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Abstract

The 3D pose estimation problem – aligning pairs of noisy
3D point clouds – is a problem with a wide variety of real-
world applications. Here we focus on the use of quaternion-
based neural network approaches to this problem and ap-
parent anomalies that have arisen in previous efforts to re-
solve them. In addressing these anomalies, we draw heav-
ily from the extensive literature on closed-form methods to
solve this problem. We suggest that the major concerns
that have been put forward could be resolved using a sim-
ple multi-valued training target derived from rigorous theo-
retical properties of the rotation-to-quaternion map of Bar-
Itzhack. This multi-valued training target is then demon-
strated to have good performance for both simulated and
ModelNet targets. We provide a comprehensive theoretical
context, using the quaternion adjugate, to confirm and es-
tablish the necessity of replacing single-valued quaternion
functions by quaternions treated in the extended domain of
multiple-charted manifolds.

1. Introduction

The basic problem of pose estimation, or specifically 3D
point cloud alignment, is important in a wide variety of dis-
ciplines, including machine vision, astronautics, robotics,
and proteomics, with further applications for the general
rotation learning problem in fields ranging from scene re-
construction and cryo-electron microscopy to self-driving
cars and robotics. Efforts seeking how to effectively repre-
sent rotations in the context of neural networks have raised

concerns about possible deficiencies in the use of quater-
nions [24, 43]. Additionally, Xiang & Li [37, 38] have
observed that multiple heuristic charts for a quaternion at-
las can resolve some of these objections. Here we provide
a rigorous theoretical basis for the quaternion atlas by ex-
ploiting the quaternion adjugate matrix to understand and
resolve the apparent anomalies, concluding that quaternions
have no fundamental defects for this task.

Algebraic Solutions to Pose Estimation We begin by
noting the existence of extensive literature on linear alge-
bra techniques for solving the point-cloud alignment prob-
lem in closed form, referred to alternatively as the “Gener-
alized Procrustes Problem” [8], the Kabsch problem [19],
or RMSD (root mean squared deviation) [6, 10, 15, 16, 28],
depending on the field. This is important because the al-
gebraic insights in this literature can inform neural net-
work approaches to similar problems. This algebraic ap-
proach completely solves the 3D pose estimation problem
with matched input data, with or without noise, and serves
as an initial benchmark to evaluate machine learning ap-
proaches to this class of problems. As shown in Fig. (1)
the algebraic solution provides an order of magnitude im-
provement on the 3D pose estimation problem in compari-
son to the current best quaternion-based machine learning
approach [24]. Regarding algebraic solutions to the 3D
pose estimation problem, there are three threads of relevant
work: the SVD method [28], a direct approach using ma-
trix square roots [15], both of which apply to any dimen-
sion, and an extensive quaternion-eigensystem based liter-
ature [6, 10, 15, 16] that applies specifically to dimensions
2, 3, and 4. We remark that, technically, the existence of
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closed-form quaternion and rotation solutions to the RMSD
task renders neural network approaches to solving this prob-
lem irrelevant. However, there are many other problems, for
example, the alignment of noisy projection data, that can
be phrased as quaternion extraction tasks, but for which no
closed form solution exists. We will focus here on the 3D
quaternion-based problem and its corresponding machine-
learning methods as a prototype for all related rotation-data
extraction applications that can be phrased as a quaternion
discovery task.

Machine Learning, Cloud Matching, and Quaternions
Setting aside the availability of closed-form algebraic so-
lutions, it is well-known (see, e.g., [18]) that neural net-
works can in principle provide arbitrarily accurate approxi-
mations to any function. In fact, there are numerous effec-
tive machine-learning approaches to point-cloud registra-
tion and LiDAR odometry problems that have achieved ex-
cellent results without fully incorporating quaternions. Typ-
ical examples include 3DRegNet by Pais et al [23], Point-
Net [26], and its extensions [41], along with more compli-
cated architectures such as Deep Closest Point [35]. Quater-
nions have proven to be efficient and convenient rotation
representations in SLAM problems, including both Graph-
based [3] and Visual-Inertial based [33] pipelines. Recently,
quaternions have also found utility in contexts distinct from
our presentation here, such as some learning-based LiDAR
odometry frameworks [17]. Since quaternions are well-
known to avoid problems such as gimbal lock that plague
3D rotation matrices expressed in terms of Euler angles, and
to possess desirable properties such as existing on a sim-
ply connected manifold with smooth and uniform distance
computation [16], it is thus logical to use quaternions to rep-
resent rotations in the context of neural networks. However,
several recent implementations of this approach [24, 27, 43]
have reported that quaternions may be a deficient represen-
tation for this task. Zhou et al [43], for example, describe
singularities at 180◦ and a discontinuous behavior that ap-
pears incompatible with employing quaternions themselves
as the training objective for cloud-matching. To resolve this
issue, Xiang & Li [37, 38] have introduced heuristically de-
fined four-fold charts to locally overcome the absence, as
noted by Zhou et al [43], of a global quaternion function.

