Fall 2023 © 2023 Daniel Leivant

Assignment 2: Mappings, induction

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

- 1. (20%) Let $A = \{a, b, c\}$ and $B = \{0, 1, 2\}$. For each of the following types of mapping from A to B determine the number of possible distinct mappings of that type.
 - i. All mappings.

Solution. There are 9 elements (pairs) in $A \times B$, so there are $2^9 = 512$ possible mappings, i.e binary relations.

Alternative approach: For each $x \in A$ there are $2^3 = 8$ options for output-set. So altogether we have $8^3 = 512$ mappings.

- ii. Partial functions, i.e. univalent mappings. Solution. For each $x \in A$ we have four options for F(x): 0, 1, 2 and *undefined*. So there are $4^3 = 64$ partial-functions from A to B.
- (a) Total-functions. [Hint: Similar to (ii)] Solution. For each $x \in A$ we have three options for F(x): **0**, **1** and 2. So there are $3 \times 3 = 9$ total-functions from A to B.
- (b) Total mappings. [Hint: The alternative in (i), but ∅ can no longer be an output-set.]

Solution. For each $x \in A$ there are 7 options for the output-set, given that \emptyset is excluded. So altogether we have $7^3 = 343$ total mappings.

(c) Surjective mappings. [Hint: Use (b)]

Solution. The surjective mappings from A to B are a mirror image of the total mappings from B to A. From (b) the number of such total mappings, when both domain and 5range have 3 elements, is 343.

(d) Injective mappings.

Solution. The injective mappings from A to B are a mirror image of the partial functions from B to A. From (ii) the number of those, when both domain and range have 3 elements, is 12.

(e) Bijections. [Hint: Use (d)]
Solution. Since A and B have both three elements, every injection is a surjection, i.e. a bijection. So by (d) the answer is 6.

- 2. (20%) Let $f: \mathbb{N} \to A$ be an injection, and **B** a set.
 - (a) Define an injection $g: \mathbb{N} \times B \to A \times B$. **Solution.** Define, for $x \in \mathbb{N}$ and $y \in B$ $g(\langle x, y \rangle) = \langle f(x), y \rangle \cdot g$ is injective, because if $g(\langle x', y' \rangle) = g(\langle x, y \rangle)$ i.e. $\langle f(x'), y' \rangle = \langle f(x), y \rangle$ then x' = x since f is injective and y' = y by the definition of ordered pairs.
 - (b) Define an injection $j: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(A)$.

Solution. For $A \subseteq \mathbb{N}$ let $j(A) = \{f(n) \mid n \in A\}$. j is a totalfunction, since it is uniquely defined for every input A. It is injective because if $A \neq A'$, say $k \in A - A'$, then by the definition of j $f(k) \in j(A)$ but $f(k) \notin j(A')$, so $j(A) \neq j(A')$.

3. (15%) Use the CBS Theorem to show that {a,b}* ≅ {a,b,c}*.
[Hint: For an injection h: {a,b,c}* → {a,b}* use two-letter codes for a,b,c. (This is analogous to the binary coding of ASCII characters.)]

Solution. We have $\{a, b\}^* \preccurlyeq \{a, b, c\}^*$ since the identity function on $\{a, b\}^*$ is an injection into $\{a, b, c\}^*$.

Conversely, define $f: \{a, b, c\}^* \rightarrow \{a, b\}^*$ by

 $f(w) =_{df} w$ with each **a** replaced by **aa**, **b** by **bb**, and **c** by **ab**.

f is an injection:

For every string u the string f(u) has length 2|u|. So if f(u) = f(v)then |u| = |v|, and if $u = \sigma_0 \cdots \sigma_k$ and and if $v = \tau_0 \cdots \tau_m$ then k = m, $f(u) = f(\sigma_0) \cdots f(\sigma_k)$, and $f(v) = f(\tau_0) \cdots f(\tau_k)$. By the definition of f, $f(\mathbf{a}), f(\mathbf{b})$ and $f(\mathbf{c})$ are all different, so $\sigma_i = \tau_i$ for

By the definition of f, $f(\mathbf{a}), f(\mathbf{b})$ and $f(\mathbf{c})$ are an different, so $\sigma_i = \tau_i$ for i = 1..k, in other words u = v. Thus $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^* \preccurlyeq \{\mathbf{a}, \mathbf{b}\}^*$.

 $\{a, b\}^* \cong \{a, b, c\}^*$ follows by the CBS Theorem.

