
Under consideration for publication in J. Functional Programming 1

A Monadic Framework for Delimited

Continuations

R. Kent Dybvig Simon Peyton Jones Amr Sabry∗

Indiana University Microsoft Research Indiana University

Abstract

Delimited continuations are more expressive than traditional abortive continuations and
they apparently require a framework beyond traditional continuation-passing style (CPS).
We show that this is not the case: standard CPS is sufficient to explain the common control
operators for delimited continuations. We demonstrate this fact and present an implemen-
tation as a Scheme library. We then investigate a typed account of delimited continuations
that makes explicit where control effects can occur. This results in a monadic framework
for typed and encapsulated delimited continuations, which we design and implement as a
Haskell library.

1 Introduction

Continuation-passing style (CPS) and its generalisation to monadic style are the

standard mathematical frameworks for understanding (and sometimes implement-

ing) control operators. Starting in the late eighties a new class of control opera-

tors were introduced that apparently went “beyond continuations” (Felleisen et al.,

1987b; Felleisen, 1988; Hieb & Dybvig, 1990; Danvy & Filinski, 1990) and “be-

yond monads” (Wadler, 1994). These control operators permit the manipulation

of delimited continuations that represent only part of the remainder of a compu-

tation, and they also support the composition of continuations, even though such

operations are not directly supported by standard continuation models (Strachey

& Wadsworth, 1974). Delimited continuations are also referred to as subcontinua-

tions (Hieb et al., 1994), since they represent the remainder of a subcomputation

rather than of a computation as a whole. We use the terms interchangeably in this

article.

Without the unifying frameworks of CPS or monads, it is difficult to understand,

compare, implement, and reason about the various control operators for delimited

continuations, their typing properties, and logical foundations. In this article, we

design such a unifying framework based on continuation semantics, then generalise

it to a typed monadic semantics. We illustrate this framework with a basic set of

∗ Supported by National Science Foundation grant number CCR-0196063, by a Visiting Re-
searcher position at Microsoft Research, Cambridge, U.K., and by a Visiting Professor position
at the University of Genova, Italy.

2 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

control operators that can be used to model the most common control operators

from the literature (Section 2).

We give both an operational semantics and an abstract and expressive continua-

tion semantics for these operators (Section 3). With refinements to the continuation

semantics (Section 3.4), we demonstrate that any program employing delimited

continuations can be evaluated via a single, completely standard CPS translation,

when provided with appropriate meta-arguments and run-time versions of our oper-

ators that manipulate these arguments. The refined semantics also establishes that

the implementation of delimited continuations is independent of the representation

of the undelimited partial continuations between delimiters. Partial continuations

might be represented, for example, by CPS functions, sequences of individual stack

frames, or stack segments containing contiguous blocks of stack frames as in Hieb et

al.’s efficient implementation of traditional continuations (1990).

We then factor the continuation semantics into two parts: a translation into a

monadic language that specifies the order of evaluation, and a library that imple-

ments the control operators themselves (Section 4). This semantics can easily be

used to guide a straightforward implementation in Scheme, as we show in Section 5.

We then tackle the problem of typing delimited continuations. Building on the

monadic semantics, we give a typed account of the delimited continuation operators

that makes explicit where control effects can occur, and where they cannot (Sec-

tion 6). In particular, our design builds on ideas by Thielecke (2003), Launchbury

and Peyton Jones (1995) to offer statically checked guarantees of encapsulation of

control effects. We introduce an operator runCC that encapsulates a computation

that uses control effects internally but is purely functional when viewed externally.

Once the monadic effects have been made apparent by the first translation, the

control operators can be implemented as a typed library. This offers the opportu-

nity to prototype design variations—of both implementation approach and library

interface—in a lightweight way. We make this concrete, using Haskell as an imple-

mentation of the monadic language, by providing three different prototype imple-

mentations of the control operators (Section 7). The first of these implementations is

suitable for low-level manipulations of the stack, the second suitable for a CPS com-

pilation strategy, and the third suitable for a language that provides access to the

entire abortive continuation using an operator like call-with-current-continuation

(callcc for short) or Felleisen’s C operator (1987b). The library implementation

is itself strongly typed (except for a function that compares the internal repre-

sentations of the control delimiters as explained in Section 7). The types helped

enormously when writing the library’s rather tricky code.

The Scheme and Haskell code described in the article is available at http://

www.cs.indiana.edu/~sabry/papers/CC_code.tar.gz under the MIT License.

2 Control Operators

Many operators for delimited control have been described in the literature. We

take no position in this article on which is best, but instead adopt a set of four

control operators that can be used to construct a wide variety of delimited control

A Monadic Framework for Delimited Continuations 3

abstractions. In this section, we describe these building blocks and show how they

can be used to model the most common delimited control operators.

2.1 Our Operators

The operators in our family are newPrompt, pushPrompt, withSubCont, and push-

SubCont. We explain them in the context of a conventional, call-by-value λ-calculus:

(Variables) x, y, . . .

(Expressions) e ::= x | λx.e | e e

| newPrompt | pushPrompt e e

| withSubCont e e | pushSubCont e e

The semantics is given formally in Section 3. Intuitively the operators behave as

follows:

• The newPrompt operator creates a new prompt, distinct from all existing

prompts.

• The pushPrompt operator evaluates its first operand and uses the resulting

value, which must be a prompt, to delimit the current continuation during

the evaluation of its second operand.

• The withSubCont operator evaluates both of its operands, yielding a prompt

p and a function f . It captures a portion of the current continuation back to

but not including the activation of pushPrompt with prompt p, aborts the

current continuation back to and including the activation of pushPrompt, and

invokes f , passing it an abstract value representing the captured subcontinua-

tion. If more than one activation of pushPrompt with prompt p is still active,

the most recent enclosing activation, i.e., the one that delimits the smallest

subcontinuation, is selected.

• The pushSubCont operator evaluates its first operand to yield a subcontinu-

ation k, then evaluates its second operand in a continuation that composes k

with the current continuation.

While newPrompt and withSubCont can be treated as functions, the operators

pushPrompt and pushSubCont must be treated as syntactic constructs since they

exhibit a non-standard evaluation order.

Example: Illustrating the operators

The following simple example illustrates the operators in a language augmented

with conditionals, arithmetic, and constants:

(λp. 2 + pushPrompt p

if (withSubCont p

(λk. (pushSubCont k False) + (pushSubCont k True)))

then 3

else 4)

newPrompt

4 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

The fresh prompt p bound by the outer λ-expression is pushed just prior to the eval-

uation of the if expression, with the outer application of + pending. The application

of withSubCont captures and aborts the subcontinuation back to the prompt, so

the entire pushPrompt form reduces to the body of the inner λ-expression. Thus,

we are left with:

2 + ((pushSubCont k False) + (pushSubCont k True))

where the subcontinuation k is, in essence, a function that accepts a boolean value

and returns one of the two values 3 or 4, i.e.:

λb. if b then 3 else 4

The first pushSubCont supplies False to the subcontinuation, yielding 4, and the

second supplies True, yielding 3, so the entire expression reduces to:

2 + 4 + 3

and the final answer is, of course, 9.

2.2 Relationship with Existing Operators

Traditional continuations represent the entire rest of the computation from a given

execution point, and, when reinstated, they abort the context of their use. Our

operators can access the entire continuation only if a top-level prompt is pushed

before the execution of a program, which is easily done by running the program in

the context of a top-level binding for a prompt created by newPrompt:

run e = (λp0.pushPrompt p0 e) newPrompt

Assuming this has been done, we can define a withCont operator to manipulate

(i.e., capture and abort) the entire continuation via this prompt:

withCont e = withSubCont p0 (λk.pushPrompt p0 (e k))

Because of the ease with which a top-level prompt can be introduced in the source

language, we do not include a built-in top-level prompt as part of our model. Doing

so might even be considered a poor design from a software-engineering perspective,

since a built-in top-level prompt gives subprograms possibly undesirable control

over the main program. Furthermore, if the operators are typed (as they will be

shortly), it is not clear what the type of the top-level prompt would be.

Given withCont, we can model Scheme’s call-with-current-continuation (here ab-

breviated callcc), which captures the current continuation, encapsulates it into an

escape procedure, and passes this escape procedure to its argument:

callcc = λf.withCont (λk.pushSubCont k (f (reifyA k)))

where:

reifyA k = λv.abort (pushSubCont k v)

abort e = withCont (λ .e)

When applied to a function f , callcc captures and aborts the entire continuation k

A Monadic Framework for Delimited Continuations 5

using withCont, uses pushSubCont to reinstate a copy of k, and applies f to the

escape procedure (reifyA k). When applied to a value v, this escape procedure aborts

its entire context, reinstates k as the current entire continuation, and returns v to k.

Felleisen’s C (1987a) is a variant of callcc that aborts the current continuation

when it captures the continuation. It can be modelled similarly:

C = λf.withCont (λk.f (reifyA k))

Like continuations reified by callcc, a continuation reified by C aborts the current

continuation when it is invoked. In contrast, the operator F (Felleisen & Friedman,

1987; Felleisen et al., 1987b) also captures and aborts the entire continuation, but

the reified continuation is functional, or composable, as with our subcontinuations.

It can be modelled with a non-aborting reify operator:

F = λf.withCont (λk.f (reify k))

where:

reify k = λv.pushSubCont k v

When prompts appear other than at top level, they serve as control delim-

iters (Felleisen et al., 1987a; Felleisen, 1988; Danvy & Filinski, 1990) and allow

programs to capture and abort a subcontinuation, i.e., a continuation representing

part of the remainder of the computation rather than all of it. The first control

delimiter to be introduced was Felleisen’s # (prompt), which delimits, i.e., marks

the base of, the continuation captured and aborted by F(Felleisen et al., 1987a;

Felleisen, 1988). The addition of first-class control delimiters was motivated by

both practical and semantic considerations: in fact, control delimiters appear nec-

essary for full abstraction in any denotational model of continuations (Sitaram &

Felleisen, 1990b; Sitaram & Felleisen, 1991).

In the presence of prompts, the operator F captures and aborts the continuation

up to but not including the closest enclosing prompt. This means that the prompt

remains in place after a call to F , and the captured subcontinuation does not

include the prompt. Variants of F have been introduced since that do not leave

behind the prompt when a subcontinuation is captured, or do include the prompt

in the captured subcontinuation. For example, the reset and shift operators of

Danvy and Filinski (1990) are similar to # and F , but shift both leaves behind

the prompt when a subcontinuation is captured and includes the prompt in the

captured subcontinuation.

To illustrate these differences, we introduce a classification of control operators in

terms of four variants of F that differ according to whether the continuation-capture

operator (a) leaves behind the prompt on the stack after capturing the continuation

and (b) includes the prompt at the base of the captured subcontinuation:

−F− neither leaves the prompt behind nor includes it in the subcontinuation;

this is like our operator withSubCont and cupto (Gunter et al., 1995).
−F+ does not leave the prompt behind, but does include it in the subcontinua-

tion; this is like a spawn controller (Hieb & Dybvig, 1990).

6 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

+F− leaves the prompt behind, but does not include it in the subcontinuation;

this is the delimited F operator (Felleisen et al., 1987a).
+F+ both leaves the prompt behind and includes it in the subcontinuation; this

is the shift operator (Danvy & Filinski, 1990).

In all cases, the traditional interface is that the captured subcontinuation is reified

as a function. Using our primitives and a single prompt #, which can be established

in a manner similar to p0 above, these operators can be defined as follows:

−F− = λf.withSubCont # (λk.f (reify k))
−F+ = λf.withSubCont # (λk.f (reifyP # k))
+F− = λf.withSubCont # (λk.pushPrompt # (f (reify k)))
+F+ = λf.withSubCont # (λk.pushPrompt # (f (reifyP # k)))

where:

reify k = λv.pushSubCont k v

reifyP p k = λv.pushPrompt p (pushSubCont k v)

The definitions of +F− and +F+ are consistent with the “folklore theorem” that

shift can be simulated using F by wrapping each application of the continuation

with a prompt (Biernacki & Danvy, 2006): the only difference in their definitions

is that the application of the reified continuation uses an extra pushPrompt in the

case of +F+.