Our contributions. Our main result is to explain pre-
cisely the sources of the quaternion singularities observed
in the machine learning context, and how the correct atlas of
charts is defined by the quaternion adjugate. By extending
and exploiting an elegant method of Bar-Itzhack [2] for ob-
taining the corresponding quaternion from a numerical 3D
rotation matrix, we are able to establish a mathematically
justifiable, and distinct, form for multivalued quaternion-
based rotation training closely related to the ad hoc sug-

gestion of Xiang & Li [37, 38], which lacks the rigorous
theoretical background that we provide. In particular, we
connect the quaternion adjugate, first described in [11], to
the four distinct forms of the output quaternion required to
successfully implement the learning task.

We conclude that the noted apparent anomalies in the
use of quaternions in machine learning for the pose esti-
mation problem are not due to quaternions themselves, but
to the fact that conventional neural networks learn single-
valued functions, while quaternions need to be treated in the
extended domain of multi-valued manifolds. Readers with
sufficient background in the theory of manifolds, such as the
quaternion’s three-sphere S3, will recognize this as an in-
stance of the mandatory requirement to cover such a mani-
fold with an “atlas” of partial charts and transition functions
related to their local coordinates [14]. The take-home les-
son is that single quaternions may not be computable across
their whole domain, but a family of local charts is com-
putable. At least one chart will be regular in a neighborhood
of each of the possible singularities in the rotation-matrix-
to-quaternion map. Clearly, one should therefore take care
not to apply neural networks to functions in situations such
as those involving nontrivial topological manifolds without
carefully studying the computability features.

2. The Quaternion Context

In this section, we briefly discuss the context of quater-
nions themselves, review the role of quaternion representa-
tions in the solution of the point-cloud matching problem,
and summarize the observations in machine learning appli-
cations that led us to this investigation.

Why Quaternions? Quaternions were discovered by
William Rowan Hamilton in 1843, the culmination of his
long effort to extend imaginary numbers to additional di-
mensions. His result succeeded in representing rotations in
3D in a manner exactly parallel to the way complex num-
bers represent rotations in 2D, using one real component
and the three imaginary numbers ijk instead of just i. In ad-
dition, quaternions showed that the full structure of 3D ro-
tation frames (triple axes) corresponded to simple 4D points
q = [q0, q1, q2, q3] on the hypersphere q · q = 1. This leads
to the fact that each reflected pair of quaternions, q and −q,
corresponds to the same 3D orientation, even though they
are different points in quaternion space. Finally, the struc-
ture of hyperspherical quaternion points can be exploited
to define mathematical curves producing smooth 3D rota-
tion sequences [30], a typical computer animation task, and
many other sophisticated computations such as quantifying
the statistical properties of orientation-frame clouds [12]
and smoothing complex choices of tube and surface orien-
tation in mathematical shape modeling [9].
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Figure 1. RMSD shows an order of magnitude improvement over NN methods for the point-cloud alignment problem. (left) A
typical point-cloud data set, with the reference cloud Y in blue, and the rotated sample cloud X in red, with matched points connected.
(right) Comparison of current best quaternion-based neural network approach to finding optimal rotations between two point clouds [24]
(blue, with sliding average in dark blue), to the closed-form RMSD method in black. Similar experiments described in Sec. 4.

