C.), V2 is
constructed from the unit length 1 and a right tri-
angle. ¥3 is then constructed from the unit length
1, the previously constructed length V2, and a right
triangle. And so on. Without the mectaphor, the
lengths arc just lengths, not numbers.

a ratio of physical lengths corresponding to integers. They assumed that only
natural numbers and their ratios {the rational numbers) existed and that the
length C was not a number at all; they called it an incommensurable—without
ratio, that is, without a common measure.

But Eudoxus {c. 370 B.c.) observed, implicitly using the Number/Physical
Segment blend, that corresponding to the hypotenuse in this triangle there must
be a number: C = V2! This conclusion could not have been reached using num-
bers by themselves, taken literally. If you assume that only rational numbers
exist and you provce that Y2 cannot be a rational number, then it could just as
well follow (as it did initially for the Pythagoreans) that V2 does not exist—that
is, that 2 does not have any square root. But if, according to the Number/Phys-
ical Scgment blend, there must exist a number corresponding to the length of
every physical segment, then and only then must ¥2 exist as a number!

It was the measuring stick mectaphor and the Number/Physical Segment
blend that gave birth to the irrational numbers..

Arithmetic As Motion Along a Path

When we move in a straight line from one place to another, the path of our mo-
tion forms a physical segment—an imagined line tracing our trajectory. There
is a simple relationship between a path of motion and a physical segment. The
origin of the motion corresponds to one end of a physical scgment; the endpoint
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of the motion corresponds to the other end of the physical segment; and the
path of motion corresponds to the rest of the physical segment.

Given this correspondence between motions and physical segments, there is
a natural metaphorical correlate to the measuring stick metaphor for arith-
mctic, namcly, the mctaphor that Arithmetic Is Motion Along a Path. Here is
how that metaphor is stated.

ARITHMETIC Is MOTION ALONG A PATH

Source Domain Target Domain

MoTIiON ALONG A PaTH ARITHMETIC
Acts of moving along the path —  Arithmetic operations
. . The result of an
A point-location on the path -

arithmetic operation

The origin, the beginning

P < —  Zero
of the path
Point-locations on a path —  Numbers
The unit location, a point-location
S L One
distinct from the origin
Further from the origin than —  Greater than

Closer to the origin than Less than

S

Moving from a point-location A
away from the origin, a distance
that is the same as the distance
from the origin to a point-location B

Additionof Bto A

Moving toward the origin from A,
a distance that is the same as the —
distance from the origin to B

Subtraction of B from A

This metaphor can be cxtended to multiplication and division by means of it-
eration over addition and subtraction.

THE ITERATION EXTENSION

Starting at the origin, move A

times in the direction away from

the origin a distance that is -
the same as the distance from

the origin to B.

Multiplication (A - B = ()

g
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Starting at C, move toward the
origin distances of length B -
repcatedly A times.

Division (C + B = A)

FRACTIONS

Starting at 1, find a distance d
such that by moving distance d
toward the origin repeatedly

a1 times, you will reach the origin.
1/n is the point-location at
distance d from the origin.

— A simple fraction (1/n)

Point-location reached moving
from the origin a distance 1/n -
repcatedly m times.

A complex fraction (m/n)

As we mentioned, the Arithmetic Is Motion metaphor corresponds in many ways
to the measuring stick metaphor. But there is one major difference. In all the other
metaphors that we have looked at so far, including the measuring stick metaphor,
there had to be some entity-creating metaphor added to get zero. However, when
numbers are point-locations on a line, the origin is by its very nature a point-
location. When we designate zero as the origin, it is already a point-location.

Morcover, this metaphar provides a natural extcnsion to negative numbers—
let the origin be somewhere on a pathway cxtending indcfinitely in both direc-
tions. The negative numbers will be the point-locations on the other side of zero
from the positive numbers along the same path. This extension was explicitly
made by Rafael Bombeclli in the second half of the sixteenth century. In
Bombelli's extension of the point-location metaphor for numbers, positive num-
bers, zero, and negative numbe, 3 are all point-locations on a line. This made it
commonplace for European mathematicians to think and speak of the concept
of a number Iying between two other numbers—as in zero lies between minus
one and one. Conceptualizing all {real) numbers metaphorically as point-loca-
tions on the same line was crucial to providing a uniform understanding of
number. These days, it is hard to imagine that there was ever a time when such
a metaphor was not commonly accepted by mathematicians!

The understanding of numbers as point-locations has come into our language
in the following cxpressions:

How close are these two numbers!?
37 is far away from 189,712
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4.9 is near 5.

The result is around 40.

Count up to 20, without skipping any numbers.
Count backward from 20.

Count to 100, starting at 20.

Name all the numbers from 2 to 10.

The linguistic examples are important here in a number of respects. First,
they illustrate how the language of motion can be recruited in a systematic way
to talk about arithmetic. The conceptual mappings characterize what is sys-
tematic about this use of language. Second, these usages of language provide ev-
idence for the existence of the conceptual mapping—cvidence that comes not
only from the words but also from what the words mean. The metaphors can be
scen as stating generalizations not only over the usc of the words but also over
the inference patterns that these words supply from the source domain of mo-
tion, which are then used in reasoning about arithmetic.

We have now completed our initial description of the four basic grounding
metaphors for arithmetic. Let us now turn to the relation between arithmetic

and elementary algebra.