Each variant of F has merits. +F− and −F− produce purely functional subcontin-

uations that do not reinstate a prompt; these subcontinuations can be understood

as ordinary functions. With −F+, the prompt is attached to and only to a given

subcontinuation, so that the subcontinuation represents a self-contained subcompu-

tation. +F+ has a close relationship with traditional CPS and behaves in a manner

that can be understood in terms of that relationship. +F− and +F+ both encapsu-

late all effects within their dynamic extent, since the prompt remains even after a

subcontinuation is captured.
+F− and −F+ share an intuitively appealing identity property, which is that

capturing and immediately reinstating a subcontinuation is effectively a no-op. In

other words the following two equations are sound with respect to the semantics of

the operators:
+F− (λk.kv) = v if k 6∈ FV(v)
−F+ (λk.kv) = v if k 6∈ FV(v)

where FV(e) gives the free variables of term e. In the former case, the prompt

is left behind when the continuation is captured, and in the latter, the prompt

is reinstated when the continuation is invoked. The corresponding identity does

not hold for −F−, since capturing and reinstating a subcontinuation results in the

net elimination of one prompt. The same operation with +F+ results in the net

introduction of one prompt. In a system supporting only +F+, however, the extra

prompt makes no difference denotationally, and pairs of adjacent prompts can be

collapsed into one prompt to avoid build-up of the control stack operationally.

We have chosen −F− semantics for our building-block operator withSubCont

because the −F− semantics easily models each of the others with the trivial addition

A Monadic Framework for Delimited Continuations 7

of pushPrompt forms where necessary to leave behind or reinstate a prompt, as

demonstrated by the definitions above. While Shan (2004) and Kiselyov (2005)

have demonstrated that one can use the +F+ semantics (in the form of shift) to

implement the semantics of −F−, −F+, and +F−, and their technique could be

adapted to work with +F− or −F+ as the basis operator, the technique requires a

complex syntactic redefinition of the prompt operator. This additional complexity

makes these other variants less suitable as basic building blocks for the variety of

proposed control abstractions.

A natural extension of the framework with a single fixed prompt is to allow

multiple prompts. Some proposals generalise the single prompt by allowing hierar-

chies of prompts and control operators, like resetn and shiftn (Danvy & Filinski,

1990; Sitaram & Felleisen, 1990a). Other proposals instead allow new prompts to

be generated dynamically, like spawn (Hieb & Dybvig, 1990; Hieb et al., 1994). In

such systems, the base of each subcontinuation is rooted at a different prompt, and

each generated prompt is associated with a function that can be used for accessing

the continuation up to that prompt. This is more convenient than either single

prompts or hierarchies of prompts and allows arbitrary nesting and composition of

subcontinuation-based abstractions. In our framework, spawn is defined as follows:

spawn = λf.(λp.pushPrompt p (f (−F+ p))) newPrompt
−F+ = λp.λf.withSubCont p (λk.f (reifyP p k))

where we have generalised the definition of −F+ to take a prompt argument p

instead of referring to the fixed prompt #. Thus, spawn generates a new prompt,

pushes this prompt, creates a control operator that can access this prompt, and

makes this specialised control operator available to its argument f .

Moreau and Queinnec (1994) proposed a pair of operators, marker and call/pc,

based on an earlier mechanism by Queinnec and Serpette (1991), that provide

functionality similar to that of spawn. The marker operator generates a new prompt

and pushes it, and call/pc captures and aborts the subcontinuation rooted at a given

prompt. The key difference from spawn is that the continuation reified by call/pc

is stripped of all intervening prompts, even though they are necessarily unrelated

to the prompt at the base. We could model this behaviour in our system with the

addition of a strip operator as follows:

marker e = (λp.pushPrompt p (e p)) newPrompt

call/pc = λp.λf.withSubCont p (λk.f (reify (strip k)))

Since captured continuations are stripped of their prompts, this system ensures

that prompts can be pushed only explicitly, by pushPrompt, never implicitly by

reinstatement of a subcontinuation. Such an operator is easily added to our system

given the implementation approach we present later in this article. We do not do

so, however, because the stripping behaviour of call/pc is unique in the world of

control operators and, in our opinion, not useful, since it inhibits the nesting of

control abstractions.

Gunter et al. (1995) proposed a set of three operators that provide functionality

similar to spawn but make the creation and use of prompts explicit: new prompt

8 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

creates a new prompt, set p in e pushes the prompt p during the execution of e,

and cupto p as x in e captures and aborts the current continuation up to prompt

p, then evaluates e within a binding of x to a function representing the captured

continuation. In our framework, these operators can be defined as follows.

new prompt = newPrompt

set p in e = pushPrompt p e

cupto p as x in e = withSubCont p (λk.(λx.e) (λv.pushSubCont k v))

In addition to minor syntactic details, our framework differs from the one by

Gunter et al. in the representation of continuations and how they are used. In

Gunter et al.’s framework, continuations are represented as functions; in ours, the

representation is left abstract. More significantly, in Gunter et al.’s framework, a

continuation is always applied to a value, which effects an immediate return to the

continuation of the set form that captured the topmost segment of the continua-

tion. Our pushSubCont operator is more general in that it permits the evaluation

of an arbitrary expression in the context of the captured continuation, obviating

the awkward protocol of returning a thunk to be thawed in the context of the

continuation (Dybvig & Hieb, 1989).

Each control abstraction covered above supports fewer operators than our set,

which has four, so it is natural to wonder whether four is actually the “right” num-

ber. In fact, any system that supports dynamic prompt generation must provide

mechanisms for (1) creating a delimiter, (2) delimiting the current continuation, (3)

capturing a continuation, (4) aborting a continuation, and (5) reinstating a contin-

uation. Systems that support a single delimiter need only provide mechanisms 2–5,

and systems that do not support delimiters at all need only provide mechanisms 3–

5. Some mechanisms may be combined in a single operator. For example, all of the

abstractions described above, except callcc, combine mechanisms 3 and 4, callcc

combines mechanisms 4 and 5, and spawn combines mechanisms 1 and 2. Some

mechanisms may be performed implicitly by functions created by the abstraction.

For example, all of the abstractions described above, including callcc, embed cap-

tured continuations in functions that perform the mechanism for reinstating the

embedded continuation implicitly when invoked; spawn also embeds the prompt in

a function that aborts and captures a continuation when invoked. Following most

of the other abstractions, we have chosen to combine mechanisms 3 and 4, in our

withSubCont operator, so that the portion of the current continuation represented

by a captured subcontinuation need not exist in multiple places at the same time.

This choice results in no loss of expressiveness, since it is a trivial matter to im-

mediately reinstate the captured subcontinuation. We have chosen to make each of

the other mechanisms explicit and separate, for the sake of simplicity and expres-

siveness, and to avoid the embedding of continuations and prompts in functions

so that we can leave their representations abstract. While not necessarily the best

choices for higher-level control abstractions, we believe that these are appropriate

choices for a set of control-abstraction building blocks.

A Monadic Framework for Delimited Continuations 9

3 Operational and Continuation Semantics

In this section, we develop both an operational semantics and a continuation seman-

tics for the call-by-value λ-calculus embedding of our operators. We review the CPS

semantics traditionally used for simple control operators like callcc and explain why

it is insufficient for delimited continuations (Section 3.1). We then discuss why nei-

ther of the two standard approaches to extending the CPS translation for delimited

continuations is entirely satisfactory for our purposes (Section 3.2). Thus motivated,

we develop the semantics in both an operational style and a continuation-passing

style in Sections 3.3 and 3.4. We conclude the section by establishing the correctness

of the CPS semantics with respect to the operational semantics.

3.1 Standard CPS Semantics

For the pure call-by-value λ-calculus, the CPS semantics is defined as follows. The

map P [[.]] takes an expression in the call-by-value calculus of Section 2.1 (without

the control operations for now) and returns an expression in a conventional target

language. More precisely, the target language of the CPS translation is a call-by-

name λ-calculus with the usual theory consisting of the β and η axioms. The result

of the translation is always a λ-expression that expects a continuation and returns

the final answer of the program:

P [[v]] = λκ.κ V [[v]]

P [[e1e2]] = λκ.P [[e1]] (λf.P [[e2]] (λa.f a κ))

V [[x]] = x

V [[λx.e]] = λx.λκ′.P [[e]] κ′

The translation of a complete program is given by P [[e]] κ0, where κ0 is the initial

continuation λv.v. The translation introduces variables that are assumed not to

occur free in the input expression.

Adding callcc to the pure fragment is straightforward:

P [[callcc e]] = λκ.P [[e]] (λf.f (λx.λκ′.κ x) κ)

After evaluating its operand, callcc applies the resulting function f to a function

encapsulating the captured continuation κ, in the same continuation. If the function

encapsulating κ is applied to a value, it reinstates the captured continuation by

passing the value to κ, discarding the current continuation κ′.

Handling even a single prompt is not so straightforward. What we want is a

way to split a continuation κ into two pieces at the prompt. The continuation is

represented as a pure function, however, so splitting it is not an option. What

we need instead is a richer representation of the continuation that supports two

operations: κ
p
↑ representing the portion of κ above (younger than) the prompt p,

and κ
p
↓ representing the portion of κ below (older than) the prompt p. We review in

the next section two ideas that have been previously used to express such operations

on continuations.

10 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

3.2 Traditional Solutions

Two basic approaches have been proposed to deal with the fact that the represen-

tation of continuations as functions is not sufficiently expressive:

1. Abstract continuation semantics (Felleisen et al., 1988). This approach devel-

ops an algebra of contexts that is expressive enough to support the required

operations on continuations. From the algebra, two representations for con-

tinuations are derived: one as a sequence of frames, and the other as objects

with two methods for invoking and updating the continuation. In the first

representation, the operations κ
p
↑ and κ

p
↓ can be realised by traversing the

sequence up to the first prompt and returning the appropriate subsequence,

and the composition of continuations can be implemented by appending the

two corresponding sequences.

2. Metacontinuations (Danvy & Filinski, 1990). Since we must split the contin-

uation above and below the prompt, we can simply maintain two separate

parameters to the CPS semantics. The first parameter κ corresponds to the

portion of the evaluation context above the first prompt, and the second pa-

rameter γ corresponds to the portion of the evaluation context below the first

prompt. The parameter κ is treated as a partial continuation, i.e., a function

from values to partial answers that must be delivered to the second param-

eter γ to provide final answers. In other words, given the two continuation

parameters κ and γ and a value v one would compute the final answer using

γ(κv). If the nested application is itself expressed in CPS as κvγ, it becomes

apparent that γ is a continuation of the continuation, or in other words a

metacontinuation.

Unfortunately, neither approach is ideal for our purposes. The metacontinuation

approach leads to control operators with the +F+ semantics, from which the other

semantic variants may be obtained only with difficulty, as discussed in Section 2.

While this is suitable for shift and reset, which exhibit the +F+ semantics precisely

because they are defined via the metacontinuation approach, it is not suitable for

our withSubCont operator, which exhibits the more basic −F− semantics by design.

The standard metacontinuation approach also performs two CPS conversion passes:

a nonstandard one that exposes the continuation but leaves behind non-tail calls

representing the metacontinuation, followed by a standard one that exposes the

metacontinuation. Dynamically generated prompts pose additional problems. A

static hierarchy of reset and shift operators can be implemented via additional

CPS translation passes (Danvy & Filinski, 1990), but this technique does not extend

to dynamically generated prompts. It is possible to handle dynamically generated

prompts with an adaptation of the reset handlers of Sitaram and Felleisen (1990a)

or Shan (2004), but doing so further complicates these mechanisms (Oleg Kiselyov,

personal communication, 2005).

On the other hand, the algebra of contexts is unnecessarily concrete, i.e., not

truly abstract, despite the name “abstract continuation semantics.” We would like

to use the semantics not only as a specification for what programs mean, but also

A Monadic Framework for Delimited Continuations 11

as a stepping stone to an implementation. The algebra of contexts over-specifies

this implementation. For example, although a common run-time representation of

continuations is indeed as a stack of frames, it is not the only one. We would prefer

a model that allows control operators to be built on top of any existing abstraction

of continuations, for example, on top of a CPS intermediate language representing

continuations as functions, or on top of a language with an implementation of callcc

that gives access to some unknown representation of the continuation. Furthermore,

even if the implementation does use a stack of frames, the semantics suggests that an

implementation must loop through these frames individually (Gasbichler & Sperber,

2002), even though prompts may be many frames apart. We would like the cost

of a control operation to be proportional to the number of control points that are

involved, not the (potentially much larger) number of frames.

3.3 Operational Semantics

It turns out that we can strike a middle ground that provides the expressiveness of

the sequence of frames approach while leaving the representation of continuations

truly abstract. We do this by adopting features of both of the traditional approaches

to modelling delimited continuations. From the algebra of contexts, we borrow the

representation of a continuation as a sequence, while from the metacontinuation

approach, we borrow the clear delineation between partial continuations and meta-

continuations and the abstract representation of partial continuations. In essence,

we implement the algebra of contexts in a more abstract way, with the concrete

subsequences of frames between control delimiters replaced by abstract partial con-

tinuations. From another perspective, we implement the metacontinuation approach

with the abstract metacontinuation replaced by a sequence of partial continuations

and delimiters. A similar approach was first used by Moreau and Queinnec (1994)

in a semantics for marker and call/pc, although it was not developed as fully as we

develop it here.