- 4. (20%) For each of the following partial-functions determine whether it is (1) total; (2) injective; (3) surjective.
 - (a) $f : \mathbb{R} \to \mathbb{R}$ where f is defined by $f(x) = +\sqrt{x}$. Solution. The partial-function f is not total, because it is not defined for negative input.
 - (b) $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ where $f(A) =_{df} \mathbb{N} A$. Solution. f is total. It is injective: if f(A) = f(B), i.e. $\mathbb{N} - A = \mathbb{N} - B$, then $A = \mathbb{N} - (\mathbb{N} - A) = \mathbb{N} - (\mathbb{N} - B) = B$. It is surjective: for every $A \subseteq \mathbb{N}$ we have $A = \mathbb{N} - (\mathbb{N} - A) = f(\mathbb{N} - A)$.
 - (c) $f: A \rightarrow A$ where A is the set of living people and $f(x) =_{df} x$'s oldest child.

Solution. Not total: not every person has children. Not injective: A person is often the oldest child of both their parents. Not surjective: A person need not be the oldest child of anyone.

i. $f: \mathbb{N} \to \mathbb{N}$ where $f(x) =_{df} x$'s smallest divisor > 1. For example, f(10) = 2, f(11) = 11.

Solution. Not total: not defined for 1. Not injective: 2 is the smallest divisor of every even number. Not surjective: Only prime numbers are obtained.

A. Prove that $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ for all $n \in \mathbb{N}$.

Solution. <u>Base.</u> For n = 0 we have $2^0 = 1 = 2^{0+1} - 1$. Step. Suppose the equation for n = k: $2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1$. Then for n = k + 1 we have

$$2^{0} + 2^{1} + \dots + 2^{n} = (2^{0} + \dots + 2^{k}) + 2^{k+1}$$

= $(2^{k+1} - 1) + 2^{k+1}$ (IH)
= $2 \cdot 2^{k+1} - 1$
= $2^{(k+1)+1} - 1$
= $2^{n+1} - 1$

By induction on \mathbb{N} it follows that $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ for all $n \in \mathbb{N}$.

5. (10%) Prove by induction on \mathbb{N} that for all $n \in \mathbb{N}$

$$1+3+\dots+(2n+1)=(n+1)^2$$

Solution. Base: If n = 0 then $1 + \dots + (2n + 1) = 2n + 1 = 1 = (0 + 1)^2$.

Step: Suppose that the identity is true for n = k.

Then for
$$n = k+1$$
 we have

$$1+3+\dots+(2n+1) = 1+3+\dots+(2k+1)+(2k+3)$$

= $(k+1)^2+(2k+3)$ (by IH)
= $(k+1)^2+2(k+1)+1$
= $[(k+1)+1]^2$
= $(n+1)^2$

6. (15%) Prove by Shifted Induction that for every natural number $n \ge 8$ there are $a, b \in \mathbb{N}$ such that n = 3a + 5b. [Hint: For the induction step, you assume k = 3a + 5b, and you want to prove that there are a', b' such that k+1 = 3a' + 5b'. Consider first the case where b' = 0.]

Solution. Base. For n = 8 we can take a = b = 1.

Step. Suppose the given property holds for $n = k \ge 8$, that is k = 3a + 5b for some $a, b \in \mathbb{N}$. If $b \ge 1$ then k + 1 = 3(a + 2) + 5(b - 1). Otherwise, i.e. b = 0, we have $k = 3a \ge 8$, so $a \ge 3$. We have then $k + 1 = 3(a - 3) + 5 \cdot 2$.

By shifted induction it follows that for every natural number $n \ge 8$ there are $a, b \in \mathbb{N}$ such that n = 3a + 5b.

B. A *multi-set* is like a set but with repetition being counted. So $\{a, b\}$, $\{a, a, b\}$ and $\{a, b, b\}$ are different, and of sizes 2,3 and 3.

Show that for all n > 0: if R is a multi-set of size n whose elements are positive real numbers whose product $\prod R$ is 1, then its sum $\sum R \ge n$. [Hint: If R is of size k+1, with a the smallest element and b the greatest, replace a and b by their product ab; observe that $a \ge 1 \ge b$.]

Solution. Proof by induction shifted to 1.

<u>Base.</u> If **R** is a multi-set with one element **a**, then a = 1 since $\prod R = 1 \ge 1$.

Step. Assume the claim holds for multi-sets of size k. Let R be a multi-set of k+1 whose product is 1. Choose $a = \min(R)$ and $b = \max(R)$ that are distinct (though possibly the same number); this is possible because $k+1 \ge 2$. By choice of a, b we have $a \le 1 \le b$.

The multi-set $Q =_{df} R - \{a, b\} \cup \{a \cdot b\}$ has k elements.

Also, $b(1-a) \ge 1-a$ and therefore $b-ab+a \ge 1$. Put together,

$$\sum R = (\sum Q) + (a+b-ab)$$

$$\geq k + (a+b-ab) \quad \text{(IH)}$$

$$\geq k+1$$

completing the induction.

The statement above implies that the geometric mean of a multi-set of reals is \leq its arithmetic mean, a remarkable feat.