Quaternions and RMSD Point-Cloud Alignment. The
analytic approach to the 3D pose estimation problem can be
expressed as a quaternion eigenvalue problem by starting
with a 3 × K matrix Y forming a list of K 3D reference
points, a matching list of rotated sample data points X, and
the task of transforming X back to its optimal alignment
with Y (see, e.g., [10] for a recent review). The basic pro-
cedure starts with the least-squares loss function [34],

loss(R,X,Y) = ∥R ·X−Y∥2 =

K∑
k=1

∥R ·xk−yk∥2, (1)

whose minimum with respect to variations in the rotation
matrix R is our desired answer Ropt. Following Horn’s ap-
proach [16] to the RMSD problem, we make two transfor-
mations: first, we express the 3D rotation matrix R in its
classic form R(q) using quadratic quaternion polynomials,

R(q) =q02 + q1
2 − q2

2 − q3
2 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q0
2 − q1

2 + q2
2 − q3

2 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q0

2 − q1
2 − q2

2 + q3
2

 ,

(2)

where we will always assume unit-length quaternions,
q · q = q0

2 + q1
2 + q2

2 + q3
2 = 1, enforcing determinant

detR(q) = (q · q)3 = +1. We will see further versions
of this fundamental equation later on. Second, if we multi-
ply out Eq. (1) and apply R · Rt = I3, the only remaining
non-constant term is a negative cross-term that allows us to
rewrite the loss minimization task as a maximization task
for the cross-term

∆(E) = trR(q) · E = q ·M(E) · q , (3)

where E =
[
X ·Yt] is the 3 × 3 cross-covariance matrix

of the data. By examining the coefficients of the qiqj terms
in Eq. (3) from Eq. (2) we obtain the traceless, symmetric
4× 4 profile matrix

M(E) =
D0 Eyz − Ezy Ezx − Exz Exy − Eyx

Eyz − Ezy Dx Exy + Eyx Ezx + Exz

Ezx − Exz Exy + Eyx Dy Eyz + Ezy

Exy − Eyx Ezx + Exz Eyz + Ezy Dz

 ,

(4)

where D0 = Exx + Eyy + Ezz , Dx = Exx − Eyy − Ezz ,
Dy = −Exx + Eyy − Ezz , and Dz = −Exx − Eyy +
Ezz . The maximal value of ∆(E) occurs when q is the
(normalized) eigenvector of the maximal eigenvalue λopt
of the 4×4 matrix M(E), that is, ∆(E) = λopt (see [4, 13,
6, 7, 16, 5, 20, 21]).

These eigenvectors can be obtained from the adjugate
of the characteristic equation of the profile matrix that is
solved by λopt,

χ(E) = [(M(E))− λoptI4] ⇒ detχ = 0. (5)

The adjugate matrix, A(χ), is defined by χ · A(χ) =
det(χ)I4 ≡ 0. Although this fact has not been widely ex-
ploited, the adjugate columns are by construction propor-
tional, with independent scale factors, to the single optimiz-
ing eigenvector q. But since the profile matrix is symmet-
ric, so is its adjugate, thus all the rows are also proportional
to the same eigenvectors: therefore the structure of the ad-
jugate matrix of the RMSD optimization problem must be
proportional to the rank one matrix of “adjugate quaternion
variables,” defined as qij = qiqj , giving

adjugate: A(qij) =


q00 q01 q02 q03
q01 q11 q12 q13
q02 q12 q22 q23
q03 q13 q23 q33

 . (6)

We will find other independent occurrences of this funda-
mental matrix later on.
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Figure 2. Normalization of the quaternion space results in singularities. Here we illustrate how quaternion space in 2D, with 0 ≤ θ <
4π, must be covered by multiple alternative solutions (Eq. (8) & Eq. (9)) depending on the actual 2D cosine and sine rotation parameters.
The blue circles are the paths of ±(1 + c, s), mapping to the green half-circle quaternions in (a, b), failing at c = −1, a = 0. The red
circles are the paths of ±(s, 1 − c), mapping to the magenta half-circle quaternions in (a, b), which fail at c = +1, b = 0. Subfigure
(i) shows partial completion, (ii) shows the full four-part map, and (iii) shows the singularities occurring at c = ±1. (iv) This Zhou-style
sanity test, learning the rotation matrix directly from the quaternion, verifies that restricting training to the quaternion sector similar to
(a > 0, b > 0) in (i,ii,iii) indeed succeeds in recovering the rotation matrix, while training to all quaternions or just a single hemisphere
does not.

Much of the literature determines the maximal eigen-
value using numerical methods [32], though the answer can
be computed directly from Cardano’s quartic equation so-
lution [1], and also one can bypass quaternions entirely
and compute Ropt directly from E using singular-value-
decomposition [28] or the matrix-square-root method [15].
We note that there are subtle problems in determining the
maximal eigenvector from the maximal eigenvalue due to
the appearance of zeros in the eigenvector components. Re-
solving these singularities is closely related to the selection
of optimal variables in the classic rotation to quaternion
method of Sheppard [29]. One of the main objectives of this
paper is to advocate the use of the full quaternion adjugate
matrix as the training target in the neural network context to
avoid the effects of such zeros.