We begin by formalising the idea using an abstract machine that manipulates

syntactic representations of continuations. In order to express the intermediate re-

sults of evaluation as syntactic terms, we extend the set of expressions with prompt

values p represented as integers, with contexts D representing delimited (partial)

continuations, and with sequences E of prompts and delimited contexts representing

the rest of the continuation beyond the first delimiter, i.e., the metacontinuation.

None of these constructs may appear in source programs.

(Prompt names) p, q, . . . ∈ N

(Values) v ::= x | λx.e | p | E

(Delimited Contexts) D ::= � | D e | v D

| pushPrompt D e | pushSubCont D e

| withSubCont D e | withSubCont p D

(Sequences) E ::= [] | p : E | D : E

The operational semantics rewrites configurations of the form (e, D, E, p) where e

is the current expression of interest, D is the current context (up to but not including

12 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

Group I. Searching for a redex:

(ee′, D, E, q) 7−→ (e, D[� e′], E, q) e non-value
(ve, D, E, q) 7−→ (e, D[v �], E, q) e non-value

(pushPrompt e e′, D, E, q) 7−→ (e, D[pushPrompt � e′], E, q) e non-value
(withSubCont e e′, D, E, q) 7−→ (e, D[withSubCont � e′], E, q) e non-value
(withSubCont p e, D, E, q) 7−→ (e, D[withSubCont p �], E, q) e non-value

(pushSubCont e e′, D, E, q) 7−→ (e, D[pushSubCont � e′], E, q) e non-value

Group II. Executing a redex:

((λx.e)v,D, E, q) 7−→ (e[v/x], D, E, q)
(newPrompt, D, E, q) 7−→ (q, D, E, q + 1)

(pushPrompt p e, D, E, q) 7−→ (e, �, p : D : E, q)
(withSubCont p v, D, E, q) 7−→ (v (D : Ep

↑), �, Ep

↓ , q)

(pushSubCont E′ e, D, E, q) 7−→ (e, �, E′
++(D : E), q)

Group III. Returning a value:

(v, D, E, q) 7−→ (D[v], �, E, q) D 6= �

(v, �, p : E, q) 7−→ (v, �, E, q)
(v, �, D : E, q) 7−→ (v, D, E, q)

Fig. 1. Operational semantics

any pushed prompts), E is the rest of the context represented as a sequence, and

p is a global counter used to generate new prompt values. The empty delimited

context, sometimes called a “hole,” is denoted using the box �; sequences are

represented using the Haskell syntactic conventions for lists with [] representing

the empty sequence, : representing cons, and ++ representing append. The notation

D[e] denotes the result of replacing the hole of the context D with the expression e.

In order to split a sequence at a particular prompt, we use the operations E
p
↑ and

E
p
↓ specified as follows. If E contains a pushed prompt p then it can be uniquely

decomposed to the form E ′++(p : E′′) with p 6∈ E′, then E
p
↑ = E′ and E

p
↓ = E′′.

In other words, E
p
↑ gives the subsequence before the first occurrence of p, and E

p
↓

gives the subsequence after the first occurrence of p.

The evaluation of a closed expression e starts with rewriting of the configuration

(e, �, [], 0) and terminates with a final configuration of the form (v, �, [], q). The

rewriting rules in Figure 1 are organised in three groups explained below.

The first group of reductions simply builds the context D according to the order

of evaluation specified by the definition of contexts. For example, in a function

application, the evaluation context v D specifies that rewrites take place inside

the argument only if the function is a value v, thereby specifying that the func-

tion must be evaluated before the argument. Similar contexts for pushPrompt and

withSubCont ensure that their first (prompt-valued) argument is evaluated first.

None of the rules in this first group uses the components E or q of the configuration.

The second group of reductions specifies the actual actions to be performed by

each construct. Function application is modelled by a βv reduction as usual. The

generation of a new prompt value uses the global counter and increments it as a

side effect. Pushing a prompt empties the current context (which can only extend

A Monadic Framework for Delimited Continuations 13

up to the first pushed prompt). The context D before the operation is itself saved

in the sequence E. The fourth rewrite rule captures subcontinuation values. The

control context surrounding the operation is split into three: a part (D : E ′) which

is before the innermost pushed prompt p; the prompt p itself; and the rest of the

sequence E after the first prompt and which may include other pushed occurrences

of p, dynamically more distant from the active subexpression. The sequence E ′

may itself contain pushed prompts as long as they are different from p. The opera-

tion (withSubCont p v) captures the subcontinuation up to but not including the

prompt p, aborts the captured subcontinuation and the prompt p, and passes the

captured continuation to v. The operation is undefined if the prompt p is not pushed

in the current continuation. In the last rule, E ′ is a continuation value obtained by

evaluating the first argument of pushSubCont; the right-hand side simply installs

E′ before the current continuation (D : E). Notice that the second operand of push-

SubCont, namely e, is not evaluated : there is no context pushSubCont v D, so no

evaluation can occur inside pushSubCont’s second argument until the pushSubCont

form is rewritten.

The final group of reductions pops back the context D and the elements from E

when the current expression has been reduced to a value.

3.4 An Expressive and Abstract CPS Semantics

Using the ideas developed in the previous sections, we now develop a CPS trans-

lation for the call-by-value λ-calculus embedding of our operators, which will serve

as the basis for the monadic semantics presented in Section 4. The translation is

given in Figure 2 and refined in Figures 3 and 4.

We begin with the CPS translation in Figure 2. The continuation κ has a con-

ventional functional representation and corresponds to the control context D in

the operational semantics. The metacontinuation γ is a sequence of prompts and

continuations, and corresponds to the sequence E in the operational semantics.

The metacontinuation and the global prompt counter q are simply passed along as

additional parameters.

The translation of a complete program e is P [[e]]κ0 [] 0 where κ0 is the initial

partial continuation, the constant [] is the initial empty metacontinuation, and 0 is

the first generated prompt name. The initial continuation κ0 is λv.λγ.λq.K(v, γ, q):

it takes a value v, a metacontinuation γ, and the global counter q and applies

the metacontinuation to the value using an operation K(., ., .). This application

simulates the third group of reductions in the operational semantics. The initial

continuation is used not only at the top level but also whenever a control operation

is performed as the clauses for pushPrompt, withSubCont, and pushSubCont show.

The target language of the CPS translation is the same call-by-name λ-calculus

with the equational theory based on βη but extended with constants for building

and destructing lists, with integers and associated operations needed to manipulate

the global counter, and with the operation K(., ., .) defined by the three equations

in Figure 2. To reason about the correctness of the CPS translation with respect

to the operational semantics, we only the pure theory consisting of βη.

14 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

P[[v]] = λκ.λγ.λq.κ V[[v]] γ q
P[[e1e2]] = λκ.λγ.λq.

P[[e1]] (λf.λγ′.λq′.
P[[e2]] (λa.λγ′′.λq′′.f a κ γ′′ q′′) γ′ q′) γ q

P[[newPrompt]] = λκ.λγ.λq.κ q γ (q + 1)
P[[pushPrompt e1 e2]] = λκ.λγ′.λq.

P[[e1]] (λp.λγ.λq′.P[[e2]] κ0 (p : κ : γ) q′) γ′ q
P[[withSubCont e1 e2]] = λκ.λγ′′.λq′.

P[[e1]] (λp.λγ′.λq.
P[[e2]] (λf.λγ.λq′′.f (κ : γp

↑) κ0 γp

↓ q′′) γ′ q) γ′′ q′

P[[pushSubCont e1 e2]] = λκ.λγ′′.λq.
P[[e1]] (λγ′.λγ.λq′.
P[[e2]] κ0 (γ′

++(κ : γ)) q′) γ′′ q

V[[x]] = x
V[[λx.e]] = λx.λκ′.λγ′.λq′.P[[e]] κ′ γ′ q′

where, in the target language:

κ0 = λv.λγ.λq.K(v, γ, q)
and:

K(v, [], q) = v
K(v, p : γ, q) = K(v, γ, q)
K(v, κ : γ, q) = κ v γ q

Fig. 2. CPS translation of call-by-value calculus with control

So far, Figure 2 yields for our operators a semantics that is similar in nature to

the one that Moreau and Queinnec gave for marker and call/pc. We now refine it

in two different ways. Figure 3 simplifies the CPS translation by η-reducing the

equations in Figure 2 to eliminate arguments that are simply passed along. Pure

λ-calculus terms have no need to access the metacontinuation or next prompt, and

their Figure 3 translations reflect this fact. While the metacontinuation and next

prompt are available at all times, they are ignored by the core terms and manip-

ulated only by the control operators, a property shared with Danvy and Filinski’s

semantics for shift and reset (1990). The new variant of the CPS translation is

equivalent to the original one since η-equations are part of the theory of the CPS

target language.

Figure 4 takes the simplification one step further. The handling of core terms is

as in Figure 3, but the portions of the control operator code that deal directly with

the metacontinuation and next prompt have been split out into separate run-time

combinators. These combinators are defined simply as target-language constants.

The CPS translation itself now deals only with the issue of fixing evaluation order:

the translation of core terms is the traditional one (c.f. Section 3.1), and the trans-

lation of the control operators expresses only their argument-evaluation properties.

For example, the translation of pushPrompt says that e1 is evaluated but e2 is not,

and the translation of withSubCont says that it is treated as a normal function

A Monadic Framework for Delimited Continuations 15

P[[v]] = λκ.κ V[[v]]
P[[e1e2]] = λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ))

P[[newPrompt]] = λκ.λγ.λq.κ q γ (q + 1)
P[[pushPrompt e1 e2]] = λκ.P[[e1]] (λp.λγ.P[[e2]] κ0 (p : κ : γ))
P[[withSubCont e1 e2]] = λκ.P[[e1]] (λp.P[[e2]](λf.λγ.f (κ : γp

↑) κ0 γp

↓))

P[[pushSubCont e1 e2]] = λκ.P[[e1]] (λγ′.λγ.P[[e2]] κ0 (γ′
++(κ : γ)))

V[[x]] = x
V[[λx.e]] = λx.λκ′.P[[e]] κ′

Fig. 3. CPS translation of call-by-value calculus with control (η-reduced)

P[[v]] = λκ.κ V[[v]]
P[[e1e2]] = λκ.P[[e1]] (λf.P[[e2]] (λa.f a κ))

P[[newPrompt]] = newPromptc

P[[pushPrompt e1 e2]] = λκ.P[[e1]] (λp.pushPromptc p P[[e2]] κ)
P[[withSubCont e1 e2]] = λκ.P[[e1]] (λp.P[[e2]] (λf.withSubContc p f κ))
P[[pushSubCont e1 e2]] = λκ.P[[e1]] (λγ′.pushSubContc γ′ P[[e2]] κ)

V[[x]] = x
V[[λx.e]] = λx.λκ′.P[[e]] κ′

where, in the target language:

newPromptc = λκ.λγ.λq.κ q γ (q + 1)
pushPromptc = λp.λt.λκ.λγ.t κ0 (p : κ : γ))

withSubContc = λp.λf.λκ.λγ.f (κ : γp

↑) κ0 γp

↓

pushSubContc = λγ′.λt.λκ.λγ.t κ0 (γ′
++(κ : γ))

Fig. 4. Factoring the control operations

application. (Indeed, if we introduced thunks into the interfaces of pushPrompt

and pushSubCont, the CPS conversion algorithm would not need to deal with the

control operators in any way, even superficially.) Hence, any program that makes

use of delimited continuations can be evaluated by rewriting the program using a

single, completely standard CPS conversion algorithm, and subsequently supplying

additional “hidden” arguments—the metacontinuation and next prompt—and suit-

able implementations of our operators that manipulate those arguments. This use

of hidden arguments is just an application of the standard technique of currying.

This final variant of the CPS translation is equivalent to the previous two by using

βη-equations to abstract the uses of the run-time combinators. This establishes

for the first time that a single, completely standard CPS transform suffices to

implement a broad variety of delimited control operators.

16 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

3.5 Relating the Operational and CPS Semantics

Taking the operational semantics as our specification, we show that the CPS seman-

tics is correct. In order to establish the result, we first extend the CPS translation

to the additional syntactic constructs used to define the operational semantics:

P [[(e, D, E, q)]] = P [[e]](λx.P [[D[x]]]κ0)V [[E]]q

V [[q]] = q

V [[[]]] = []

V [[p : E]] = p : V [[E]]

V [[D : E]] = (λx.P [[D[x]]]κ0) : V [[E]]

The transformation of values is extended to prompt names and sequences in a

natural way, assuming the CPS target language includes lists. A delimited context

D translates to a continuation (λx.P [[D[x]]]κ0). In general, the translation of an

expression D[e] is equivalent to the translation of e in a continuation representing

D.