The Fundamental Metonymy of Algebra

Consider how we understand the sentence “When the pizza delivery boy comes,
give him a good tip.” The conceptual frame is Ordering a Pizza for Delivery.
Within this frame, there is a role for the Pizza Delivery Boy, who delivers the
pizza to the customer. In the situation, we do not know which individual will
be delivering the pizza. But we need to conceptualize, make inferences about,
and talk about that individual, whoever he is. Via the Role-for-Individual
metonymy, the role “pizza delivery boy” comes to stand metonymically for the
particular individual who fills the role—that is, who happens to deliver the
pizza today. “Give him a good tip” is an instruction that applies to the individ-
ual, whoever he is.

This everyday conceptual metonymy, which exists outside mathematics, plays
a major rolc in mathematical thinking: It allows us to go from concrete (case by
case) arithmetic to general algebraic thinking. When we write “x + 2 =7,” x is our
notation for a role, Number, standing for an individual number. “x + 2 = 7" says
that whatever number x happens to be, adding 2 to it will yield 7.

This everyday cognitive mechanism allows us to state general laws like
“x +y =y + x,” which says that adding a number y to another number x yiclds
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the same result as adding x to y. It is this metonymic mechanism that makes
the discipline of algebra possible, by allowing us to rcason about numbrm1 o
other cntities without knowing which particular cntities we are talking a(;rs (Zr
Clear examples of how we unconsciously use and master the Fundame?:tl 1
Mctonymy of Algebra are provided by many passages in this very chapter. Iy chi
every time we have written (and every time you have read and llﬂdCI‘StO()L:” mlex:
pression such as “If collection A is the same size as collection B,” or “addin‘ Zero
to A yields A" we have been implicitly making usc of the Fundanfenta]
Metonymy of Algebra. It is this cognitive mechanism that permits general proofs
in mathematics—for example, proofs about any number, whatever it is.

The Metaphorical Meanings of One and Zero

The four grounding metaphors mentioned so far—Object Collection, Object
Construction, the Measuring Stick, and M_th_i_gg;vAlgi a Linc—’cbnt;;n
metaphorical characterizations of zero and one. Iointly; "these_;{e*t:phors char-
acterize the symbolic meanings of zero and one. In the collection metaphor
zero is the empty collection. Thus, zero can connote amgge\s;;thc obiecti
construction metaphor, zero is either the lack of an object, the absencc of an ob-
ject or, as a result of an operation, the destruction of an object. Thus, zcro can
mean _ngq!f;,. absence, or destruction. In the measuring stick meta]:;l;rcr Zero
stands for the ultimate in smallness, the lack of ;;—b_l;;_s:ﬁ"lsegmcnt at ,all. In
th? c_r‘_p‘o‘tiql}‘l_netaphor, Zero is 'tAHéE)r'igin of motion; hence, zero can designate an
origin. Hence, zero, in everyday language, can symbolically denote emptiness
nothingness, lack, absence, destruction, ultimate smallncss, and origin ,
In the collection metaphor, one is the collection with a lone rncmBer and
hence, symbolizes individuality and separaleness from others. In the ohject:
construction metaphor, one is a whole number and, by virtue of this sigﬁiﬁcs
lWholeness,'um'ty, and integrity. In the measuring stick metaphor, olnc is the
'ength spec.lfying the unit of measure. In this case, onc signifies a standard. And
in the motion metaphor, one indicates the first step in a movement. Hence, it
symbolizes a beginning. Taken together, thesc metaphors give one thé qylnl)(;lic
values of individuality, scparateness, wholeness, unity, integrity, a ;t'lncl'ard
and a beginning. Herc are somc examples. / o
. Bcg'lrming: One small step for a man; one great step for mankind.
Unity: E pluribus unum (“From many, one”).
Integrity: Fred and Ginger danced as one.
Origin: Let's start again from zero.
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e Emptiness: There's zero in the refrigerator.

¢ Nothingness: | started with zero and made it to the top.
e Destruction: This nullifies all that we have donc.

e Lack (of ability): That new quartcrback is a big zero. 4

These grounding metaphors therefore explain why zero and one, Which are
literally numbers, have the symbolic values that they have. But t.hat is not the Where DO the L‘\WS
real importance of these metaphors for mathematics. The real 1¥np0rtance_ is
that they explain how innate arithmetic gets extended systematically to give f A . h . C F o
arithmetic distinctive properties that innate arithmetic does not have. Beca}lse O ["[[ menc ome frrom:-
of their importance we will give the four grounding metaphors for arithmetic a
name: the 4Gs. We now turn to their implications.

The Significance of the 4Gs

Innate arithmetic, as we saw, is extremecly limited: It includes only subitizing,
addition, and subtraction up to the number 4 at most. The 4Gs each arise via a
conflation in everyday experience. Take object collection. Young children form
small collections, subitize them, and add and take away objects from them, au-
tomatically forming additions and subtractions within the subitizable range.
The same is true when they make objects, take steps, and later use sticks, fin-
gers, and arms to estimate size. These correlations in cveryday experience be-
tween innate arithmetic and the source domains of the 4Gs give rise to the 4Gs.
The metaphors—at least in an automatic, unconscious form arise naturally
from such conflations in experience.

The significance of the 4Gs is that they allow human beings, who have an in-
nate capacity to form mctaphors, to extend arithmetic beyond the small
amount that we are born with, while prescrving the basic properties of innate
arithmetic. The mechanism is as follows: In cach contlation of innatc arith-
metic with a source domain, the inferences of innate arithmetic fit those of the
source domain (say, object collection). Just as 3 -1 = 2 abstractly, if you take one
object from a collection of three objects, you get a collection of two objects. In
other words, the inferences of abstract innate arithmetic hold when it is con-
ceptually blended with object collection.
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