Assignment 3: Languages, Clipping

Solved practice problems are numbered in red, assigned problems and sub-problems in green.

1. (20%) Refer to the definition of regular languages given in class ("generated from finite languages by set operations, concatenation, and star"). Show that if L is a regular language then so are the following:
(a) $\operatorname{even}(L)=\{w \in L| | w \mid$ is even $\}$

Solution. $\operatorname{even}(L)=L \cap(\Sigma \cdot \Sigma)^{*} . \quad L$ and Σ are regular and, by definition, the concatenation, star and intersection of regular languages are also regular. So even (L) is regular.
(b) $\tilde{L}=\left\{x_{1} \cdot y_{1} \cdots \cdots x_{n} \cdot y_{n} \mid n \geqslant 0, x_{i} \in L, y_{i} \notin L\right\}$

Solution. $\quad \tilde{L}=\left(L \cdot\left(\Sigma^{*}-L\right)\right)^{*} . L$ and Σ are regular and, by definition, the star, difference and concatenation of regular languages are also regular. So \tilde{L} is regular.
i. $\{u \# v \mid u \in L, v \notin L\}$, where \# is a fresh symbol (not in the alphabet of L).
Solution. \quad Since L is regular, its complement \bar{L} is regular. The language $\{\#\}$ is regular since it is finite. So the given language, $L \cdot\{\#\} \cdot \bar{L}$, is regular as the concatenation of regular languages.
2. (20\%) Let $L \equiv \mathcal{L}(\alpha)$ where α is a regular expression for the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
For each of the following languages M explain how to convert α into a regular expression β that denotes M. No proof is necessary.
i. $\quad M=\{f(w) \mid w \in L\}$, where $f(w)$ is w with every a doubled,
e.g. $f($ baaca $)=$ baaaacaa.

Solution. Take β to be α with each a replaced by ($\mathrm{a} \bullet \mathrm{a}$)
(a) $M=L \cdot L$

Solution. $\beta=\alpha \bullet \alpha$.
(b) $M=L^{R}=\left\{w^{R} \mid w \in L\right\}$, where w^{R} is the reverse of w.

Solution. Define β as the mirror-image of α :

- For α one of $\varepsilon, \sigma, \emptyset$ let $\beta=\alpha$.

If β_{0}, β_{1} are the mirror images of α_{0} and α_{1}, then

- $\beta_{1} \bullet \beta_{0}$ is the mirror-image of $\alpha_{0} \bullet \alpha_{1}$
- $\beta_{1} \mathbf{U} \beta_{0}$ is the mirror-image of $\alpha_{0} \cup \alpha_{1}$, and
- β_{0}^{\star} is the mirror-image of α_{0}^{\star}.

3. (30%) For each of the following languages build an automaton that recognizes it.
i. $\quad\{\mathrm{a}, \mathrm{b}\}^{*}$, where $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

Solution.

(a) $\{\mathrm{ab}\}^{*}$, where $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

Solution.

(b) $\{\mathrm{a}\}^{*} \cdot\{\mathrm{~b}\}^{*}$, where $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

Solution.

(c) $\left\{x \cdot \mathrm{c} \cdot y \cdot \mathrm{a} \cdot z \mid x \in\{\mathrm{a}, \mathrm{b}\}^{*}, y \in\{\mathrm{~b}, \mathrm{c}\}^{*}, z \in\{\mathrm{c}, \mathrm{a}\}^{*}\right\}$, where $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.

Solution.

4. (30\%) Prove that the following languages are not recognized by any automaton.
i. $\quad\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid \#_{a}(w)+\#_{b}(w)=\#_{c}(w)\right\}$.

Solution. We show that L fails the Clipping Property.
Let $w=\mathbf{a}^{k} \mathbf{c}^{k}$ (no b 's), and u the substring a^{k} of w. We have $w \in L$ and $|u| \geqslant k$.
If $y=\mathrm{a}^{p}$ is a non-empty substring of u then the string w^{\prime} obtained from w by clipping y is $\mathrm{a}^{k-p} \mathrm{c}^{k}$, which is not in L. So L fails the Clipping Property, and is not recognized by any automaton.
(a) $\left\{\mathrm{a}^{p} \mathrm{~b}^{q} \mid p<q\right\}$.

Solution. We show that the language fails the Clipping Property.
Let $k>0$. Consider $w=\mathrm{a}^{k} \mathrm{~b}^{k+1}$ and $u=\mathrm{b}^{k+1}$ the suffix of w. We have $w \in L$ and $|u| \geqslant k$.

For any non-empty substring $y=\mathrm{a}^{\ell}$ of u clipping the reduct w^{\prime} obtained from w by removing y is of the form $\mathrm{a}^{k} \mathrm{~b}^{\ell}$ with $\ell \leqslant k$, which is not in L.
So L fails the clipping property, and cannot be recognized by any automaton.
(b) $\left\{x \cdot x^{R} \mid x \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\} \quad\left(x^{R}\right.$ is the reverse of x.)

Solution. We show that L fails the Clipping Property.
Let $k>0$. Take $w=\mathbf{a}^{k} \mathbf{b b a}^{k}$ and u the initial substring a^{k} of w. We have $w \in L$ and $|u| \geqslant k$.
If $y=\mathrm{a}^{p}$ is any non-empty substring of u,
the string w^{\prime} obtained from w by clipping y is of the form $\mathrm{a}^{k-p} \mathrm{bba}^{k}$, Such a string cannot be a palindrome, because its first half has two b's and its second half has none. So L fails the Clipping Property, and is not recognized by any automaton.
(c) $\left\{\mathrm{a}^{2^{n}} \mid n \geqslant 0\right\}=\left\{\mathrm{a}, \mathrm{aa}, \mathrm{a}^{4}, \mathrm{a}^{8}, \ldots\right\}$

Solution. L fails the clipping property: Given $k>0$ let $w=\mathrm{a}^{2^{k+1}}$ and $u=\mathrm{a}^{k}$. We have $w \in L$ and $|u| \geqslant k$. If y is a non-empty substring of u of length ℓ then $0<\ell \leqslant k$. The reduct w^{\prime} of w over y is of the form $\mathrm{a}^{2^{k+1}-\ell}$, which is not in L because $2^{k}<2^{k+1}=\ell<2^{k+1}$.

