Problem 1. Do any two of (a), (b) and (c).

Develop minimal sum-of-products forms for the following specifications.

(a) \[\begin{array}{cccc|c} A & B & C & D & Z \\ \hline 0 & 0 & c & 1 & c \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & c & 0 & c \\ 1 & 1 & c & 1 & c \\ \end{array} \]

\[\text{Answer: } \overline{A} C + \overline{A} \overline{D} + C \overline{D} + A B C D. \]

Because of the don’t-cares it is best to solve this with a K-map.

(b) \[\begin{array}{cccc} \hline U & V & W & X \\ \hline 00 & 01 & 11 & 10 \\ \hline 00 & 0 & 1 & - & 1 \\ 01 & 0 & 1 & 0 & 0 \\ 11 & 1 & 0 & 0 & 0 \\ 10 & 1 & 1 & 1 & 0 \\ \end{array} \]

\[\text{Answer: } \overline{U} V W + U \overline{W} X + \overline{U} W X + \overline{U} V \overline{X} + U V W. \]

(c) \[(A \cdot \overline{B}) + (C \cdot \overline{D})) \cdot (B + \overline{C} + D) \]

\[\text{Answer: } A \overline{B} \overline{C} + A \overline{B} D + C \overline{D} B \]

The expression multiplies out to

\[((A \overline{B}) + (C \overline{D})) \cdot (B + \overline{C} + D) \]
\[= (A \overline{B})(B + \overline{C} + D) + (C \overline{D}) \cdot (B + \overline{C} + D) \]
\[= A \overline{B} \overline{B} + A \overline{B} \overline{C} + A \overline{B} D + C \overline{D} B + C \overline{D} \overline{C} + C \overline{D} D \]
\[= A \overline{B} \overline{C} + A \overline{B} D + C \overline{D} B \]

There are no further reductions of the form \(xy + \overline{y} \Rightarrow y \).
Question 2

Implement \(A = ((X \cdot Y \cdot \overline{Z}) + (U + V + W) \cdot S \cdot T) \) subject to the constraints that inputs \(X.L, Y.L, \) and \(Z.L \) are fixed at \(\text{true} = L \); output \(A.H \) is fixed at \(\text{true} = H \); and all other signals may have arbitrary polarity.

(a) Using LS’00 (nand) gates, LS’02 (nor) gates, and LS’04 inverters

A well-formed answer should

1. show the logic as expressed, including the nots Since the implementation uses 2-input logic gates, \(x + y + z \) is interpreted as \((x + y) + z \).

2. have no inconsistent connections (polarities), including the input/output paths. Putting bubbles on the not symbols is optional, but helps confirm that all polarities match correctly.

3. correctly and consistently label the gates and inputs/outputs
Question 2

(b) Implement $A = ((X \cdot Y \cdot \overline{Z}) + (U + V + W \cdot S \cdot T))$ using LS’06 open-collector inverters only.

(1) Diagram the logic as expressed. Since the implementation uses wired-and/or logic, gates may have arbitrarily many inputs.

(2) The wired-and/or gates provide positive-logic ands and negative-logic ors. An intermediate wired-gate diagram preserves the logic of the specification.

(3) Now, each wired-and/or must have an open-collector buffer (inverter) on every input, all tied to a pull-up resistor. However, we should apply mixed logic principles, using the inverters to fix polarity mismatches. The problem as given does not illustrate the subtleties, so below I have changed the constraint on Z from true=low to true=high. By swapping the bubble on the inverter, \overline{Z} is implemented “within” the wired-or gate. It doesn’t matter where we put the bubble, it’s the same device. Unfortunately, we can’t use the same trick on the other not or to fix the polarity of A.
Note: You are not expected to know all these details, but it is worthwhile to study and understand the application of mixed logic, as well as to remember the way open-collector connections work.

Note: It is acceptable and reasonable to solve problems using a PLA layout, which would require that you first translate the specification expression into SOP form. Of course, by doing this, you lose the logical correspondence with the original expression. I mean “lose” literally: this is the kind of design-to-implementation documentation that is often lost when someone needs to understand the design later.
Question 3. Design an economical 12-input by 1-bit multiplexor using basic combinational building blocks. Briefly explain your approach.

One solution is to use a multiplexor tree. Depending on whether you are counting gates or chips, the 3-input selector at the second stage could be replaced by two 2-input selectors. There is an SSI package containing two 4-by-1 muxes, so you might as well use all four. Let’s leave it to the surrounding system to assure that the selection word, $S_3 S_2 S_1 S_0$, stays within range.
However, I was looking for a tri-state multiplexor. A decoder is used to develop ENABLE inputs to twelve tri-state buffers whose outputs are tied to a bus. The fourth decoding bit is implemented with an AND gate.

The decoding logic is roughly equivalent in size to the mux tree above. However, these enabling signals need only be developed once, so to expand this selector to n data bits on only needs twelve additional tri-state buffers.