Assignment 1: Sets and relations

(Due by EOD W Aug 31)

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

1. (15\%) The operation $\bar{\cap}$ of co-intersection is defined for subsets of U by $A \bar{\cap} B=U-(A \cap B)$.
i. Define the complement in terms of co-intersection.

Solution. $\quad \bar{A}=A \bar{\cap} A$
(a) Define intersection in terms of co-intersection. (Together with the previous part this shows that all basic set operations can be defined in terms of just one operation: co-intersection!)
2. $(15 \%) \mathrm{A}$ set $A \subseteq \mathbb{N}$ is co-finite if its complement $\mathbb{N}-A$ is finite.
i. Give two examples of a co-finite subset of \mathbb{N}.

Solution. $\quad \mathbb{N}, \quad\{x \in \mathbb{N} \mid x>7\}$.
(a) Give two examples of subsets of \mathbb{N} that are neither finite nor co-finite.
(b) Exhibit an infinite sequence $A_{1} \supset A_{2} \supset A_{3} \cdots$ of subests of \mathbb{N}, each one a proper subset of its predecessor in the list.
3. (20%) Prove the following statements. You may use the Separation Principle in your proofs.
(a) There is no "set of all sets."
(b) There is no such thing as the "set of all singletons".
4. (20\%) For each of the following sets S and collections $C \subseteq \mathcal{P}(S)$ determine whether C is a partition of S.
i. $\quad S=\mathbb{N} ; C$ consists of three sets: the prime numbers, the composite numbers, the singleton $\{1\}$.
Solution. This is a partition, as every natural number is in exactly one of the three sets.
(a) $S=$ the adult population of Indiana. \mathcal{C} consists of the three sets: speakers of English, speakers of Spanish, people who speak neither English nor Spanish.
(b) $\quad S=\mathbb{R} . \mathcal{C}$ consists of the three sets: the rational numbers, the irrational numbers, and the integers. (Search on line for definitions, if you need them.)
5. (30%) The following problem shows that partitions and equivalence relations are two sides of the same coin.

Let S be a set.
(a) Suppose that \mathcal{C} is a partition of S. Define the relation $E \subseteq S \times S$ to hold between $x, y, \in S$ iff they are both in the same $A \in \mathcal{C}$. Show that E is an equivalence relation.
(b) Suppose that E is an equivalence relation on S. Show that the collection of equivalence classes of E is a partition of S.

