1. The circumference of a circle is 2π. The perimeter of a hexagon inside the circle will be less than 2π and the perimeter of a hexagon outside the circle will be greater than 2π. What are the best bounds on π that can be obtained from simple use of these ideas?

2. Simplify $\sum_{1 \leq i \leq n} \sum_{0 \leq j \leq i} \frac{j}{i}$.

3. The recurrence $E_n = E_{n-1}^2/2^n$ with the boundary condition $E_0 = 1$ is nonlinear. However, if you take the logarithm of the equation, you obtain a linear first order equation in $\log E_n$.
 a. Show the equation that results from taking the logarithm. (You may choose any useful base for your logarithm.)
 b. Solve for E_n.

4. Let $a_{n+1} = (a_n + b_n)/2$ and $b_{n+1} = \sqrt{a_nb_n}$. Define $\epsilon_n = b_n - a_n$.
 a. Express b_n, a_{n+1}, and b_{n+1} exactly in terms of a_n and ϵ_n.

 b. Express b_n, a_{n+1}, and b_{n+1} exactly in terms of a_n and with a power series of cubic order in terms of ϵ_n, that is the least significant term should have the form $f(a_n)O(\epsilon^3)$ for ϵ_n near 0, where f is some function of one variable.

5. Assume $x^2e^x = t$. Find an asymptotic solution for x as a function of t that is correct for large t.