Learning Quaternions in Neural Networks. Several
recent machine-learning implementations of quaternion-
based point-cloud alignment problems have reported that
quaternions are a deficient representation for this task. Zhou
et al [43], for example, describe singularities at 180◦, dis-
continuous behavior, and an error spectrum that appears in-
compatible with the effective employment of quaternions
as a learning target. They propose an alternative way of
encoding the output rotation using 5D or 6D subsets of
the 3D rotation matrix itself. Peretroukhin et al [24], in
contrast, train to an intermediate matrix and appear to im-
prove on the results of [43]. Fig. (1) compares the angu-
lar error of the best performing of these [24] to the closed-
form quaternion solution, which is an order of magnitude
more accurate. Other authors studying rotation-output prob-
lems, including [27, 37, 38], have also observed problems
with using single quaternion outputs, and suggest alterna-

tives such as multiple-valued representations, and other ap-
proaches that circumvent using the pure quaternion repre-
sentation. As the linear-algebra based quaternion approach
outlined above has been used successfully since at least
1968, we were led to examine how these machine learning
approaches used quaternions and to clarify what was and
wasn’t working.

3. Geometry of the Quaternion Manifold
In this section, we discuss the origin of quaternion dis-

continuities in the context of two dimensions that exhibits
all the relevant properties. We then show how the Bar-
Itzhack method [2] in 3D leads directly to the quaternion
adjugate as a complete and rigorous resolution of the dis-
contuity problem. Finally, we review the existing neural
network approaches in the context of the algebraic solution
to the pose estimation problem and the quaternion adjugate
approach.

3.1. The 2D Rotation-to-Quaternion Map

We begin by considering the 2D rotation-to-quaternion
map, as it has sufficient complexity to reveal our main
points. Suppose we have a numerical 2D rotation matrix R,
which by definition is orthogonal with determinant equal to
one; we can write R in two ways,

R =

[
a2 − b2 −2ab
2ab a2 − b2

]
=

[
c −s
s c

]
(7)

detR = 1 → c2 + s2 = 1, (a2 + b2)2 = 1 .

The first equation is a 2D version of the quaternion expres-
sion in Eq. (2) with a = cos(θ/2), b = sin(θ/2), and the
second is the noise-free rotation matrix parameterized by
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c = cos θ, s = sin θ. Our task is now, thinking of (a, b)
as unknown symbols, to derive them using only the ideal
measured rotation data (c, s). We can see that we have two
ways of solving for (a, b). First we use the dependence
a2 + b2 = 1 to eliminate b in the upper left component,

a2 − b2 = 2a2 − 1 = c
2ab = s

}
Solve for (a, b) → a = ±

√
1 + c√
2

, b = ± s√
2
√
1 + c

.

(8)
Then we similarly eliminate a,

a2 − b2 = 1− 2b2 = c
2ab = s

}

Solve for (a, b) → a = ± s√
2
√
1− c

b = ±
√
1− c√
2

.

(9)
Equations (8) and (9) are in fact identical in principle. But
clearly the first solution is impossible for a ∼ 0, or c ∼ −1,
a perfectly legal rotation, and the second solution is impos-
sible for b ∼ 0, or c ∼ +1, also perfectly legal. Thus the un-
normalized components must be retained in order to choose
an expression that avoids the singularities. The set of four
locally non-singular charts covering the entire a, b quater-
nion domain is illustrated in Fig. (2)(i,ii,iii). In Fig. (2)(iv),
we use the Zhou sanity test, learning the rotation matrix
directly from the quaternion, to show that training to ro-
tations with all quaternion signs fails because that quater-
nion is not a function, while training to just positive-signed
quaternions, analogous to a > 0, b > 0, succeeds because
that restriction admits a unique function as a solution.

Figure 3. Learning using the quaternion adjugate performs
among the best quaternion-based methods for NN rotation
estimation. Using a PointNet architecture [25] and train-
ing with simulated random point clouds, the quaternion adjugate
(cyan) evades singularities and substantially outperforms the lone
quaternion training target (green), slightly better than the 6D ro-
tation representation of Zhou et al (red) [43], and on par with
Peretroukhin et al (blue) [24], but still an order of magnitude away
from the analytical RMSD solution (grey dotted line).

