B441/541 – Fall 2004 – Homework One

NOTE: Work your answers out on scratch paper first. Sloppy and/or disorganized answers are penalized

1. Give an efficient mixed-logic synthesis of

\[Y = (A \cdot B + C) \cdot (D \oplus E + B) \]

using two-input *nor* gates (LS02), two-input *exclusive-or* (\(\oplus \)) gates (LS86) and inverters (LS04), and signals A.L, B.H, C.L, D.H, E.L and Y.L. Try to minimize the number of chips.

ANSWER:

1. *First, draw a schematic of the logic:*

 ![Schematic](image1)

2. *Add the I/O constraints*

 ![I/O Constraints](image2)

3. *Implement the gates. We don’t have LS00 nand gates available, so all of the ands and ors must be implemented with LS02s. In this solution, I started at the output side and worked backwards. I might have started on the input side, or somewhere in the middle, but not with the xor gate because the LS86 can implement xor with four different polarity combinations).*

 ![Gate Implementation](image3)

4. *Use inverters to fix polarity mis-matches. Even though there are a lot of inverters, the design is implemented using three ICs, with one xor gate to spare.*

 ![Inverter Implementation](image4)

Solutions that alter the logic of the implementation do not receive full credit, even if they result in fewer gates. Implementation should not be confused with design.
2. Consider the logic schematic

(a) Express this logic as a system of boolean equations. The system below only identifies the internal signals that fan out.

\[X = C + D \]
\[Y = B + X \]
\[W = [(A \cdot Y) \cdot (A + Y)] + X \cdot (E \cdot \overline{C}) \]

(b) Implement this specification with LS00, LS02 and LS04 devices. The I/O constraints are A.H, B.H, E.L and W.L. C and D may be either polarity.

Here’s one way to do it. The unlabeled inverters could be realized with the remaining unused LS00 and LS02 gates.
3. (a) Using the K-map below, derive a reduced (near-minimal) sum-of-products expression for the function whose truth table is shown to the right. Unspecified or conflicting cases, if any, may be regarded as don't-cares.

(b) Using boolean algebra, further optimize to an equivalent multi-level term with fewer operations than the \(SoP \) form.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>e</td>
<td>τ</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The map-entered K-map below shows how the information in the truth table is used to fill in the map. It is also valid, but more time consuming, to build two regular K-maps for the cases in which \(E = 1 \) and \(E = 0 \). In this case, it is unnecessary to use any 1s in the covering of the \(E \)s.

The answers below are not unique.

(a) \[\overline{A}DE + \overline{A}BE + ABC + BCD + \overline{ABC} \]

(b) \[\overline{AE}(D + B) + A(B \oplus C) + BCD \]
4.

(a) Give a mixed-logic synthesis of the logic expression \(A \cdot (B \cdot C + \overline{B} \cdot D) + B \cdot \overline{C} \cdot \overline{D} \) using only 74LS06 open-collector inverters and pull-up resistors (which you may assume are appropriately sized). Assume all inputs and outputs must have positive (\(T = H \)) polarity.

Open collector circuits give us positive logic wired-ands and negative logic wired-ors.

Incorporate the inverters to match the polarities.
(b) A SoP form of the original expression, \(A B C + A \overline{B} D + B \overline{C} \overline{D} \). Can also be implemented with '06s, using a more regular logic array layout structure (possibly at the cost of more gates). Draw such an implementation.

We need SOP form of the original function, \(Y = A B C + A \overline{B} D + B \overline{C} \overline{D} \). Since we have only LS06 inverters, two in series are needed to get an open-collector voltage for \(A, B \) and \(C \). There is also also use a pull-up on the output to get a proper digital value.
5. Design a one-bit full adder-subtractor taking operand inputs \(A \) and \(B \); carry/borrow input \(C/B_{in} \); and add/subtract mode input \(M \); and generating outputs \(S \) for the sum/difference and \(C/B_{out} \) for the propagated carry/borrow bit.

When \(M = 1 \) the device should behave as a full adder as described in class; and when \(M = 0 \) it should behave as a full subtractor. The functions should compose in a ripple-carry way to get \(n \)-bit adder/subtractor combinations.

From the truth table one can see that the \(S/D \) output is independent of \(M \).

\[
\begin{array}{cccc|cc}
M & A & B & C/B_i & S/D & C/B_o \\
\hline
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

subtraction

addition

\[
S/D = A \oplus B \oplus C/B_i \\
C_o = B C_i + \overline{M} \overline{A} B + \overline{M} A C_i + M A B + M C_i A \\
= B C_i + \overline{M} \overline{A} (B + C_i) + M A (B + C_i) \\
= B C_i + (\overline{M} A + M A) (B + C_i) \\
= B C_i + (\overline{M} A + M A) (B + C_i) \\
= \text{etc.}
\]
6. In certain technologies (to be described later in this course) the only gate provided is a \(2^n\)-input multiplexer. Suppose you have only 2-input multiplexers for implementing the expression

\[C \cdot D + A \cdot C + B \cdot \overline{C} + A \cdot C \cdot \overline{C} \]

That is, you must convert this expression to one composed of nested combinations of:

\[\text{mux}(s, x, y) \overset{\text{def}}{=} (s \cdot x) + (\overline{s} \cdot y) \]

(a) Design a mux-based implementation of \(E\). If you employed a specific technique (e.g. boolean algebra, etc.) to accomplish this task, explain it for extra credit. For even more extra credit, implement your strategy in software.

(b) Synthesize a solution using only 74LS125 tri-state buffers and 74LS04 inverters.

As discussed in class, three approaches could be taken to solving this problem.

1. Implement each of and, or and not with a multiplexor,
2. Build a tree of 15 muxes to implement a four-variable look-up table.
3. Algebraically manipulate the specification expression to place it in a nested-mux form.