Assignment 2: Mappings, induction

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

1. (20%) Let $A=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and $B=\{0,1,2\}$. For each of the following types of mapping from A to B determine the number of possible distinct mappings of that type.
i. All mappings.

Solution. There are 9 elements (pairs) in $A \times B$, so there are $2^{9}=512$ possible mappings, i.e binary relations.
Alternative approach: For each $x \in A$ there are $2^{3}=8$ options for output-set. So altogether we have $8^{3}=512$ mappings.
ii. Partial functions, i.e. univalent mappings.

Solution. For each $x \in A$ we have four options for $F(x): \mathbf{0}, \mathbf{1}, \mathbf{2}$ and undefined. So there are $4^{3}=64$ partial-functions from A to B.
(a) Total-functions. [Hint: Similar to (ii)]

Solution. For each $x \in A$ we have three options for $F(x): \mathbf{0}, \mathbf{1}$ and 2. So there are $3 \times 3=9$ total-functions from A to B.
(b) Total mappings. [Hint: The alternative in (i), but \emptyset can no longer be an output-set.]
Solution. For each $x \in A$ there are 7 options for the output-set, given that \emptyset is excluded. So altogether we have $7^{3}=343$ total mappings.
(c) Surjective mappings. [Hint: Use (b)]

Solution. The surjective mappings from A to B are a mirror image of the total mappings from B to A. From (b) the number of such total mappings, when both domain and 5range have 3 elements, is 343 .
(d) Injective mappings.

Solution. The injective mappings from A to B are a mirror image of the partial functions from B to A. From (ii) the number of those, when both domain and range have 3 elements, is 12 .
(e) Bijections. [Hint: Use (d)]

Solution. Since A and B have both three elements, every injection is a surjection, i.e. a bijection. So by (d) the answer is 6 .
2. (20%) Let $f: \mathbb{N} \rightarrow A$ be an injection, and B a set.
(a) Define an injection $g: \mathbb{N} \times B \rightarrow A \times B$.

Solution. Define, for $x \in \mathbb{N}$ and $y \in B \quad g(\langle x, y\rangle)=\langle f(x), y\rangle . g$ is injective, because if $g\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)=g(\langle x, y\rangle)$ i.e. $\left\langle f\left(x^{\prime}\right), y^{\prime}\right\rangle=\langle f(x), y\rangle$ then $x^{\prime}=x$ since f is injective and $y^{\prime}=y$ by the definition of ordered pairs.
(b) Define an injection $j: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(A)$.

Solution. For $A \subseteq \mathbb{N}$ let $j(A)=\{f(n) \mid n \in A\} . j$ is a totalfunction, since it is uniquely defined for every input A. It is injective because if $A \neq A^{\prime}$, say $k \in A-A^{\prime}$, then by the definition of j $f(k) \in j(A)$ but $f(k) \notin j\left(A^{\prime}\right)$, so $j(A) \neq j\left(A^{\prime}\right)$.
3. (15\%) Use the CBS Theorem to show that $\{\mathrm{a}, \mathrm{b}\}^{*} \cong\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$.
[Hint: For an injection $h:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ use two-letter codes for a, b, c. (This is analogous to the binary coding of ASCII characters.)]
Solution. We have $\{a, b\}^{*} \preccurlyeq\{a, b, c\}^{*}$ since the identity function on $\{\mathrm{a}, \mathrm{b}\}^{*}$ is an injection into $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$.
Conversely, define $f:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*} \quad$ by
$f(w)=_{\mathrm{df}} w$ with each a replaced by aa, b by bb, and coby ab.
f is an injection:
For every string u the string $f(u)$ has length $2|u|$. So if $f(u)=f(v)$ then $|u|=|v|$, and if $u=\sigma_{0} \cdots \cdot \sigma_{k}$ and and if $v=\tau_{0} \cdots \tau_{m}$ then $k=m, f(u)=f\left(\sigma_{0}\right) \cdots f\left(\sigma_{k}\right)$, and $f(v)=f\left(\tau_{0}\right) \cdots \cdot f\left(\tau_{k}\right)$.
By the definition of $f, f(\mathrm{a}), f(\mathrm{~b})$ and $f(\mathrm{c})$ are all different, so $\sigma_{i}=\tau_{i}$ for $i=1 . . k$, in other words $u=v$. Thus $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \preccurlyeq\{\mathrm{a}, \mathrm{b}\}^{*}$.
$\{\mathrm{a}, \mathrm{b}\}^{*} \cong\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$ follows by the CBS Theorem.
4. (20%) For each of the following partial-functions determine whether it is (1) total; (2) injective; (3) surjective.
(a) $f: \mathbb{R} \rightharpoonup \mathbb{R}$ where f is defined by $f(x)=+\sqrt{x}$.

Solution. The partial-function f is not total, because it is not defined for negative input.
(b) $f: \mathcal{P}(\mathbb{N}) \rightharpoonup \mathcal{P}(\mathbb{N})$ where $f(A)={ }_{\mathrm{df}} \mathbb{N}-A$.