Proposition 3.1

P [[D[e]]] =βη λκ.P [[e]](λx.P [[D[x]]]κ)

Proof. By induction on D. �

As explained in the previous section, the equality on CPS terms consists of the βη

axioms plus the equations defining K(., ., .) given in Figure 2. The main correctness

result is easily stated and proved.

Proposition 3.2

If (e, D, E, q) 7−→ (e′, D′, E′, q′) then P [[(e, D, E, q)]] =βη P [[(e′, D′, E′, q′)]].

4 Monadic Semantics

The CPS semantics plays two complementary roles: it specifies the order of evalua-

tion among subexpressions, and it specifies the semantics of the control operators.

The order of evaluation is important, because it directly affects the semantics

of control effects. For example, adding pushPrompt as an ordinary function to a

call-by-value language like Scheme or ML gives the wrong semantics, because in

an expression such as pushPrompt e1 e2 the default parameter-passing mechanism

would evaluate e2 before invoking the pushPrompt operation. Since the whole point

of pushPrompt is to introduce a prompt to which control operations in e2 can

refer, evaluating those control operations before pushing the prompt defeats the

purpose of the operation. One solution is to treat the control operators as syntactic

constructs, as we have done so far. Another is to use thunks to manually delay and

force the evaluation of e2 at the appropriate times (see for example the embedding

of reset in ML by Filinski (1994)). In Scheme the use of thunks would typically

be abstracted using the macro language, which is effectively equivalent to adding

pushPrompt as a syntactic construct. In both cases, however, such encoding tricks

distract from and complicate the semantic analysis.

A Monadic Framework for Delimited Continuations 17

Variables x, . . .

Terms e ::= x | λx.e | e1e2

| return e | e1 >>= e2

| newPrompt | pushPrompt e1 e2

| withSubCont e1 e2 | pushSubCont e1 e2

Fig. 5. Syntax of the monadic metalanguage

T [[x]] = return x
T [[λx.e]] = return (λx.T [[e]])
T [[e1e2]] = T [[e1]] >>= λf.T [[e2]] >>= λa.f a

T [[newPrompt]] = newPrompt

T [[pushPrompt e1 e2]] = T [[e1]] >>= λp.pushPrompt p T [[e2]]
T [[withSubCont e1 e2]] = T [[e1]] >>= λp.T [[e2]] >>= λf.withSubCont p f
T [[pushSubCont e1 e2]] = T [[e1]] >>= λs.pushSubCont s T [[e2]]

Fig. 6. Monadic translation of call-by-value calculus with control

An alternative, and now well-established (Hatcliff & Danvy, 1994), technique is

to express the order of evaluation by a translation T [[e]] into a monadic metalan-

guage (Moggi, 1991). After this translation, the behaviour of the control operators

can be expressed by defining them as constants, just as we did in Section 3.4. This

separation allows us to study the issues related to the order of evaluation separately

from the semantics of the control operators. More importantly it allows us later to

introduce a monadic typing discipline to track and encapsulate the control effects.

4.1 A Monadic Metalanguage with Prompts and Continuations

The monadic translation T [[e]] takes a source-language term to a term in a monadic

metalanguage, whose syntax is given in Figure 5. The monadic metalanguage ex-

tends the λ-calculus with a monadic type constructor and associated operations.

These operations include return and >>=, which explain how to sequence the ef-

fects in question, together with additional monad-specific operations. In our case,

these operations are newPrompt, pushPrompt, withSubCont, and pushSubCont.

The monadic metalanguage is typed, but because there are several ways to type

the operations, we defer the type issues until Section 6.

The monadic translation is in Figure 6. For function applications and withSub-

Cont, the effects of the operands are performed from left to right before the ap-

plication. For pushPrompt and pushSubCont, only the effects of e1 are performed

before the application, while the effects of e2 are performed after the prompt or the

subcontinuation are pushed. The translation says nothing about the semantics of

the control operators that appear in the target of the translation; it simply enforces

the proper sequencing.

18 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

returnk = λt.λκ.κ t
>>=k = λt1.λt2.λκ.t1 (λv.t2 v κ)

newPromptk = λκ.λγ.λq.κ q γ (q + 1)
pushPromptk = λp.λt.λκ.λγ.t κ0 (p : κ : γ))

withSubContk = λp.λf.λκ.λγ.f (κ : γp

↑) κ0 γp

↓

pushSubContk = λγ′.λt.λκ.λγ.t κ0 (γ′
++(κ : γ))

Fig. 7. CPS instance of monadic metalanguage

4.2 Semantics of the Monadic Metalanguage

The monadic metalanguage can be instantiated with the continuation monad to

produce terms in the same CPS target language of Section 3. The instantiation is

given in Figure 7. The constructors return and >>= are given the standard definitions

for the CPS monad (Moggi, 1991): they manipulate a concrete representation of

the continuation but know nothing about the metacontinuation. The monad-specific

control operations are identical to those defined in Figure 4.

4.3 Relating the CPS and Monadic Semantics

We have two distinct ways of translating a source term e to CPS: a direct transla-

tion P [[e]] and a monadic translation T [[e]] followed by an instantiation to the CPS

monad, which we denote using Tk[[e]]. These two translations are equivalent.

Proposition 4.1

P [[e]] =βη Tk[[e]]

Proof. By induction on the structure of e proceeding by cases. �

In summary, the CPS semantics of Figure 3 has been teased into two parts that

can be studied (and implemented) independently. The aspects relevant to the order

of evaluation are factored out in the translation to the monadic metalanguage; the

monadic constructs are aware of the continuation but not the metacontinuation or

the generation of new names; and the latter are manipulated exclusively by our

control operators, which themselves do not manipulate the representation of the

continuation.

5 Scheme Implementation

Given the specification of our control operators, we turn to the problem of imple-

menting them in the context of real languages. Our development so far has been

in an untyped framework, which makes it suitable as the basis of a Scheme imple-

mentation.

We actually present two Scheme implementations, which use call/cc to cap-

ture partial continuations directly and maintain the metacontinuation as a global

variable. The first implementation in Section 5.1 is directly based on the semantics

A Monadic Framework for Delimited Continuations 19

but does not handle tail recursion properly. This implementation effectively gen-

eralises Filinski’s implementation of shift and reset using SML/NJ’s callcc and a

metacontinuation cell (Filinski, 1994) to our family of control operators.

The second implementation in Section 5.2 addresses the problem with tail recur-

sion by taking advantage of Chez Scheme’s equality property for continuations.

Although not presented here, CPS-based versions of both implementations are

included with the Scheme and Haskell described in this article at http://www.cs.

indiana.edu/~sabry/papers/CC_code.tar.gz.

5.1 Basic Implementation

We begin by defining ���������
	������� and ��������������������� as syntactic abstractions that

expand into calls to $pushPrompt and $pushSubCont. In each case, the body is

represented as a thunk to delay its evaluation:

(������� � ��� ���
������ !����������	�������

(���
������ � 	���" � � ()

[(p e1 e2 . . .)

($pushPrompt p ("����� � � () e1 e2 . . .))]))

(������� � ��� ���
������ !���������������������

(���
������ � 	���" � � ()

[(subk e1 e2 . . .)

($pushSubCont subk ("��#�� � � () e1 e2 . . .))]))

Having dealt with the special syntactic forms, we need only implement the monadic

metalanguage in Scheme, i.e., implement the semantics given in Figure 7. It is pos-

sible to implement this semantics by passing around a continuation, a metacontin-

uation, and a global counter, or by using the computational effects of Scheme as

follows. To access the partial continuation κ, we use call/cc, while the metacon-

tinuation γ is always available as a global variable. New prompts are implemented

as freshly allocated strings, which effectively replaces the global counter p with the

implicit state of the memory management system.

Using this approach, nothing needs to be done to implement return and >>= since

the effects are implicit; the four control operators are implemented as follows:

(������� � � abort)

(������� � � mk)

(������� � � ($pushPrompt p th)

(call/cc ("
�#�� � � (k)

(� � �%$ mk (PushP p (PushSeg k mk)))

(abort th))))

20 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

(������� � � (withSubCont p f)

(" � � �'& ��"�� � � ([(subk mk ∗) (splitSeq p mk)])

(� � �%$ mk mk ∗)

(call/cc ("
�#�� � � (k)

(abort ("��#�� � � () (f (PushSeg k subk))))))))

(������� � � ($pushSubCont subk th)

(call/cc ("
�#�� � � (k)

(� � �%$ mk (appendSeq subk (PushSeg k mk)))

(abort th))))

(������� � � newPrompt ("��#�� � � () (string #\p)))

The first two definitions establish empty bindings for abort and mk; the value of

abort and initial value of mk are established by runCC below. The code uses a

datatype Seq (not shown) to represent metacontinuations, with three constructors

EmptyS, PushP (push prompt), and PushSeg (push continuation segment). The

procedures appendSeq and splitSeq perform simple operations on that datatype;

appendSeq realises ++ from the semantics, while splitSeq implements γ
p
↑ and γ

p
↓

in one operation. The syntactic abstraction " � � �'& ��"�� � � is used to bind the two

values (γp
↑ and γ

p
↓) returned by splitSeq to the variables subk and mk ∗.

The main challenge is in setting up the top-level procedure runCC to define the

procedure abort, which corresponds to the initial continuation κ0 from the se-

mantics. As the semantics specifies, the definition of runCC should provide the

initial continuation, the initial metacontinuation, and the initial global counter. In

our case this reduces to initialising the metacontinuation and capturing the base

continuation. When applied this base continuation should inspect and invoke the

metacontinuation:

(������� � � (runCC th)

(� � �%$ mk (EmptyS))

(underflow ((call/cc ("��#�� � � (k)

(� � �($ abort k)

(abort th))))))

The procedure abort accepts a thunk and thaws it in a base continuation that

encapsulates only the call to underflow to avoid any unnecessary stack build-

up (Dybvig & Hieb, 1989). The underflow procedure is used to apply the global

metacontinuation mk:

(������� � � (underflow v)

(� ��)���* ��� � mk

[(EmptyS) v]

[(PushP mk ∗) (� � �%$ mk mk ∗) (underflow v)]

[(PushSeg k mk ∗) (� � �%$ mk mk ∗) (k v)]))

A Monadic Framework for Delimited Continuations 21

5.2 Proper Tail Recursion

The procedure below repeatedly captures and pushes an empty subcontinuation:

(������� � � (tailtest)

(" � � ([p (newPrompt)])

(���������
	������� p

(withSubCont p

("��#�� � � (s)

(�����+��������������� s (tailtest)))))))

In a properly tail-recursive implementation this test should run without any growth

in a process’s memory image. The implementation presented above does not treat

tail recursion properly, since each �����+��������������� of s adds a new (empty) subcontin-

uation onto the metacontinuation, and the metacontinuation grows without bound.

The same comment applies to the operational semantics in Section 3.3, which always

pushes D on E even if D is the empty context. It is a simple matter to recognise

this situation in the semantics to avoid pushing empty contexts. In order to imple-

ment such an optimisation, however, the code must have some way to detect empty

subcontinuations. In Chez Scheme, this is accomplished by comparing the current

continuation against a base continuation using eqv?.1 To do so, we modify runCC

to reify the base continuation and store it in the variable base-k:

(������� � � base-k)

(������� � � (runCC th)

(� � �%$ mk (EmptyS))

(underflow

(call/cc ("
�#�� � � (k 1)

(� � �%$ base-k k 1)

((call/cc ("����� � � (k 2)

(� � �%$ abort k 2)

(abort th))))))))

We then define a wrapper for the PushSeg constructor that pushes a continuation

onto the stack only if it is not the base continuation:

(������� � � (PushSeg/t k seq)

(��� (eqv? k base-k)

seq

(PushSeg k seq)))

This wrapper is used in place of PushSeg in the implementations of our control

operators.

1 Unfortunately, this makes the code unportable; to our knowledge, no other Scheme system
allows eqv? to be used on continuations in this manner.

22 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

6 Towards a Typed Implementation:

Monadic Types in Haskell

We now turn our attention to the problem of typing our control operators. In order

to study the typing issues in a concrete setting, we implement the monadic meta-

language in Haskell. This implementation allows us to use advanced type features

like interfaces, type classes, nested polymorphism, generalised abstract data types,

and existentials.

