Assignment 1: Sets and relations

(Due by EOD W Aug 30)

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

- 1. (15%) The operation $\overline{\cap}$ of *co-intersection* is defined for subsets of U by $A\overline{\cap}B = U (A \cap B)$.
 - i. Define the complement in terms of co-intersection. Solution. $\overline{A} = A \overline{\cap} A$
 - (a) Define intersection in terms of co-intersection. (Together with the previous part this shows that all basic set operations can be defined in terms of just one operation: co-intersection!)

Solution. $A \cap B = \overline{A \cap B} = (A \cap B) \cap (A \cap B)$ (using (i)).

- **2.** (15%) A set $A \subseteq \mathbb{N}$ is *co-finite* if its complement $\mathbb{N} A$ is finite.
 - i. Give two examples of a co-finite subset of \mathbb{N} . Solution. \mathbb{N} , $\{x \in \mathbb{N} \mid x > 7\}$.
 - (a) Give two examples of subsets of N that are neither finite nor co-finite.
 Solution. The set of even natural numbers, the set of prime.
 - (b) Exhibit an infinite sequence $A_1 \supset A_2 \supset A_3 \cdots$ of subsets of \mathbb{N} , each one a proper subset of its predecessor in the list.

Solution. Take $A_i =_{df} [i..infty]$.

- 3. (20%) Prove the following statements. You may use the Separation Principle in your proofs.
 - (a) There is no "set of all sets."

Solution. If U were the set of all sets, then the Separation Principle would let us define a set $R =_{df} \{x \in U \mid x \notin x\}$ which leads to the same contradiction underlying Russell's Paradox:

- $\begin{array}{cccc} R \in R & \text{iff} & R \in U \text{ and } R \notin R \\ & \text{iff} & R \notin R \end{array} & \text{(by the dfn of } R) \\ & \text{(since } R \in U \text{ by assumption)} \end{array}$
- (b) There is no such thing as the "set of all singletons".
 Solution. If a set S of all singletons exists, by Separation we'd get the set

 $Q = \{\{x\} \in S \mid \{x\} \not\in x\}$

For every singleton set $\{x\}$ we'd have $\{x\} \in Q$ iff $\{x\} \notin x$. Since Q is a legitimate set, we can take x to be Q and conclue that $\{Q\} \in Q$ iff $\{Q\} \notin Q$, a contradiction.

- 4. (20%) For each of the following sets S and collections $C \subseteq \mathcal{P}(S)$ determine whether C is a partition of S.
 - i. $S = \mathbb{N}$; C consists of three sets: the prime numbers, the composite numbers, the singleton $\{0, 1\}$.

Solution. This is a partition, as every natural number is in exactly one of the three sets.

(a) S = the adult population of Indiana. C consists of the three sets: speakers of English, speakers of Spanish, people who speak neither English nor Spanish.

Solution. Not a partition: there are people in Indiana who speak both languages.

(b) $S = \mathbb{R}$. C consists of the three sets: the rational numbers, the irrational numbers, and the integers. (Search on line for definitions, if you need them.)

Solution. Not a partition: the integers are rational numbers.

- 5. (30%) The following problem shows that partitions and equivalence relations are two sides of the same coin.
 - Let **S** be a set.
 - (a) Suppose that C is a partition of S. Define the relation $E \subseteq S \times S$ to hold between $x, y, \in S$ iff they are both in the same $A \in C$. Show that E is an equivalence relation.

Solution. E is reflexive, since every $x \in S$ is in the same part as itself. It is symmetric, because if x and y are the same part, then y and x are in the same part (surprise!). And it is transitive: if x and y are in the same part, and y and z are in the same part, then x and z are in the same part.

(b) Suppose that E is an equivalence relation on S. Show that the collection of equivalence classes of E is a partition of S.

Solution. The equivalence classes are not empty, by their definition. Every $x \in S$ is in a class, namely [x]. And that class is unique, because if $x \in [y]$ then $x \equiv y$ by the definition of y, and so [x] = [y].