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Assignment 2: Mappings, induction
This assignment contains solved practice problems, numbered in red.

The assigned problems and sub-problems are numbered in green.

1. (20%) Let A = {a, b, c}A = {a, b, c}A = {a, b, c} and B = {0, 1, 2}B = {0, 1, 2}B = {0, 1, 2} . For each of the following types
of mapping from AAA to BBB determine the number of possible distinct map-
pings of that type.

i. All mappings.

Solution. There are 9 elements (pairs) in A × BA × BA × B , so there are
29 = 51229 = 51229 = 512 possible mappings, i.e binary relations.

Alternative approach: For each x ∈ Ax ∈ Ax ∈ A there are 23 = 823 = 823 = 8 options for
output-set. So altogether we have 83 = 51283 = 51283 = 512 mappings.

ii. Partial functions, i.e. univalent mappings.

Solution. For each x ∈ Ax ∈ Ax ∈ A we have four options for F (x)F (x)F (x): 0, 1, 20, 1, 20, 1, 2

and undefined. So there are 43 = 6443 = 6443 = 64 partial-functions from AAA to BBB.

(a) Total-functions. [Hint: Similar to (ii)]

Solution. For each x ∈ Ax ∈ Ax ∈ A we have three options for F (x)F (x)F (x): 0, 10, 10, 1 and
2. So there are 3 × 3 = 93 × 3 = 93 × 3 = 9 total-functions from AAA to BBB.

(b) Total mappings. [Hint: The alternative in (i), but ∅∅∅ can no longer be
an output-set.]

Solution. For each x ∈ Ax ∈ Ax ∈ A there are 7 options for the output-set, given
that ∅∅∅ is excluded. So altogether we have 73 = 34373 = 34373 = 343 total mappings.

(c) Surjective mappings. [Hint: Use (b)]

Solution. The surjective mappings from AAA to BBB are a mirror image
of the total mappings from BBB to AAA . From (b) the number of such total
mappings, when both domain and 5range have 3 elements, is 343.

(d) Injective mappings.

Solution. The injective mappings from AAA to BBB are a mirror image
of the partial functions from BBB to AAA . From (ii) the number of those,
when both domain and range have 3 elements, is 12.

(e) Bijections. [Hint: Use (d)]

Solution. Since AAA and BBB have both three elements, every injection
is a surjection, i.e. a bijection. So by (d) the answer is 6.



2. (20%) Let f : N → Af : N → Af : N → A be an injection, and BBB a set.

(a) Define an injection g : N × B → A × Bg : N × B → A × Bg : N × B → A × B.

Solution. Define, for x ∈ Nx ∈ Nx ∈ N and y ∈ By ∈ By ∈ B g(〈x, y〉) = 〈f(x), y〉g(〈x, y〉) = 〈f(x), y〉g(〈x, y〉) = 〈f(x), y〉 . ggg is in-
jective, because if g(〈x′, y′〉) = g(〈x, y〉)g(〈x′, y′〉) = g(〈x, y〉)g(〈x′, y′〉) = g(〈x, y〉) i.e. 〈f(x′), y′〉 = 〈f(x), y〉〈f(x′), y′〉 = 〈f(x), y〉〈f(x′), y′〉 = 〈f(x), y〉 then
x′ = xx′ = xx′ = x since fff is injective and y′ = yy′ = yy′ = y by the definition of ordered

pairs.

(b) Define an injection j : P(N) → P(A)j : P(N) → P(A)j : P(N) → P(A) .

Solution. For A ⊆ NA ⊆ NA ⊆ N let j(A) = {f(n) | n ∈ A}j(A) = {f(n) | n ∈ A}j(A) = {f(n) | n ∈ A} . jjj is a total-
function, since it is uniquely defined for every input AAA . It is injec-
tive because if A 6= A′A 6= A′A 6= A′ , say k ∈ A − A′k ∈ A − A′k ∈ A − A′ , then by the definition of jjj

f(k) ∈ j(A)f(k) ∈ j(A)f(k) ∈ j(A) but f(k) 6∈ j(A′)f(k) 6∈ j(A′)f(k) 6∈ j(A′) , so j(A) 6= j(A′)j(A) 6= j(A′)j(A) 6= j(A′) .

3. (15%) Use the CBS Theorem to show that {a, b}∗ ∼= {a, b, c}∗{a, b}∗ ∼= {a, b, c}∗{a, b}∗ ∼= {a, b, c}∗ .
[Hint: For an injection h : {a, b, c}∗ → {a, b}∗h : {a, b, c}∗ → {a, b}∗h : {a, b, c}∗ → {a, b}∗ use two-letter codes for
a,b,c. (This is analogous to the binary coding of ascii characters.)]

Solution. We have {a, b}∗ 4 {a, b, c}∗{a, b}∗ 4 {a, b, c}∗{a, b}∗ 4 {a, b, c}∗ since the identity function on
{a, b}∗{a, b}∗{a, b}∗ is an injection into {a, b, c}∗{a, b, c}∗{a, b, c}∗.