So the plan is this. We will write programs directly in Haskell, in effect relying

on the programmer to perform the monadic translation T [[e]]. Then we need only

to provide a Haskell library that defines a continuation monad CC, together with

its basic return and >>= operators, and its control operators pushPrompt, etc. The

result is a typed, executable program that uses delimited continuations. It may

not be an efficient implementation of delimited continuations, but it serves as an

excellent design laboratory, as we will see in Section 7.

We found that static typing was unusually valuable in exploring this design space:

the code is often short but tricky, and the type system found many bugs imme-

diately. More fundamentally, as we explore in this section, the typed framework

allows us to securely encapsulate algorithms that use control effects internally, but

which are entirely pure when seen from the outside.

6.1 Monad with Fixed Observable Type

We first introduce the simplest types for the monadic library. Since Haskell does not

provide a mechanism for defining interfaces, the following declaration is informal:

�� � ��" � SimpleCC , � � 	 �

� ����� CC a -- Abstract

� �������'� *
� Monad CC

� ����� Prompt a -- Abstract

� ����� SubCont a b -- Abstract

���
� � Obs = ... -- Arbitrary but fixed

runCC :: CC Obs → Obs

newPrompt :: CC (Prompt a)

pushPrompt :: Prompt a → CC a → CC a

withSubCont :: Prompt b → (SubCont a b → CC b) → CC a

pushSubCont :: SubCont a b → CC a → CC b

The interface includes the type constructor CC. The idea is that a term of type

(CC a) is a computation that may have control effects. When the computation is

run, the control effects are performed, and a result of type a is returned. The type

CC must be an instance of the class Monad; that is, it must be equipped with the

operators return and >>=:

A Monadic Framework for Delimited Continuations 23

return :: a → CC a

(>>=) :: CC a → (a → CC b) → CC b

We saw in Section 4.1 how these two operators are used.

The interface also includes two abstract type constructors for prompts Prompt

and subcontinuations SubCont. The type Prompt a is the type of prompts to which

a value of type a can be returned, i.e., if p of type Prompt a is pushed on the stack,

then the only values that can flow to and from this stack frame are values of type

a. The type SubCont a b is the type of subcontinuations to which a value of type

a can be passed and which return a value of type b.

Following conventional continuation semantics, the interface defines an arbitrary

but fixed type Obs, the type of observables; a complete sub-program that uses

continuations must have type CC Obs. To execute such a program, the function

runCC takes a computation which returns a value of the fixed type Obs and supplies

it with the initial context (initial continuation, metacontinuation, and counter for

prompt names) to get the final observable value.

The types of the control operators are a monadic variant of the types given

by Gunter et al. (1995) for the similar operators. Each occurrence of newPrompt

generates a new prompt of an arbitrary but fixed type a. The type of pushPrompt

shows that a prompt of type Prompt a can only be pushed on a computation of type

CC a which expects a value of type a. If the type of withSubCont p f is CC a then

the entire expression returns a value of type a to its continuation; the continuation

is assumed to contain a prompt p of type Prompt b; the portion of the continuation

spanning from a to b is captured as a value of type SubCont a b which is passed to

f. Since the remaining continuation expects a value of type b, the return type of f

is CC b. A similar scenario explains the type of pushSubCont.

Wadler (1994) studies several systems of monadic types for composable continu-

ations. His first system is similar to the one we consider in this section. Written in

our notation, the types he considers for the operators are:

runCC :: CC Obs → Obs

pushPrompt :: CC Obs → CC Obs

withSubCont :: (SubCont a Obs → CC Obs) → CC a

pushSubCont :: SubCont a Obs → CC a → CC Obs

Indeed our interface reduces to the above, if we remove the ability to generate new

prompts and use one fixed and implicit prompt of the observable type instead.

Wadler (1994) considers two other, more general, type systems for composable

continuations. The second system, called “Murthy types” (Murthy, 1992), param-

eterises the type CC by the answer type. We will present a generalisation of this

system in Section 6.3. The third system presented, called “Danvy and Filinski

types” (Danvy & Filinski, 1989), is the most expressive but unfortunately is not a

monad and hence will not be considered further.

24 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

6.2 Examples

The following short examples aim to give a little more intuition for the monadic

interface. The examples use the following Haskell conventions:

• A λ-expression is written λx → e, and extends as far to the right as possible.

• We make heavy use of the right-associating, low-precedence infix application

operator $, defined as f $ x = f x. Its purpose is to avoid excessive parenthe-

ses; for example, instead of (f (g (h x))) we can write (f $ g $ h x).

• Haskell provides convenient syntax, known as “ � � -notation” for composing

monadic expressions. For example:

� � { x1 ← e1 ;

x2 ← e2 ;

return (x1+x2) }

is equivalent to

e1 >>= (λx1 → e2 >>= (λx2 → return (x1+x2)))

The evaluation of the expression (in either notation) first executes e1 and its

control effects. The value returned by the execution of e1 is bound to x1 and

then the same process is repeated with e2. Finally, the sum x1+x2 is returned.

A sequence of monadic computations is usually expressed using � � -notation

but we occasionally use the bind operator >>= explicitly.

• Whitespace (instead of semi-colons) is often used as a separator of monadic

actions with indentation (instead of braces) indicating grouping.

Given the above conventions, the term:

withSubCont p $ λk →

pushSubCont k $

� � x ← � � y1 ← e1

e2

e

parses as:

withSubCont p (λk →

pushSubCont k (� � { x ← (� � { y1 ← e1; e2}); e}))

which in turn is equivalent to:

withSubCont p (λk →

pushSubCont k ((e1 >>= λy1 → e2) >>= λx → e)

We first revisit our examples with the top-level prompt p0 and callcc from

Section 2.2. The top-level prompt would have type Prompt Obs and the definitions

of abort and callcc would be typed as follows:

A Monadic Framework for Delimited Continuations 25

abort :: CC Obs → CC a

abort e = withCont (λ _ → e)

callcc :: ((a → CC b) → CC a) → CC a

callcc f = withCont $ λk →

pushSubCont k $

f (λv → abort (pushSubCont k (return v)))

As expected the type of abort refers to the top level type of observables. The type

of callcc makes explicit that the argument of a continuation must be a value, of

type a, rather than a computation of type CC a. This interface of callcc can lead

to space leaks, however. For example, consider:

loop :: Int → CC Int

loop 0 = return 0

loop n = callcc (λk → � � { r ← loop (n−1); k r })

When the recursive call to loop (n−1) returns, the continuation k is invoked, which

abandons the entire current stack, using the call to abort inside the definition of

callcc. So the recursive call to loop takes place on top of a stack that will never

be used. If the recursive call increases the size of the stack before looping, as is the

case here, the result is that the stack grows proportional to the depth of recursion.

The usual solution to this problem is to thunkify the argument to the escape

procedure, passing a value of type (() → a) instead of a value of type a (Dybvig &

Hieb, 1989). In our monadic framework, we can be more explicit by defining callcc

as follows:

callcc :: ((CC a → CC b) → CC a) → CC a

callcc f = withCont $ λk →

pushSubCont k $

f (λc → abort (pushSubCont k c))

where it is explicit that the continuation is applied to a computation of type CC a.

Using the new variant of callcc we can write our loop example as follows:

loop :: Int → CC Int

loop 0 = return 0

loop n = callcc (λk → k (loop (n−1)))

Now the context is aborted before the recursive call to loop is made, and the

function becomes properly tail-recursive.

6.3 Encapsulation

The monadic interface we have considered so far has the advantage of being simple,

but it has a major limitation: since the encapsulation operator runCC specifies a

fixed type Obs, every encapsulated computation that internally uses control opera-

tors is limited to return the same fixed type. One really wants to be able to write

26 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

monadic computations that return values of arbitrary types and that can be used in

arbitrary contexts. Näıvely replacing Obs by an arbitrary type is however unsound

as it would allow interactions among control operations executing under different

occurrences of runCC.

The problem can be explained as follows. As the semantics shows, withSubCont

must essentially search the metacontinuation until it finds a pushed prompt that is

identical to its prompt argument. A straightforward implementation of this search

would use the internal representation of the prompts ignoring their types. Clearly

the soundness of the idea rests on the requirement that prompts of different types

never have the same internal representation. This requirement is violated if we

näıvely relax the type of runCC. For example, even though it is impossible to realize

in Haskell, we can easily imagine a hypothetical implementation of runCC with the

type:

runCC :: CC a → a

Such an implementation would admit the following program:

abortP p e = withSubCont p (λ _ → e)

badc = " � � p1 :: Prompt Int = runCC newPrompt

p2 :: Prompt Bool = runCC newPrompt

� � 1 + runCC (pushPrompt p1 (abortP p2 (return True)))

Because it has a pure type, the result of runCC e for any e must be a pure expression

without any side effects. In particular the two occurrences of runCC in the right-

hand sides of the " � � cannot interact via a global symbol table or anything similar

to guarantee that they return distinct prompts p1 and p2. Therefore, nothing forces

the two prompts p1 and p2 to have different internal representations. In the case

when they do have the same representation, i.e., they are intensionally equal, the

jump to p2 reaches p1 instead, which causes the evaluation to add 1 to True.

This problem has actually been identified in the early implementations of the

SML/NJ top-level interactive loop (Harper et al., 1993); its solution then was to

associate every prompt with a different time-stamp and to dynamically check that a

continuation captured within a given time-stamp does not jump to a prompt with

a different time-stamp. The solution we propose to this type soundness problem

is to confine the control effects to certain regions. (This is also desirable from the

perspective of programming methodology. For a longer discussion of this point, we

refer the reader to the arguments leading to the design of spawn (Hieb & Dybvig,

1990).) As Thielecke (2003) recently showed, there is an intimate relation between

regions and the type of observables. In particular:

• A region determines a local answer type for continuations

• Pure expressions are parametrically polymorphic in their answer types

This situation is similar to the well-understood situation of encapsulating state in

Haskell (Launchbury & Peyton Jones, 1995), and our Haskell encoding is quite sim-

ilar. We add a region parameter ans, which specifies the answer type produced by

A Monadic Framework for Delimited Continuations 27

the region, to every type constructor and enforce non-interference and localisation

of control actions by using rank-2 polymorphism. The refined interface becomes:

�� � ��" � CC , � � 	 �

� ����� CC ans a -- Abstract

� ����� Prompt ans a -- Abstract

� ����� SubCont ans a b -- Abstract

� �������'� *
� Monad (CC ans)

runCC :: (∀ ans. CC ans a) → a

newPrompt :: CC ans (Prompt ans a)

pushPrompt :: Prompt ans a → CC ans a → CC ans a

withSubCont :: Prompt ans b → (SubCont ans a b → CC ans b)

→ CC ans a

pushSubCont :: SubCont ans a b → CC ans a → CC ans b

In the new interface, the types CC, Prompt, and SubCont are each given an addi-

tional type parameter ans which represents their control region as far as the type

system is concerned. The type of each operator insists that its arguments and results

come from a common region. So, for example, one cannot push a prompt of type

Prompt String a if the current computation has type CC Bool a. The type of runCC

shows that it takes an effectful computation, of type CC ans a, runs it, and returns

an ordinary, pure, value of type a. This encapsulation is enforced by giving runCC

a rank-2: its argument must be polymorphic in the region ans. Rank-2 types are

an extension of the Haskell standard that is supported by several implementations:

the concrete syntax for a type ∀ r.t is forall r. t.

6.4 Examples

Encapsulation using runCC provides a convenient way to isolate regions of control

from each other. If a computation labelled by a region parameter ans1 pushes a

prompt, then a computation labelled by a different type ans2 cannot access that

prompt and hence cannot abort or duplicate computations up to that prompt.

Moreover the type system enforces this restriction: there is no way for the prompt

to somehow leak using a global reference or higher-order function.

The following two expressions can be encapsulated either because they perform

no effects at all (g0), or because their effects are completely localised and hence

invisible to the outside world (g1):

g0 = 1 + runCC (� � x ← return 1; return (x+1))

g1 = 1 + runCC (� � p ← newPrompt

pushPrompt p $

withSubCont p $ λ sk →

pushSubCont sk (pushSubCont sk (return 2)))

28 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

A more interesting example of encapsulation uses continuations in a way similar to

exceptions, to abort several recursive calls as an optimisation. The control effect is

completely localised and hence encapsulated:

productM :: [Int] → Int

productM xs = runCC (� � p ← newPrompt

pushPrompt p (loop xs p))

, � � 	 � loop [] p = return 1

loop (0:_) p = abortP p (return 0)

loop (x:xs) p = � � r ← loop xs p; return (x*r)

In the example, we recursively traverse a list pushing multiplication frames on the

stack. Before starting the loop, we push a prompt on the stack to mark the point

at which the recursion will eventually return. If we reach the end of the list, we

return normally, performing the multiplications on the way back. If we encounter

a 0, however, we simply erase the pending multiplication frames and return the

final result 0 to the caller of loop.