3.2. The 3D Rotation-to-Quaternion Map: The Bar-
Itzhack Method and the Quaternion Adjugate

Now we move on to 3D rotations. An appealing and
mathematically-sound approach to the 3D version of the
problem we just solved in 2D is the Bar-Itzhack method [2],
which we will now briefly outline. The fundamental idea is
that if one computes the Fröbenius norm of the difference of
two rotation matrices, one, say R(r) in terms of an unknown
quaternion r = (r0, r1, r2, r3) or their quadratic adjugates,
rij = rirj , and the other, say Q, a possibly noisily mea-
sured 3 × 3 rotation matrix candidate, one recovers Eq. (3)
with Qt replacing the cross-covariance matrix E . We easily
verify this by observing that Bar-Itzhack’s Fröbenius loss
expands as

lossB.I. = tr (R(r)−Q) · (R(r)−Q)
t

= tr
(
R(r) ·R(r)t +Q ·Qt)− 2 trR(r) ·Qt .

We convert the problem to the maximization of the cross-
term,

∆(Q(measured)) = trR(r) ·Qt = r ·M(Qt) · r , (10)

where M(Qt) is just the 4 × 4 symmetric, traceless, real
matrix Eq. (4) with the elements of E replaced by the cor-
responding measured matrix numbers of Qt. Using Eq. (2)
as ideal data we can write Q as Q(q) and M as M(q), where
the maximal eigenvalue of M(q) is 3(q ·q). This leads to our
main insight that the adjugate of the characteristic matrix,

χ = [M(q)− 3(q · q)I4] , (11)

is simply, up to a scale factor,

Adjugate(χ) =


q0

2 q0q1 q0q2 q0q3
q0q1 q1

2 q1q2 q1q3
q0q2 q1q2 q2

2 q2q3
q0q3 q1q3 q2q3 q3

2

 , (12)

in agreement with Eq. (6), where qiqj = qij .
We next observe the essential fact that there are four-

teen potential families of singularities in the quaternion
mapping that would obstruct the computation of a normal-
ized quaternion, namely any combination of up to three of
q0 = 0, q1 = 0, q2 = 0, and q3 = 0. Thus not only
do we recover the 180◦ singularity at q0 = 0 noted by
Zhou et al [43], but in fact several additional entire families.
Comparing to the training functions proposed by Xiang &
Li [37, 38], we see that their form intermixes the singu-
larities, which achieves the desired non-singular result, but
lacks our theoretical context. The final conclusion is that
one needs to train to the quadratic form in Eq. (6), not the
quaternion itself, to solve the pose estimation problem. One
must apply a post-network-evaluation procedure on the out-
put 4×4 matrix; one chooses the column of Eq. (6) with the
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maximum norm, and normalizes that to obtain the desired
non-singular quaternion rotation qopt up to a sign. Finally,
Ropt ≡ R(qopt) is obtained directly from Eq. (2).

Figure 4. Training using many rotations of a single source.
Training in the style of [38], with only a single source, shows the
quaternion adjugate training framework also works well in this
scenario – effectively reducing anomalous max error in the final
epoch of testing on 10,000 held out point clouds. Here the mean
error in degrees is 0.66, 0.37, and 0.44 for the 6D, A matrix, and
quaternion adjugate representations, respectively.

3.3. NN approaches in context of RMSD

We have now established the fundamental mathematical
properties of the extraction of a quaternion from rotation
data. We conclude this section with a short discussion of
how this influences the way we understand neural network
approaches to the pose estimation problem. First, we agree
with Zhou et al [43] that the rotation itself, in 5D or prefer-
ably 6D form, can be appropriately employed as a training
target because in fact it is computable from the measured
rotation data; however, lone quaternions are not appropri-
ate as machine learning targets in their procedure, and the
quaternion subtleties that we have explored explain the is-
sues they uncovered.

