Learning in Case-Based Reasoning

- Records of problem-solving and interpretation are stored in memory
- Cases contain ungeneralized experiences and lessons
- New reasoning remembers and adapts prior cases

Case-based planning

CHEF (Hammond, 89) builds new recipes from cases representing previous recipes. A Sample task:

A sample task:

- Input goals:
 - make a stir-fry dish
 - include beef
 - include broccoli

Two real-world applications: bioprocess planning and military force deployment
Similarity and retrieval

- CHEF bases similarity judgments on a hierarchy of important features
- Dish type is most important, then meat type, then vegetable types, ...
- Example: Given the goal of beef and broccoli, CHEF retrieves recipe for beef and green beans.

Adapting a case to fit

CHEF uses two types of adaptation knowledge:

- *modification rules* for structural changes (e.g., additions and reorderings)
- *ingredient critics* to adjust for individual items
A modification rule for adding fruit to a souffle

(add:mod
 index (fruit style-souffle)
 amount (cup number (1))
 steps ((do (chop object ?new-item size (pulp)))
 (before (pour object ?object
 into (nine-inch-baking-dish))
 do (mix object ?new-item with ?object)))))

An ingredient critic for shrimp

(add:crit shrimp
 binds (shrimp *new-item*)
 steps ((before (cook-step object *new-item*)
 do (shell object *new-item*))))
Summary of CHEF’s Architecture

How CHEF Generates a Plan for Beef and Broccoli

• Retrieve beef and green beans
• Apply modification rule to substitute broccoli for green beans
• Apply ingredient critic to add chopping step and adjust cooking time
Voilà! Beef with broccoli

- Ingredients: 1/2 pound beef, 1 tsp sugar, 2 Tbs soy sauce, 1/2 lb. Broccoli, 1 tsp rice wine, 1 tsp salt, 1/2 tsp corn starch, 1 clove garlic
- Chop the garlic into pieces the size of matchheads.
- Shred the beef.
- Marinate the beef in the garlic, sugar, corn starch, rice wine and soy sauce.
- Chop the broccoli into chunks.
- Stir fry the spices, rice wine and beef for one minute.
- Add the broccoli to the spices, rice wine and beef.
- Stir fry the spices, rice wine, broccoli and beef for three minutes.
- Add the salt.

Evaluating result

- Check result against adapted recipe goals:
 - The beef is tender.
 - The dish tastes savory.
 - The broccoli is crisp.
 - The dish is salty.
 - The dish is sweet.
 - The dish tastes like garlic.
- Plan is executed (in simulator) and checked against expectations.

But the broccoli is soggy!
CHEF’s recovery from failure

• Explain: Beef releases water => broccoli steams.
• Identify problem pattern:
 – Water released by cooking the beef disabled "dry wok."
 – SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT
• Retrieve repair strategies for the problem pattern:
 – Split-and-reform.
 – Alter-plan:side-effect
 – Adjunct-plan
• Split-and-reform applies.
• New plan works!

Failure Recovery Architecture
Learning from experience

- CHEF stores plans under the combinations of goals they satisfy, including the problems they avoid.
- It learns:
 - A new case: the recipe for beef and broccoli, indexed under
 - Goals (stir-fry, beef, broccoli)
 - Problem avoided (avoids bad meat/vegetable interaction)
 - A rule for anticipating meat/crisp vegetable interaction problems

CBR as Learning

- Learning from success
 - Save successful solutions
- Learning from failures
 - Learn to anticipate and avoid problems
- Purposes of learning
 - Improving competence
 - Speedup
Prodigy Evaluation (Veloso, 94)

The Hard Problems

- Indexing
- Situation assessment
- Capturing adaptation knowledge
- Keeping cases and indices up-to-date
Most Active Research Areas in CBR

- Case adaptation
- Case-base maintenance
- Interactive CBR

Better Living Through Machine Learning

VTT Biotechnology in Helsinki has applied CBR to beer production and fielded their system in Finnish breweries.