Solution. $\quad f$ is total. It is injective: if $f(A)=f(B)$, i.e. $\mathbb{N}-A=\mathbb{N}-B$, then $A=\mathbb{N}-(\mathbb{N}-A)=\mathbb{N}-(\mathbb{N}-B)=B$. It is surjective: for every $A \subseteq \mathbb{N}$ we have $A=\mathbb{N}-(\mathbb{N}-A)=f(\mathbb{N}-A)$.
(c) $f: A \rightharpoonup A$ where A is the set of living people and $f(x)={ }_{\mathrm{df}} x$'s oldest child.
Solution. Not total: not every person has children. Not injective: A person is often the oldest child of both their parents. Not surjective: A person need not be the oldest child of anyone.
i. $f: \mathbb{N} \rightharpoonup \mathbb{N}$ where $f(x)=_{\mathrm{df}} x$'s smallest divisor >1. For example, $f(10)=2, \quad f(11)=11$.
Solution. Not total: not defined for 1. Not injective: 2 is the smallest divisor of every even number. Not surjective: Only prime numbers are obtained.
A. Prove that $2^{0}+2^{1}+\cdots+2^{n} \equiv 2^{n+1}-1$ for all $n \in \mathbb{N}$.

Solution. Base. For $n=0$ we have $2^{0}=1=2^{0+1}-1$.
Step. Suppose the equation for $n=k: 2^{0}+2^{1}+\cdots+2^{k}=2^{k+1}-1$. Then $\overline{\text { for } n}=k+1$ we have

$$
\begin{aligned}
2^{0}+2^{1}+\cdots+2^{n} & =\left(2^{0}+\cdots+2^{k}\right)+2^{k+1} \\
& =\left(2^{k+1}-1\right)+2^{k+1} \\
& =2 \cdot 2^{k+1}-1 \\
& =2^{(k+1)+1}-1 \\
& =2^{n+1}-1
\end{aligned}
$$

By induction on \mathbb{N} it follows that $2^{0}+2^{1}+\cdots+2^{n}=2^{n+1}-1 \quad$ for all $n \in \mathbb{N}$.
5. (10%) Prove by induction on \mathbb{N} that for all $n \in \mathbb{N}$

$$
1+3+\cdots+(2 n+1)=(n+1)^{2}
$$

Solution. Base: If $n=0$ then $1+\cdots+(2 n+1)=2 n+1=1=(0+1)^{2}$.
Step: Suppose that the identity is true for $n=k$.
Then for $n=k+1$ we have

$$
\begin{aligned}
1+3+\cdots+(2 n+1) & =1+3+\cdots+(2 k+1)+(2 k+3) \\
& =(k+1)^{2}+(2 k+3) \quad(\text { by IH }) \\
& =(k+1)^{2}+2(k+1)+1 \\
& =[(k+1)+1]^{2} \\
& =(n+1)^{2}
\end{aligned}
$$

6. (15%) Prove by Shifted Induction that for every natural number $n \geqslant 8$ there are $a, b \in \mathbb{N}$ such that $n=3 a+5 b$. [Hint: For the induction step, you assume $k=3 a+5 b$, and you want to prove that there are a^{\prime}, b^{\prime} such that $k+1=3 a^{\prime}+5 b^{\prime}$. Consider first the case where $b^{\prime}=0$.]
Solution. Base. For $n=8$ we can take $a=b=1$.
Step. Suppose the given property holds for $n=k \geqslant 8$, that is $k=3 a+5 b$
 $b=0$, we have $k=3 a \geqslant 8$, so $a \geqslant 3$. We have then $k+1=3(a-3)+5 \cdot 2$.

By shifted induction it follows that for every natural number $n \geqslant 8$ there are $a, b \in \mathbb{N}$ such that $n=3 a+5 b$.
B. A multi-set is like a set but with repetition being counted. So $\{a, b\},\{a, a, b\}$ and $\{a, b, b\}$ are different, and of sizes 2,3 and 3 .
Show that for all $n>0$: if R is a multi-set of size n whose elements are positive real numbers whose product ΠR is 1 , then its sum $\sum R \geqslant n$.
[Hint: If R is of size $k+1$, with a the smallest element and b the greatest, replace a and b by their product $a b$; observe that $a \geqslant 1 \geqslant b$.]
Solution. Proof by induction shifted to 1.
Base. If R is a multi-set with one element a, then $a=1$ since $\Pi R=1 \geqslant 1$.
Step. Assume the claim holds for multi-sets of size k. Let R be a multi-set $\overline{\text { of } k}+1$ whose product is 1 . Choose $a=\min (R)$ and $b=\max (R)$ that are distinct (though possibly the same number); this is possible because $k+1 \geqslant 2$. By choice of a, b we have $a \leqslant 1 \leqslant b$.

The multi-set $Q=\mathrm{df} R=\{a, b\} \cup\{a \cdot b\}$ has k elements.
Also, $b(1-a) \geqslant 1-a$ and therefore $b-a b+a \geqslant 1$. Put together,

$$
\begin{align*}
\sum R & =\left(\sum Q\right)+(a+b-a b) \\
& \geqslant k+(a+b-a b) \tag{IH}\\
& \geqslant k+1
\end{align*}
$$

completing the induction.
The statement above implies that the geometric mean of a multi-set of reals is \leqslant its arithmetic mean, a remarkable feat.