Next, we observe that the method of Peretroukhin et
al [24] trains to a symmetric 4×4 matrix they denote as “A”
and calculates the eigenvector of the minimal eigenvalue of
A as the quaternion solution they train to. This is exactly
equivalent to the Faugeras & Hebert [6, 7, 13] alternative to
the method of Horn (Eq. (4)). The A matrix of Peretroukhin
is equivalent to their B =

∑N
k=1 Bk where k is the index

within the point cloud and Bk is defined as follows:
Bk =
a1

2 + a2
2 + a3

2 a3s2 − a2s3 a1s3 − a3s1 a2s1 − a1s2
a3s2 − a2s3 a1

2 + s2
2 + s3

2 a1a2 − s1s2 a1a3 − s1s3
a1s3 − a3s1 a1a2 − s1s2 a2

2 + s1
2 + s3

2 a2a3 − s2s3
a2s1 − a1s2 a1a3 − s1s3 a2a3 − s2s3 a3

2 + s1
2 + s2

2


k

(13)

where a{1,2,3} = {x1−y1, x2−y2, x3−y3} and s{1,2,3} =
{x1 + y1, x2 + y2, x3 + y3}.

Of additional interest is the work of Xiang & Li [38, 37]
who propose a set of four different training functions, con-

figured to exclude specific neighborhoods of zeroes of q0,
q1, q2, and q3. This ad hoc approach, which first explored
2-fold and 3-fold quaternion representations before landing
on the successful 4-fold representation, implements an es-
cape from the discontinuous behavior in the work of [43]
only if they alternate among all four options for the quater-
nion training function. In this approach, a ‘self-selecting’
neural network classifier is used to choose between the var-
ious four-fold representations, with sixteen conditions es-
tablished to select one of the four options for the quater-
nion training function, concealing the simple relationship
between the different unnormalized quaternions that are re-
vealed clearly and unambiguously by the adjugate matrix.
In contrast, we use rigorous linear algebra to discover a
complete understanding of this multiplicity and the selec-
tion process via the adjugate matrix. Thus we have traced
the recent advances in quaternion-based neural network ap-
proaches to the pose estimation problem to their roots in the
RMSD literature, ending with our novel description of the
quaternion adjugate approach to resolving the singularities
inherent in learning on the quaternion manifold.

4. Training to the Quaternion Adjugate

We now show the practical consequences of apply-
ing machine learning with the four-fold unnormalized ad-
jugate matrix. Note that this consists of equivalent,
but scaled, copies of the optimal quaternion eigenvector.
The code used to conduct these experiments is available
at https://github.com/flatironinstitute/
PointCloud_Regression.

4.1. Simulated random point clouds

For our first experiment, we employ an elementary data
model of random 3D point clouds and take advantage of the
open source PyTorch implementation of a simplified Point-
Net architecture [25] used in [24]. For each convolutional
layer in the feature extractor network, we use batch normal-
ization without dropout. We used the Adam optimizer and
a learning rate of 0.001. For the simulated data, an initial
reference cloud of N random (x, y, z) values is transformed
by a random quaternion rotation qinit plus Gaussian noise σ
to generate a test cloud. Our initial experiments were car-
ried out with N = 100 points in range ±1 and σ = 0.1. We
created 1000 reference clouds, each with a matching noisy
rotated target partner: 900 pairs were used for training and
100 for testing for each batch. The loss function used for the
quaternion-based learning was the chordal distance between
the learned and the target quaternion [24]. To learn using the
adjugate matrix instead of a lone quaternion we used the ini-
tial framework of [24] in which the 10-dimensional output
is used to construct a 4 × 4 symmetric matrix. However,
we used the Fröbenius norm as a loss function between the
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Figure 5. Training on multiple rotations for a single ModelNet airplane reveals similar performance for the “A” matrix and the quaternion
adjugate.

learned adjugate matrix and the target adjugate matrix,

loss(Adjtarget,Adjlearned) =

K∑
k=1

∑
i≤j

(
Adjtargetij

k − Adjlearnedij
k
)2

 .

(14)

After learning the best adjugate matrix using this loss,
the quaternion result is extracted from this by normalizing
the adjugate element with the maximal norm. Note that us-
ing the Fröbenius norm between the target and learned ad-
jugate as the loss has the beneficial side-effect of guaran-
teeing a good approximation to a rank 1 adjugate matrix.
This is essential since we must extract a column with non-
singular normalization from the adjugate, and these will
match, up to a possibly-vanishing scale, only if we have
a rank 1 matrix.

Using the adjugate method instead of the lone quaternion
to train our neural net, we saw learning improve drastically,
as shown in Fig. (3), to the point where the mean distance
to the target quaternion was closer than for the 6D method
of Zhou et al [43] and on par with the “A” matrix method of
Peretroukhin et al [24].