Conversely, define f : {a, b, c}∗ → {a, b}∗f : {a, b, c}∗ → {a, b}∗f : {a, b, c}∗ → {a, b}∗ by

f(w) =dff(w) =dff(w) =df www with each aaa replaced by aaaaaa, bbb by bbbbbb, and ccc by ababab.

fff is an injection:
For every string uuu the string f(u)f(u)f(u) has length 2 |u|2 |u|2 |u| . So if f(u) = f(v)f(u) = f(v)f(u) = f(v)

then |u| = |v||u| = |v||u| = |v|, and if u = σ0 · · · · · σku = σ0 · · · · · σku = σ0 · · · · · σk and and if v = τ0 · · · · · τmv = τ0 · · · · · τmv = τ0 · · · · · τm then
k = mk = mk = m , f(u) = f(σ0) · · · · · f(σk)f(u) = f(σ0) · · · · · f(σk)f(u) = f(σ0) · · · · · f(σk) , and f(v) = f(τ0) · · · · · f(τk)f(v) = f(τ0) · · · · · f(τk)f(v) = f(τ0) · · · · · f(τk) .

By the definition of fff , f(a), f(b)f(a), f(b)f(a), f(b) and f(c)f(c)f(c) are all different, so σi = τ iσi = τ iσi = τ i for
i = 1..ki = 1..ki = 1..k, in other words u = vu = vu = v . Thus {a, b, c}∗ 4 {a, b}∗{a, b, c}∗ 4 {a, b}∗{a, b, c}∗ 4 {a, b}∗.

{a, b}∗ ∼= {a, b, c}∗{a, b}∗ ∼= {a, b, c}∗{a, b}∗ ∼= {a, b, c}∗ follows by the CBS Theorem.
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4. (20%) For each of the following partial-functions determine whether it is (1)
total; (2) injective; (3) surjective.

(a) f : R ⇀ Rf : R ⇀ Rf : R ⇀ R where fff is defined by f(x) = +
√

xf(x) = +
√

xf(x) = +
√

x.

Solution. The partial-function fff is not total, because it is not defined
for negative input.

(b) f : P(N) ⇀ P(N)f : P(N) ⇀ P(N)f : P(N) ⇀ P(N) where f(A) =df N − Af(A) =df N − Af(A) =df N − A.

Solution. fff is total. It is injective: if f(A) = f(B)f(A) = f(B)f(A) = f(B) , i.e. N − A = N − BN − A = N − BN − A = N − B,
then A = N − (N − A) = N − (N − B) = BA = N − (N − A) = N − (N − B) = BA = N − (N − A) = N − (N − B) = B. It is surjective: for every
A ⊆ NA ⊆ NA ⊆ N we have A = N − (N − A) = f(N − A)A = N − (N − A) = f(N − A)A = N − (N − A) = f(N − A).

(c) f : A ⇀ Af : A ⇀ Af : A ⇀ A where AAA is the set of living people and f(x) =df xf(x) =df xf(x) =df x’s oldest
child.

Solution. Not total: not every person has children. Not injective: A
person is often the oldest child of both their parents. Not surjective: A
person need not be the oldest child of anyone.

i. f : N ⇀ Nf : N ⇀ Nf : N ⇀ N where f(x) =df xf(x) =df xf(x) =df x’s smallest divisor > 1> 1> 1. For example,
f(10) = 2, f(11) = 11f(10) = 2, f(11) = 11f(10) = 2, f(11) = 11.

Solution. Not total: not defined for 1. Not injective: 2 is the smallest
divisor of every even number. Not surjective: Only prime numbers are
obtained.

A. Prove that 20 + 21 + · · · + 2n = 2n+1 − 120 + 21 + · · · + 2n = 2n+1 − 120 + 21 + · · · + 2n = 2n+1 − 1 for all n ∈ Nn ∈ Nn ∈ N.

Solution. Base. For n = 0n = 0n = 0 we have 20 = 1 = 20+1 − 120 = 1 = 20+1 − 120 = 1 = 20+1 − 1.

Step. Suppose the equation for n = kn = kn = k: 20 + 21 + · · · + 2k = 2k+1 − 120 + 21 + · · · + 2k = 2k+1 − 120 + 21 + · · · + 2k = 2k+1 − 1. Then
for n = k + 1n = k + 1n = k + 1 we have

20 + 21 + · · · + 2n20 + 21 + · · · + 2n20 + 21 + · · · + 2n === (20 + · · · + 2k) + 2k+1(20 + · · · + 2k) + 2k+1(20 + · · · + 2k) + 2k+1

=== (2k+1 − 1) + 2k+1(2k+1 − 1) + 2k+1(2k+1 − 1) + 2k+1 (IH)
=== 2 · 2k+1 − 12 · 2k+1 − 12 · 2k+1 − 1

=== 2(k+1)+1 − 12(k+1)+1 − 12(k+1)+1 − 1
=== 2n+1 − 12n+1 − 12n+1 − 1

By induction on NNN it follows that 20 + 21 + · · · + 2n = 2n+1 − 120 + 21 + · · · + 2n = 2n+1 − 120 + 21 + · · · + 2n = 2n+1 − 1 for all
n ∈ Nn ∈ Nn ∈ N.

