Assignment 3: Languages, Clipping

Solved practice problems are numbered in red, assigned problems and sub-problems in green.

- 1. (20%) Refer to the definition of regular languages given in class ("generated from finite languages by set operations, concatenation, and star"). Show that if L is a regular language then so are the following:
 - (a) $even(L) = \{w \in L \mid |w| \text{ is even }\}$ Solution. $even(L) = L \cap (\Sigma \cdot \Sigma)^*$. L and Σ are regular and, by definition, the concatenation, star and intersection of regular languages are also regular. So even(L) is regular.
 - (b) $\tilde{L} = \{x_1 \cdot y_1 \cdots x_n \cdot y_n \mid n \ge 0, x_i \in L, y_i \notin L\}$

Solution. $\tilde{L} = (L \cdot (\Sigma^* - L))^*$. *L* and Σ are regular and, by definition, the star, difference and concatenation of regular languages are also regular. So \tilde{L} is regular.

i. $\{u \# v \mid u \in L, v \notin L\},\$

where # is a fresh symbol (not in the alphabet of L).

Solution. Since L is regular, its complement \overline{L} is regular. The language $\{\#\}$ is regular since it is finite. So the given language, $L \cdot \{\#\} \cdot \overline{L}$, is regular as the concatenation of regular languages.

2. (20%) Let $L = \mathcal{L}(\alpha)$ where α is a regular expression for the alphabet $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$.

For each of the following languages M explain how to convert α into a regular expression β that denotes M. No proof is necessary.

i. $M = \{f(w) \mid w \in L\}$, where f(w) is w with every **a** doubled, e.g. f(baaca) = baaaacaa.

Solution. Take β to be α with each **a** replaced by $(\mathbf{a} \bullet \mathbf{a})$

- (a) $M = L \cdot L$ Solution. $\beta = \alpha \bullet \alpha$.
- (b) $M = L^R = \{w^R \mid w \in L\}$, where w^R is the reverse of w. Solution. Define β as the mirror-image of α :
 - For α one of ε , σ , \emptyset let $\beta = \alpha$.

If $\,\beta_0,\,\beta_1\,$ are the mirror images of $\,\alpha_0\,$ and $\,\alpha_1\,$, then

- $\beta_1 \bullet \beta_0$ is the mirror-image of $\alpha_0 \bullet \alpha_1$
- $\blacktriangleright \ \beta_1 \bigcup \beta_0 \text{ is the mirror-image of } \alpha_0 \bigcup \alpha_1 \text{ , and }$
- β_0^{\star} is the mirror-image of α_0^{\star} .

- **3.** (30%) For each of the following languages build an automaton that recognizes it.
 - i. $\{\mathbf{a}, \mathbf{b}\}^*$, where $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Solution.

(a) $\{ab\}^*$, where $\Sigma = \{a, b\}$

Solution.

(b) $\{a\}^* \cdot \{b\}^*$, where $\Sigma = \{a, b\}$

Solution.

 $\begin{array}{ll} (\mathbf{c}) & \left\{ x \cdot \mathbf{c} \cdot y \cdot \mathbf{a} \cdot z \ | \ x \in \{\mathbf{a}, \mathbf{b}\}^*, \ y \in \{\mathbf{b}, \mathbf{c}\}^*, \ z \in \{\mathbf{c}, \mathbf{a}\}^* \right\}, \\ & \text{where} \ \Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}. \end{array}$

Solution.

- 4. (30%) Prove that the following languages are not recognized by any automaton.
 - i. {w ∈ {a, b, c}* | #_a(w) + #_b(w) = #_c(w) }.
 Solution. We show that L fails the Clipping Property. Let w = a^kc^k (no b's), and u the substring a^k of w. We have w ∈ L and |u| ≥ k.
 If y = a^p is a non-empty substring of u then the string w' obtained

from w by clipping y is $\mathbf{a}^{k-p}\mathbf{c}^k$, which is not in L. So L fails the Clipping Property, and is not recognized by any automaton.

(a) $\{\mathbf{a}^p \mathbf{b}^q \mid p < q\}.$

Solution. We show that the language fails the Clipping Property.

Let k > 0. Consider $w = \mathbf{a}^k \mathbf{b}^{k+1}$ and $u = \mathbf{b}^{k+1}$ the suffix of w. We have $w \in L$ and $|u| \ge k$.

For any non-empty substring $y = \mathbf{a}^{\ell}$ of u clipping the reduct w' obtained from w by removing y is of the form $\mathbf{a}^{k}\mathbf{b}^{\ell}$ with $\ell \leq k$, which is not in L.

So L fails the clipping property, and cannot be recognized by any automaton.

(b)
$$\{x \cdot x^R \mid x \in \{a, b\}^*\}$$
 $(x^R \text{ is the reverse of } x.$

Solution. We show that L fails the Clipping Property. Let k > 0. Take $w = \mathbf{a}^k \mathbf{b} \mathbf{b} \mathbf{a}^k$ and u the initial substring \mathbf{a}^k of w. We have $w \in L$ and $|u| \ge k$.

If $y = \mathbf{a}^p$ is any non-empty substring of u,

the string w' obtained from w by clipping y is of the form $a^{k-p}bba^k$, Such a string cannot be a palindrome, because its first half has two **b**'s and its second half has none. So L fails the Clipping Property, and is not recognized by any automaton.

(c) $\{\mathbf{a}^{2^n} \mid n \ge 0\} = \{\mathbf{a}, \mathbf{a}^a, \mathbf{a}^4, \mathbf{a}^8, \ldots\}$

Solution. *L* fails the clipping property: Given k > 0 let $w = \mathbf{a}^{2^{k+1}}$ and $u = \mathbf{a}^k$. We have $w \in L$ and $|u| \ge k$. If y is a non-empty substring of u of length ℓ then $0 < \ell \le k$. The reduct w' of w over y is of the form $\mathbf{a}^{2^{k+1}-\ell}$, which is not in *L* because $2^k < 2^{k+1}-\ell < 2^{k+1}$.