Expressions may violate encapsulation for a variety of reasons:

b0 = runCC (� � p ← newPrompt; return p)

b1 = � � p ← newPrompt

pushPrompt p $

withSubCont p $ λ sk →

return (runCC (pushSubCont sk (return 1)))

Example b0 attempts to export a local prompt, while b1 attempts to use a sub-

continuation captured from outside its region. Both are invalid, and are rejected by

the type checker.

Well-typed expressions may still cause run-time errors as the type system does

not keep track of how many times a prompt is pushed, which would be necessary

to guarantee that every dynamic control action is matched by a pushed prompt.

For example, in the first example, the prompt is pushed zero times and hence the

control action is invalid. In the second example, the prompt is pushed once, but the

code attempts to capture the continuation up to this prompt twice and hence also

fails with an error:

r0 = runCC (� � p ← newPrompt

abortP p (return 5))

r1 = runCC (� � p ← newPrompt

pushPrompt p $

� � x ← withSubCont p (λ_ → abortP p (return 5))

return 0)

Filinski (1999) proposes a type-and-effect system for layered monadic effects

that guarantees statically that well-typed programs do not fail with such ‘missing

prompt” errors. Alternatively, one can express the needed invariants using contracts

in the module interface as argued by Findler et al. (2001).

A Monadic Framework for Delimited Continuations 29

7 Haskell Implementation

We can now turn the semantics of Figure 7 into a typed and executable specifica-

tion, by giving three different implementations of the CC library whose interface

we presented in Section 6.3. (We focus on the more interesting interface in Sec-

tion 6.3; implementing the other basic interface in Section 6.1 is simpler.) Each of

the three implementations represent continuations as sequences of control segments

and prompts. The first represents control segments as individual frames, the sec-

ond as CPS functions, and the third as abstract continuation objects obtained via

a variant of callcc. Providing these three typed implementations serves several

purposes:

• It clarifies some of the informal arguments we made about the separation of

concerns between the continuation, the metacontinuation, and the generation

of prompts. Indeed we show that it is possible to focus on each aspect in a

separate module.

• The semantics in Sections 3 and 4 are quite complex and the types are non-

trivial. We found the executable Haskell specification to be invaluable in de-

bugging the semantic definitions.

• The first Haskell implementation can be seen as an abstract specification of

how to implement our framework by directly modifying the run-time system,

manipulating individual stack frames and stack fragments.

• The second Haskell implementation can be seen as an abstract specification

of how to implement our framework in a CPS compiler, which already has an

explicit and functional representation of continuations.

• The third Haskell implementation can be seen as an abstract specification of

how to implement our framework in a source level library that builds on top

of control operators such as callcc that give access to the continuation.

These source-level implementations are intended to be illustrative rather than effi-

cient. An efficient implementation can be created at a lower level by representing

control segments as contiguous blocks of stack frames, as in the efficient implemen-

tation of traditional continuations described by Hieb et al. (1990).

The implementation uses several modules, whose inter-dependencies are given in

Figure 8. The client program can import any of the three implementations of the

CC monad described below in detail. All implementations of the CC monad import

two helper modules for implementing sequences and for generating prompt names.

The last implementation of CC (with reified continuations) also imports a module

that manipulates an underlying “native” representation of continuations that is only

available via control operators. The implementations use several constructs that are

not part of Haskell 98, although they have become standard extensions to the basic

language. In particular, we use generalised abstract data types (GADTs) (Xi et al.,

2003; Cheney & Hinze, 2002; Pottier & Régis-Gianas, 2006) to express the typing

of a sequence of function (continuation) compositions, in Section 7.2 and to give

more precise types to some of the constructors. We also use higher-rank universal

types to encapsulate control effects (in the typing of runCC in Sections 7.3-7.5),

30 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

Underlying CPS

CC with frames CC with functions

Sequences
(Sec. 7.2)

(Sec. 7.3) (Sec. 7.4)

(Sec. 7.5 and App. B)

(Sec. 7.5)

Client program

(Sec. 7.1 and App. A)
Prompts

CC with reified continuations

Fig. 8. Module dependencies

and to capture an invariant related to continuations and metacontinuations (in the

definiton of CC in Sections 7.4 and 7.5).

7.1 Generating Prompts

The module Prompt implements the dynamic generation of prompts. It is isolated

here because the issue of name generation is independent of continuations, and

because it allows us to isolate in this small module the only unsafe (in the sense

that the type system cannot prove it safe) coercion in our code.2 The coercion allows

us to safely implement withSubCont, which compares the internal representations

prompts of different types.

�� � ��" � Prompt , � � 	 �

� �', ���
� � Prompt ans a -- Abstract
� �', ���
� � P ans a -- Abstract

� �������'� *'� Monad (P ans)

� �
��� Equal a b , � � 	 �
EQUAL :: Equal a a

NOT_EQUAL :: Equal a b

runP :: P ans ans → ans

2 In a private communication, Oleg Kiselyov suggests an alternative approach in which every
prompt is associated with a built-in reference cell. The resulting implementation includes no
coercions but is however much removed from the semantics we propose so we do not consider
it further in this article and leave a detailed comparison to future work.

A Monadic Framework for Delimited Continuations 31

newPromptName :: P ans (Prompt ans a)

eqPrompt :: Prompt ans a → Prompt ans b → Equal a b

The module provides the abstract type of prompts and a monad (P ans), which

constrains accesses to the prompt supply to guarantee that generated prompts

are globally unique within all computations tagged by the type parameter of the

region ans. The prompts generated in different regions may have the same internal

representation but the encapsulation mechanism for regions described in Section 6.3

prevents such prompts from being used simultaneously. The implementation of the

module is in Appendix A.

The operation runP takes a computation that uses prompts, provides the initial

supply of prompts, and discards the supply of prompts from the final result. The

type Equal is a GADT that gives evidence for the equality of two types as shown by

the type of the constructor EQUAL. The operation eqPrompt compares two prompts

of possibly different types by looking at their internal representation: if the two

prompts are equal then the function produces evidence that their types must also be

equal. This is safe assuming that our implementation is correct and that the prompt

values are unforgeable. Since these facts are not checkable by the type system, the

implementation of eqPrompt includes the single use of an unsafe, implementation-

dependent, coercion in our code.

The module Prompt is imported in each of the following implementations of the

CC interface.

7.2 Sequences

All of our implementations represent continuations as sequences of control segments

and prompts. The control segments are single frames in the first implementation and

partial continuations in the second and third implementations. In the second im-

plementation, partial continuations are represented by functions, while in the third

implementation, partial continuations are abstract continuations with an unknown

representation. We provide here a general sequence type that can be instantiated for

each case. The three operations we require on sequences (appendSubSeq, pushSeq,

and splitSeq) need to be defined only once.

The interface of the module Seq is given below:

�� � ��" � Seq , � � 	 �

� ����� Seq contseg ans a , � � 	 �
EmptyS :: Seq contseg ans ans

PushP :: Prompt ans a → Seq contseg ans a → Seq contseg ans a

PushSeg :: contseg ans a b → Seq contseg ans b

→ Seq contseg ans a

���
� � SubSeq contseg ans a b -- Abstract

32 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

appendSubSeq :: SubSeq contseg ans a b

→ SubSeq contseg ans b c

→ SubSeq contseg ans a c

pushSeq :: SubSeq contseg ans a b → Seq contseg ans b

→ Seq contseg ans a

splitSeq :: Prompt ans b → Seq contseg ans a →

(SubSeq contseg ans a b, Seq contseg ans b)

The basic structure of the Seq type is that of a list, which can be empty (EmptyS)

or one of two “cons” variants each with another Seq in the tail. We first give the

intuitive meaning of each type parameter and then explain the various constructors

in turn. The type parameter a represents the type of values received by the aggregate

sequence of prompts and segments. The type parameter ans is used to identify the

region of control to which the prompts and control segments belong. The type

parameter contseg is the abstract constructor of control segments that is varied to

produce the various implementations.

The type Seq is also a GADT. The constructor EmptyS has a type that unifies

a and ans. The PushP constructor is simple: it simply pushes a (suitably typed)

prompt onto the sequence. The PushSeg constructor pushes a control segment rep-

resenting either an individual frame or a partial continuation. When searching for

prompts in sequences, we never need to inspect control segments so the precise

details of what constitutes a segment is not relevant at this point. The type of

PushSeg includes a parameter b which is existentially quantified. It is used here

to express the fact that if the control segment takes a value of type a to one of

some type b, and the rest of the sequence takes a value of that type b, then the

composition of the two takes a value of type a irrespective of what b is.

The operations to split and append sequences are defined below. To split the

sequence at a given prompt, we traverse it, comparing the prompts along the way.

If a prompt matches the desired prompt, we use the eqPrompt function to obtain

a coercion that forces the types to be equal.

���
� � SubSeq contseg ans a b =

Seq contseg ans b → Seq contseg ans a

emptySubSeq :: SubSeq contseg ans a a

emptySubSeq = id

appendSubSeq = (.)

pushSeq = ($)

splitSeq p EmptyS

= error ("Prompt was not found on the stack")

A Monadic Framework for Delimited Continuations 33

splitSeq p (PushP p’ sk)

= * ��� � eqPrompt p’ p � �
EQUAL → (emptySubSeq, sk)

NOT_EQUAL → * ��� � splitSeq p sk � �
splitSeq p (PushSeg seg sk)

= * ��� � splitSeq p sk � �
(subk,sk’) → (appendSubSeq (PushSeg seg) subk, sk’)

7.3 Continuations as Sequences of Frames

Now that we are equipped with utility libraries Prompt and Seq, we are ready to

write our first implementation of the CC library itself. In this first implementation,

the continuation and metacontinuation are merged into one data-structure that

consists of a sequence of frames and prompts. A frame of type Frame ans a b is a

function that given a value of type a returns a b-computation which performs the

next computation step. The continuation is a sequence of these frames and prompts,

which consumes values of type a and returns a computation that delivers the value

of type ans after possibly generating prompts. Thus the complete definitions of the

datatypes are:

� �', ���
� � Frame ans a b = Frame (a → CC ans b)

���'� � Cont ans a = Seq Frame ans a
���'� � SubCont ans a b = SubSeq Frame ans a b

� �', ���
� � CC ans a = CC (Cont ans a → P ans ans)

unCC (CC c) = c

Given these data types, here is how we make CC an instance of the Monad class,

by implementing return and (>>=):

� �������'� *'� Monad (CC ans) , � � 	 �
return v = CC (λk → appk k v)

(CC e1) >>= e2 = CC (λk → e1 (PushSeg (Frame e2) k))

-- Applies a control segment

appseg :: Frame ans a b → a → CC ans b

appseg (Frame fr) a = fr a

-- Applies a continuation

appk :: Cont ans a → a → P ans ans

appk EmptyS a = return a

appk (PushP _ k’) a = appk k’ a

appk (PushSeg seg k’) a = unCC (appseg seg a) k’

34 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

-- Runs a CPS term

runTerm :: CC ans a → P ans ans

runTerm c = unCC c emptyS

runCC :: (∀ ans. CC ans a) → a

runCC ce = runP (runTerm c)

The function appk serves as an interpreter that transforms a sequence data struc-

ture, of type Cont ans a, into a function.

The implementation of the four control operators is now straightforward:

newPrompt :: CC ans (Prompt ans a)

newPrompt = CC (λk → � � p ← newPromptName; appk k p)

pushPrompt :: Prompt ans a → CC ans a → CC ans a

pushPrompt p (CC e) = CC (λk → e (PushP p k))

withSubCont :: Prompt ans b → (SubCont ans a b → CC ans b)

→ CC ans a

withSubCont p f =

CC (λk → " � � (subk,k’) = splitSeq p k

� � unCC (f subk) k’)

pushSubCont :: SubCont ans a b → CC ans a → CC ans b

pushSubCont subk (CC e) = CC (λk → e (pushSeq subk k))

As already apparent in the continuation semantics, the only control operator that

is aware of the prompt supply is newPrompt.

This implementation is properly tail-recursive (in the sense of Section 5.2). The

only segments that are pushed are in the implementation of >>=, i.e., the only

segments that are pushed are segments corresponding to user code. However con-

tinuation segments may unnecessarily accumulate without bound because some of

our operations are non-strict in the continuation. For example, the implementation

of pushPrompt is not strict in its continuation argument; changing it to:

pushPrompt p (CC e) = CC (λk → k ‘seq‘ e (PushP p k))

improves the space usage in several situations.