5. (10%) Prove by induction on NNN that for all n ∈ Nn ∈ Nn ∈ N

1 + 3 + · · · + (2n + 1) = (n+1)21 + 3 + · · · + (2n + 1) = (n+1)21 + 3 + · · · + (2n + 1) = (n+1)2

Solution. Base: If n = 0n = 0n = 0 then 1 + · · · + (2n + 1) = 2n + 1 = 1 = (0 + 1)21 + · · · + (2n + 1) = 2n + 1 = 1 = (0 + 1)21 + · · · + (2n + 1) = 2n + 1 = 1 = (0 + 1)2 .

Step: Suppose that the identity is true for n = kn = kn = k.
Then for n = k+1n = k+1n = k+1 we have

1 + 3 + · · · + (2n + 1)1 + 3 + · · · + (2n + 1)1 + 3 + · · · + (2n + 1) === 1 + 3 + · · · + (2k+1) + (2k+3)1 + 3 + · · · + (2k+1) + (2k+3)1 + 3 + · · · + (2k+1) + (2k+3)
=== (k + 1)2 + (2k+3)(k + 1)2 + (2k+3)(k + 1)2 + (2k+3) (by IH)
=== (k + 1)2 + 2(k+1) + 1(k + 1)2 + 2(k+1) + 1(k + 1)2 + 2(k+1) + 1
=== [(k + 1) + 1]2[(k + 1) + 1]2[(k + 1) + 1]2

=== (n + 1)2(n + 1)2(n + 1)2
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6. (15%) Prove by Shifted Induction that for every natural number n > 8n > 8n > 8
there are a, b ∈ Na, b ∈ Na, b ∈ N such that n = 3a + 5bn = 3a + 5bn = 3a + 5b. [Hint: For the induction step,
you assume k = 3a + 5bk = 3a + 5bk = 3a + 5b, and you want to prove that there are a′, b′a′, b′a′, b′ such
that k+1 = 3a′ + 5b′k+1 = 3a′ + 5b′k+1 = 3a′ + 5b′. Consider first the case where b′ = 0b′ = 0b′ = 0.]

Solution. Base. For n = 8 we can take a = b = 1.

Step. Suppose the given property holds for n = k > 8, that is k = 3a + 5b

for some a, b ∈ N. If b > 1 then k + 1 = 3(a + 2) + 5(b − 1). Otherwise, i.e.
b = 0, we have k = 3a > 8, so a > 3. We have then k + 1 = 3(a − 3) + 5 · 2.

By shifted induction it follows that for every natural number n > 8 there are
a, b ∈ N such that n = 3a + 5b.

B. A multi-set is like a set but with repetition being counted. So {a, b}, {a, a, b}{a, b}, {a, a, b}{a, b}, {a, a, b}
and {a, b, b}{a, b, b}{a, b, b} are different, and of sizes 2,3 and 3.

Show that for all n > 0n > 0n > 0: if RRR is a multi-set of size nnn whose elements are
positive real numbers whose product

∏
R

∏
R

∏
R is 1, then its sum

∑
R > n

∑
R > n

∑
R > n .

[Hint: If RRR is of size k+1k+1k+1, with aaa the smallest element and bbb the greatest,
replace aaa and bbb by their product ababab; observe that a > 1 > ba > 1 > ba > 1 > b.]

Solution. Proof by induction shifted to 1.
Base. If RRR is a multi-set with one element aaa , then a = 1a = 1a = 1 since

∏
R = 1 > 1

∏
R = 1 > 1

∏
R = 1 > 1 .

Step. Assume the claim holds for multi-sets of size kkk. Let RRR be a multi-set
of k+1k+1k+1 whose product is 1. Choose a = min(R)a = min(R)a = min(R) and b = max(R)b = max(R)b = max(R) that
are distinct (though possibly the same number); this is possible because
k+1 > 2k+1 > 2k+1 > 2. By choice of a, ba, ba, b we have a 6 1 6 ba 6 1 6 ba 6 1 6 b .

The multi-set Q =df R − {a, b} ∪ {a · b}Q =df R − {a, b} ∪ {a · b}Q =df R − {a, b} ∪ {a · b} has kkk elements.

Also, b(1−a) > 1−ab(1−a) > 1−ab(1−a) > 1−a and therefore b − ab + a > 1b − ab + a > 1b − ab + a > 1. Put together,
∑

R
∑

R
∑

R === (
∑

Q) + (a+b−ab)(
∑

Q) + (a+b−ab)(
∑

Q) + (a+b−ab)
>>> k + (a+b−ab)k + (a+b−ab)k + (a+b−ab) (IH)
>>> k+1k+1k+1

completing the induction.

The statement above implies that the geometric mean of a multi-set of reals
is 666 its arithmetic mean, a remarkable feat.
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