In the final experiment with simulated point cloud data,
we tested the quaternion adjugate learning performance in
a manner that replicates the procedure of Xiang & Li [38].
In this experiment, we used a single point cloud with 100
points as the source, applied 100,000 random rotations, and
added Gaussian noise to generate the target point clouds.
Throughout this process, we maintained the same hyperpa-
rameters and network configurations used in the initial ex-
periment and similarly used 90% of the data for training.
In this scenario we again see that the quaternion adjugate
learning framework performs well (Fig. (4)).

4.2. Exploring ModelNet40 Data

We further experimented on the ModelNet40
dataset [36], a meshed CAD model with 40 categories of

3D models. We continued to use the standard PointNet [25]
architecture to conduct two kinds of experiments on this
real-world dataset with a learning rate of 0.0001. In
both cases we compared the results using our quaternion
adjugate representation to Peretroukhin’s “A” matrix
model [24]. Here we show results for σ = 0.1, but experi-
ments conducted with σ = 0.01 and 0.05 produced similar
results. For each experiment, in addition to the loss, we
also measured the angular difference with respect to qinit.
We first used a single model from the airplane category, and
during each iteration of training, we transformed it with
random rotations. In this task, 1000 noisy rotated target
airplanes are generated to pair with the single initial model,
and 90 percent of them are used for training. Fig. (5)
displays a sample of an airplane model and the results of
training for a single airplane model: both representations
achieved a small angle error of around 1 degree.

For the second experiment, we picked 33 airplane mod-
els with sizes ranging from 30,000 to 35,000 points. In
each iteration of training, we randomly sampled one model
out of 33 and used similar settings to those used in Point-
Net [25] by uniformly sampling 2048 points from each se-
lected airplane. After each downsampling, we applied ran-
dom rotations and noise to generate target data. We gen-
erated 2000 pairs of point clouds and used 90 percent for
training. Fig. (6) shows a selection of these airplanes and
compares the performance of the two training targets. The
final angular errors, around five degrees, were larger than
for those trained with just one model, but clearly show that
the quaternion adjugate has improved performance over the
“A” matrix model. The larger angular error in this experi-
ment is likely due to the ModelNet models being generated
from real-world scans from the SUN database [39], which
have much greater variation in their shape and size even
in a single category. Thus to achieve better performance,
more complicated feature extractors, such as self-attention
[40] or transformer-based [35] architectures, appear to be
needed to learn local and global context information of the
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Figure 6. Training on the more complex case of multiple models from ModelNet reveals superior performance of the quaternion adjugate.

Figure 7. Training on the simulated point cloud dataset with σ = 0.1 using qhorn or qinit to produce the target adjugate matrix.

point clouds. We intend to explore this further in the future.

5. Issues to be considered

The tasks and frameworks we have considered here have
many nuances that need to be taken into account depending
on the context. For example, in the bulk of the literature
training is done to the initial simulation-defining rotation,
Rinit, or quaternion, qinit. However, the optimal quaternion
solution, qhorn, (using the RMSD method of Horn and oth-
ers) remains the correct optimal rotation with or without
added noise, and as shown in Fig. (7) this is the more re-
liable training target.

6. Conclusions

In this paper, we have addressed how the decades old lit-
erature solving the quaternion-based 3D point-cloud align-
ment problem is relevant to learning 3D rotations via neural
networks. We have taken the adjugate quaternion frame-
work, originally developed in the context of an analytical
solution to the 3D to 2D rotation estimation problem [11],
and found that this approach improves the performance
of machine learning for this class of problems. We have
pointed out that the closed form algebraic (RMSD) solu-
tion for the point-cloud alignment problem gives the ideal

result, and we encourage others to take advantage of this
method in appropriate stages of their analysis. We hope to
emphasize with this paper that it is not quaternions that are
a deficient representation of rotations, but rather that neural
networks with single-function outputs are a deficient repre-
sentation for multi-valued objects like quaternions, a topic
which has been addressed in other problem areas [31, 42].
We note that there are many more subtleties to be under-
stood and explored concerning the use of neural networks
for rotation estimation problems. Further work in fact needs
to be done even in the limited domain we have explored
here, for example, directly incorporating SVD into neural
networks [22]. Finally, we would like to highlight the in-
terplay in this paper between standard linear algebra tools
and improved development of neural networks, as the most
significant results described here lie on both sides of this
divide.
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