While it offers a straightforward mechanism for adding support for our control

operators to an existing run-time system, this implementation requires each control

operation to loop through sequences of individual frames, as in Gasbichler and

Sperber’s direct implementation of shift and reset (Gasbichler & Sperber, 2002),

an inefficiency avoided by our other two implementations.

7.4 Continuations as Functions

This implementation is identical to the semantics given in Figure 7. The continua-

tion is represented as a function from values to metaCPS terms. MetaCPS terms are

A Monadic Framework for Delimited Continuations 35

CPS terms that accept metacontinuations and deliver answers. Metacontinuations

are represented as sequences of continuations and prompts. The type definitions

are:

� �', ���
� � Cont ans a b = Cont (a → MC ans b)

unCont (Cont k) = k

���'� � MetaCont ans a = Seq Cont ans a
���'� � SubCont ans a b = SubSeq Cont ans a b

� �', ���
� � CC ans a = CC (∀ b. Cont ans a b → MC ans b)

unCC (CC c) = c

� �', ���
� � MC ans b = MC (MetaCont ans b → P ans ans)

unMC (MC m) = m

The type b used as an articulation point between the continuation and metacontin-

uation is completely arbitrary and hence universally quantified. This quantification

captures an invariant that the interface between a continuation and a metacontin-

uation is arbitrary as long as they agree on it.

The type declarations can be explained in a more uniform way by observing

that they can be generated by applying the continuation monad transformer to the

metaCPS terms. In more detail, consider the continuation monad transformer:

� �', ���
� � ContT m a = ContT (∀ b. (a → m b) → m b)

Applying this transformer to the type (MC ans) produces:

ContT (∀ b. (a → MC ans b) → MC ans b)

which is isomorphic to the representation of CC:

CC (∀ b. Cont ans a b → MC ans b)

The CC type provides the monadic combinators return and >>=:

� �������'� *'� Monad (CC ans) , � � 	 �
return e = CC (λ (Cont k) → k e)

(CC e1) >>= e2 = CC (λk → e1 (Cont (λv1 → unCC (e2 v1) k)))

The code above shows that the CC monad is a completely standard continuation

monad: in particular the monadic combinators (and hence the translation of pure

functions and applications) knows nothing about the metacontinuation.

To run a complete computation, we must of course provide an initial continuation

and metacontinuation. The function runCC takes a computation and supplies it with

the initial continuation; this returns another computation, which expects the initial

metacontinuation.

-- Applies a control segment (a first level continuation)

appseg :: Cont ans a b → a → MC ans b

36 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

appseg (Cont k) a = k a

-- Runs a first level CPS term

runOne :: CC ans a → MC ans a

runOne c = unCC c initk

, � � 	 � initk = Cont (λa → MC (λmk → appmk mk a))

-- Applies a second level continuation

appmk :: MetaCont ans a → a → P ans ans

appmk EmptyS a = return a

appmk (PushP _ mk’) a = appmk mk’ a

appmk (PushSeg k mk’) a = unMC (appseg k a) mk’

-- Runs a second level CPS term

runTwo :: MC ans ans → P ans ans

runTwo c = unMC c emptyS

runCC :: (∀ ans. CC ans a) → a

runCC ce = runP (runTwo (runOne ce))

The initial continuation initk applies the metacontinuation via appmk, which in

turn uses appseg to apply an individual control segment.

The exported operators are now implemented as follows:

newPrompt :: CC ans (Prompt ans a)

newPrompt = CC (λk → MC (λmk → � � p ← newPromptName

unMC (appseg k p) mk))

pushPrompt :: Prompt ans a → CC ans a → CC ans a

pushPrompt p e =

CC (λk → MC (λmk →

unMC (runOne e) (PushP p (PushSeg k mk))))

withSubCont :: Prompt ans b → (SubCont ans a b → CC ans b)

→ CC ans a

withSubCont p f =

CC (λk → MC (λmk →
" � � (subk,mk’) = splitSeq p mk

e = f (appendSubSeq (PushSeg k) subk)

� � unMC (runOne e) mk’))

pushSubCont :: SubCont ans a b → CC ans a → CC ans b

pushSubCont subk e =

CC (λk → MC (λmk →

unMC (runOne e) (pushSeq subk (PushSeg k mk))))

A Monadic Framework for Delimited Continuations 37

This implementation is not tail-recursive as there are several occurrences of the

constructor PushSeg that could push the identity continuation.

7.5 Continuations Reified by a Control Operator

This third implementation even more clearly formalises the separation of concerns

between continuation and metacontinuation: it uses two CPS monads: the underly-

ing monad CPS.M, which manipulates a concrete representation of the continuation

CPS.K, and the main monad implementing the CC-interface. The representation of

the continuation CPS.K is hidden from the latter monad. The main monad must

treat the type CPS.K as an abstract type: it can only capture and invoke the contin-

uation manipulated by the underlying monad. In principle we could use callcc to

capture the continuation like we did in Section 5 with the Scheme implementation.

However this requires an initialisation phase to set up the initial continuation and

bind it to a globally accessible abort procedure. It is more elegant in this case to

use Felleisen’s C operator (1987a), which includes the abort action as part of its

definition.

First we assume we are given an underlying CPS monad with the following sig-

nature:

�� � ��" � CPS , � � 	 �

� �', ���
� � K ans a -- Abstract
� �', ���
� � M ans a -- Abstract

� �������'� *'� Monad (M ans)

throw :: K ans a → M ans a → M ans b

c :: (K ans a → ans) → M ans a

runM :: M ans ans → ans

The control operator c gives access to the continuation, which is an abstract type

and aborts to the top level at the same time. The only thing we can do with this

continuation is to invoke it using throw. A computation involving c and throw can

be performed using runM to return its final answer. The implementation of this

monad is standard and is included in Appendix B.

Given this underlying CPS monad, we implement CC as follows:

� �', ���
� � Cont ans a b = Cont (CPS.K (MC ans b) a)

unCont (Cont k) = k

���'� � MetaCont ans a = Seq Cont ans a
���'� � SubCont ans a b = SubSeq Cont ans a b

� �', ���
� � CC ans a = CC (∀ b. CPS.M (MC ans b) a)

38 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

unCC (CC c) = c

� �', ���
� � MC ans b = MC (MetaCont ans b → P ans ans)

unMC (MC m) = m

The type CC is simply a wrapper for CPS.M and its monadic operations are iden-

tical to the ones of CPS.M modulo some tagging and un-tagging of the values:

� �������'� *'� Monad (CC ans) , � � 	 �
return e = CC (return e)

(CC e1) >>= e2 = CC (� � v1 ← e1; unCC (e2 v1))

When run, an underlying CPS.M computation must inspect the metacontinuation

and should return only when the sequence is empty. Hence every CPS.M evaluation

starts with an underflow frame that inspects the stack:

-- Applies a control segment (a first level continuation)

appseg :: Cont ans a b → a → MC ans b

appseg (Cont k) a = CPS.runM (CPS.throw k (return a))

-- Runs a first level CPS term

runOne :: CC ans a → MC ans a

runOne m = CPS.runM (� � a ← unCC m; initkF a)

, � � 	 � initkF a = return (MC (λmk → appmk mk a))

-- Applies a second level continuation

appmk :: MetaCont ans a → a → P ans ans

appmk EmptyS a = return a

appmk (PushP _ mk’) a = appmk mk’ a

appmk (PushSeg k mk’) a = unMC (appseg k a) mk’

-- Runs a second level CPS term

runTwo :: MC ans ans → P ans ans

runTwo c = unMC c emptyS

runCC :: (∀ ans. CC ans a) → a

runCC ce = runP (runTwo (runOne ce))

The exported operations are now implemented as follows:

newPrompt :: CC ans (Prompt ans a)

newPrompt =

CC (CPS.c (λk → MC (λmk →

� � p ← newPromptName

unMC (appseg (Cont k) p) mk)))

A Monadic Framework for Delimited Continuations 39

pushPrompt :: Prompt ans a → CC ans a → CC ans a

pushPrompt p e =

CC (CPS.c (λk → MC (λmk →

unMC (runOne e) (PushP p (PushSeg (Cont k) mk)))))

withSubCont :: Prompt ans b → (SubCont ans a b → CC ans b)

→ CC ans a

withSubCont p f =

CC (CPS.c (λk → MC (λmk →
" � � (subk,mk’) = splitSeq p mk

e = f (appendSubSeq (PushSeg (Cont k)) subk)

� � unMC (runOne e) mk’)))

pushSubCont :: SubCont ans a b → CC ans a → CC ans b

pushSubCont subk e =

CC (CPS.c (λk → MC (λmk →

unMC (runOne e) (pushSeq subk (PushSeg (Cont k) mk)))))

This implementation of our control operators generalises previous direct-style

implementations of shift and reset (Filinski, 1994; Filinski, 1996) as well as imple-

mentations of F and prompt (Sitaram & Felleisen, 1990a).

This implementation is also not tail-recursive: it can only be made tail-recursive if

the underlying CPS module provides a primitive for recognising the identity contin-

uation or, as we illustrated in the Scheme code (Section 5), a primitive for pointer

equality of continuations.

8 Conclusions and further work

We have presented a typed monadic framework in which one can define and exper-

iment with control operators that manipulate delimited continuations. This frame-

work offers several advantages over previous work:

• It provides a set of basic building blocks that easily model the most common

control operators from the literature (Section 2).

• It provides a clear separation of several entangled issues that complicate the

semantics of such control operators: non-standard evaluation order, manipula-

tion and representation of the continuation, manipulation and representation

of the metacontinuation, and generation of new prompt names.

• It is strongly typed and allows one to encapsulate control effects to local

regions of control (Section 6.3).

• It can be implemented on top of any traditional implementation of continua-

tions, including a single, standard CPS translation (Sections 5 and 7).

As shown in Sections 5 and 7, our framework is implemented both in Scheme and

Haskell, providing executable specifications of the control operators as well as spec-

ifications of other possible implementations in other languages and environments.

40 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

A more efficient low-level implementation of our operators can be realized by rep-

resenting partial continuations as actual stack segments, as in the implementation

of traditional continuations described by Hieb et al. (1990).

Our framework has already been used as a basis for several interesting applica-

tions:

• As a computational effect, backtracking consists of an implementation of the

MonadPlus interface in Haskell. This interface provides two constructs for in-

troducing a choice junction and for denoting failure. Although stream-based

implementations of the interface are possible, continuation-based implemen-

tations are often preferred as they avoid a large interpretive overhead (Hinze,

2000). Realistic applications require facilities beyond the simple MonadPlus

interface to control, guide, and manage the choices; it was not known how to

implement such facilities in continuation-based models of backtracking. In a

recent collaboration with others, we have used our monadic framework of de-

limited continuations to design and implement a Haskell library for adding all

the desired advanced backtracking primitives to arbitrary monads (Kiselyov

et al., 2005). The same ideas are also used in a larger context to implement a

complete declarative logic programming system (Friedman & Kiselyov, 2005).

• A “zipper” is a construction that lets us replace an item deep in a complex

data structure, e.g., a tree or a term, without any mutation (Huet, 1997).

The resulting data structure is supposed to share as much of its compo-

nents with the old structure as possible. In a recent post to the Haskell mail-

ing list (http://www.mail-archive.com/haskell@haskell.org/msg16513.

html), Kiselyov notes that a zipper is essentially a cursor into a data structure,

and hence can be realised using our framework of delimited continuations. Un-

like previous attempts, the implementation he proposes is polymorphic over

the data structure to traverse, and the zipper creation procedure is generic

and does not depend on the data structure at all.

• Pugs (http://www.pugscode.org/) is an implementation of Perl 6, written in

Haskell. The language has several of the usual control structures like threads

and coroutines. But in addition, Perl 6 has an unusual execution model that

allows the compiler to trigger evaluation of blocks on-the-fly, and the evalu-

ator to trigger compilation of source code. Pugs uses both the zipper above

to maintain the current position to evaluate, and our framework directly to

represent continuations that can be correctly suspended and resumed even

in that unusual execution environment. As the authors state, this “has many

interesting applications, including web continuations, omniscient debugging,

and mobile code.” (Tang, 2005).

We further hope to be able to use our framework to tackle the difficult question

of tracking the lifetimes and extent (Moreau & Queinnec, 1994) of prompts and

continuations in the presence of control operators. This issue has two important

practical applications.

First, in order to include the control operators in a production language, it is

necessary to understand how they interact with other dynamic entities, such as

A Monadic Framework for Delimited Continuations 41

exceptions. The situation is already complicated without prompts, and implemen-

tations like SML/NJ provide two variants of callcc: one that closes over the current

exception handler and one that does not. The implementation does not otherwise

promise to satisfy any invariants. In contrast, Scheme includes a dynamic-wind op-

erator that guarantees that certain actions are executed before control enters a

region and some other actions are executed before control exits a region, even if

the entering and exit are done via (traditional) continuation operators. This mech-

anism was generalised to work with spawn in the form of control filters by Hieb

et al. (1994). The interaction of dynamic-wind and similar mechanisms with other

control abstractions is not yet well-understood.

The second point is closely related to the first point above. If the lifetime of

prompts is well-understood, it should be possible to design static checks to enforce

that control operations always refer to existing prompts. Recent work (Ariola et al.,

2004; Nanevski, 2004) suggests that one must move to a type-and-effect system in

order guarantee such properties, but such effects can in principle be expressed in the

monadic framework (Wadler, 1998). In the case of shift and reset, Filinski (1999)

does indeed propose a type-and-effect system for layered monadic effects that both

keeps track of the interactions between control abstractions (making some programs

that mix them inappropriately ill-typed), and guarantees statically that well-typed

programs do not fail with “missing prompt” errors. It would be interesting to study

how to generalise this work to deal with multiple prompts.

Acknowledgements

We thank the anonymous reviewers, Olivier Danvy, Matthias Felleisen, Andrzej

Filinski, Daniel P. Friedman, Oleg Kiselyov, Shriram Krishnamurthi, Simon Mar-

low, and Philip Wadler for discussions and helpful comments. We would also like

to thank Eugenio Moggi for critical comments on an attempted type system for

tracking dangling prompts. We also especially thank Oscar Waddell for major con-

tributions to the research ideas and early drafts of the article.

A Implementation of the Prompt Module

�� � ��" � Prompt (

P, Prompt,

runP, newPromptName, eqPrompt, Equal(..)

) , � � 	 �

� ����'	�� GHC.Prim(unsafeCoerce#)

-- The GHC-specific unsafe coerce function

� �', ���
� � Prompt ans a = Prompt Int

� �', ���
� � P ans a = P (Int → (Int,a))

unP (P f) = f

42 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

� �������'� *'� Monad (P ans) , � � 	 �
return e = P (λs → (s,e))

(P e1) >>= e2 = P (λs1 → * ��� � e1 s1 � �
(s2,v1) → unP (e2 v1) s2)

runP :: P ans ans → ans

runP pe = snd (unP pe 0)

newPromptName :: P ans (Prompt ans a)

newPromptName = P (λnp → (np+1, Prompt np))

� �
��� Equal a b , � � 	 �
EQUAL :: Equal a a

NOT_EQUAL :: Equal a b

eqPrompt :: Prompt ans a → Prompt ans b → Equal a b

eqPrompt (Prompt p1) (Prompt p2)

| p1 ≡ p2 = unsafeCoerce# EQUAL

| otherwise = NOT_EQUAL

B Implementation of the CPS Module

�� � ��" � CPS (

M, K,

throw, c,

runM

) , � � 	 �

� �', ���
� � K ans a = K (a → ans)
� �', ���
� � M ans a = M (K ans a → ans)

� �������'� *'� Monad (M ans) , � � 	 �
return e = M (λ (K k) → k e)

(M e1) >>= e2 = M (λk → e1 (K (λ v1 → " � � M c = e2 v1 � � c k)))

callcc :: (K ans a → M ans a) → M ans a

callcc f = M (λk → " � � M c = f k � � c k)

abort :: ans → M ans a

abort a = M (λ_ → a)

throw :: K ans a → M ans a → M ans b

throw k (M e) = M (λ_ → e k)

A Monadic Framework for Delimited Continuations 43

c :: (K ans a → ans) → M ans a

c f = callcc (λk → abort (f k))

runM :: M ans ans → ans

runM (M e) = e (K id)

References

Ariola, Zena M., Herbelin, Hugo, & Sabry, Amr. (2004). A type-theoretic foundation of
continuations and prompts. ACM SIGPLAN International Conference on Functional
Programming. ACM Press, New York.

Biernacki, Dariusz, & Danvy, Olivier. (2006). A simple proof of a folklore theorem about
delimited control. J. Functional Programming. to appear.

Cheney, James, & Hinze, Ralf. (2002). A lightweight implementation of generics and
dynamics. Pages 90–104 of: Proceedings of the ACM SIGPLAN Workshop on Haskell.
New York: ACM Press.

Danvy, O., & Filinski, A. (1989). A functional abstraction of typed contexts. Tech. rept.
89/12. DIKU, University of Copenhagen, Copenhagen, Denmark.

Danvy, Olivier, & Filinski, Andrzej. (1990). Abstracting control. Pages 151–160 of:
Proceedings of the 1990 ACM Conference on LISP and Functional Programming. New
York: ACM Press.

Dybvig, R. Kent, & Hieb, Robert. (1989). Engines from continuations. Computer Lan-
guages, 14(2), 109–123.

Felleisen, M., Friedman, D. P., Kohlbecker, E., & Duba, B. (1987a). A syntactic theory
of sequential control. Theoretical Computer Science, 52(3), 205–237.

Felleisen, Matthias. (1988). The theory and practice of first-class prompts. Pages 180–190
of: Conference Record of the ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages. New York: ACM Press.

Felleisen, Matthias, & Friedman, Daniel P. (1987). A reduction semantics for imperative
higher-order languages. Parallel architectures and languages europe, 259, 206–223.

Felleisen, Matthias, Friedman, Daniel P., Duba, Bruce, & Merrill, John. (1987b). Beyond
continuations. Tech. rept. 216. Indiana University Computer Science Department.

Felleisen, Matthias, Wand, Mitchell, Friedman, Daniel P., & Duba, Bruce F. (1988).
Abstract continuations: A mathematical semantics for handling full functional jumps.
Pages 52–62 of: Proceedings of the ACM Conference on Lisp and Functional Program-
ming. New York: ACM Press.

Filinski, Andrzej. (1994). Representing monads. Pages 446–457 of: Conference Record of
the ACM SIGPLAN-SIGACT Symposium on the Principles of Programming Languages.
New York: ACM Press.

Filinski, Andrzej. 1996 (May). Controlling effects. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University. Technical Report CMU-CS-96-119.

Filinski, Andrzej. (1999). Representing layered monads. Pages 175–188 of: Conference
Record of the ACM SIGPLAN-SIGACT Symposium on the Principles of Programming
Languages. New York: ACM Press.

Findler, Robert Bruce, Latendresse, Mario, & Felleisen, Matthias. (2001). Behavioral
contracts and behavioral subtyping. Pages 229–236 of: Esec/fse-9: Proceedings of the 8th
european software engineering conference held jointly with 9th acm sigsoft international
symposium on foundations of software engineering. New York, NY, USA: ACM Press.

44 R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry

Friedman, Daniel P., & Kiselyov, Oleg. (2005). A declarative applicative logic programming
system. Available from: http://kanren.sourceforge.net/.

Gasbichler, Martin, & Sperber, Michael. (2002). Final shift for call/cc:: direct implemen-
tation of shift and reset. Pages 271–282 of: ACM SIGPLAN International Conference
on Functional Programming. ACM Press.

Gunter, Carl A., Rémy, Didier, & Riecke, Jon G. (1995). A generalization of exceptions
and control in ML-like languages. Functional Programming & Computer Architecture.
New York: ACM Press.

Harper, Robert, Duba, Bruce F., & MacQueen, David. (1993). Typing first-class contin-
uations in ML. Journal of functional programming, 3(4), 465–484.

Hatcliff, John, & Danvy, Olivier. (1994). A generic account of continuation-passing styles.
Pages 458–471 of: Conference Record of the ACM SIGPLAN-SIGACT Symposium on
the Principles of Programming Languages. New York: ACM Press.

Hieb, Robert, & Dybvig, R. Kent. (1990). Continuations and Concurrency. Pages 128–136
of: Symposium on Principles and Practice of Parallel Programming. SIGPLAN Notices,
vol. 25(3). Seattle, Washington, March 14–16: ACM Press.

Hieb, Robert, Dybvig, R. Kent, & Bruggeman, Carl. 1990 (June). Representing control in
the presence of first-class continuations. Pages 66–77 of: Proceedings of the SIGPLAN
’90 conference on programming language design and implementation.

Hieb, Robert, Dybvig, Kent, & Anderson, III, Claude W. (1994). Subcontinuations. Lisp
and Symbolic Computation, 7(1), 83–110.

Hinze, Ralf. (2000). Deriving backtracking monad transformers. Pages 186–197 of: ICFP
’00: Proceedings of the 5th ACM SIGPLAN International Conference on Functional
Programming. ACM Press.

Huet, Gérard. (1997). The zipper. J. funct. program., 7(5), 549–554.

Kiselyov, Oleg. (2005). How to remove a dynamic prompt: static and dynamic delimited
continuation operators are equally expressible. Tech. rept. TR611. Indiana University.

Kiselyov, Oleg, Shan, Chung-chieh, Friedman, Daniel P., & Sabry, Amr. (2005). Back-
tracking, interleaving, and terminating monad transformers (Functional Pearl). ACM
SIGPLAN International Conference on Functional Programming. ACM Press, New
York.

Launchbury, John, & Peyton Jones, Simon L. (1995). State in Haskell. Lisp and Symbolic
Computation, 8(4), 293–341.

Moggi, Eugenio. (1991). Notions of computation and monads. Information and computa-
tion, 93(1), 55–92.

Moreau, L., & Queinnec, C. (1994). Partial continuations as the difference of continuations.
A duumvirate of control operators. Lecture notes in computer science, 844.

Murthy, C. (1992). Control operators, hierarchies, and pseudo-classical type systems:
A-translation at work. Pages 49–71 of: Acm workshop on continuations.

Nanevski, Aleksandar. (2004). A modal calculus for named control effects. Unpublished
manuscript.

Pottier, François, & Régis-Gianas, Yann. (2006). Stratified type inference for generalised
algebraic data types. Pages 232–244 of: 33rd acm symposium on principles of program-
ming languages (popl’06). ACM.

Queinnec, Christian, & Serpette, Bernard. (1991). A dynamic extent control operator for
partial continuations. Pages 174–184 of: Conference Record of the ACM SIGPLAN-
SIGACT Symposium on the Principles of Programming Languages. New York: ACM
Press.

Shan, Chung-chieh. (2004). Shift to control. Pages 99–107 of: Shivers, Olin, & Waddell,

A Monadic Framework for Delimited Continuations 45

Oscar (eds), Proceedings of the 5th Workshop on Scheme and Functional Programming.
Technical report, Computer Science Department, Indiana University, 2004.

Sitaram, Dorai, & Felleisen, Matthias. (1990a). Control delimiters and their hierarchies.
Lisp and Symbolic Computation, 3(1), 67–99.

Sitaram, Dorai, & Felleisen, Matthias. (1990b). Reasoning with continuations ii: full
abstraction for models of control. Pages 161–175 of: Lfp ’90: Proceedings of the 1990
acm conference on lisp and functional programming. New York, NY, USA: ACM Press.

Sitaram, Dorai, & Felleisen, Matthias. (1991). Models of continuations without continua-
tions. Pages 185–196 of: Popl ’91: Proceedings of the 18th acm sigplan-sigact symposium
on principles of programming languages. New York, NY, USA: ACM Press.

Strachey, Christopher, & Wadsworth, Christopher P. (1974). Continuations A mathemati-
cal semantics for handling full jumps. Technical Monograph PRG-11. Oxford University
Computing Laboratory Programming Research Group.

Tang, Autrijus. (2005). Pugs: Boolstrapping Perl 6 with Haskell. Available from http:

//perlcabal.org/~autrijus/hw2005.pdf.

Thielecke, Hayo. (2003). From control effects to typed continuation passing. Pages 139–149
of: Conference Record of the ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages. ACM SIGPLAN Notices, vol. 38, 1. New York: ACM Press.

Wadler, Philip. (1994). Monads and composable continuations. Lisp and Symbolic Com-
putation, 7(1), 39–56.

Wadler, Philip. (1998). The marriage of effects and monads. Pages 63–74 of: ACM
SIGPLAN International Conference on Functional Programming. ACM Press.

Xi, Hongwei, Chen, Chiyan, & Chen, Gang. (2003). Guarded recursive datatype con-
structors. Pages 224–235 of: Norris, Cindy, & Fenwick, Jr. James B. (eds), Conference
Record of the ACM SIGPLAN-SIGACT Symposium on the Principles of Programming
Languages. ACM SIGPLAN Notices, vol. 38, 1. New York: ACM Press.

