Assignment 4: Residues, NFAs Solutions

Solved practice problems are numbered in red, assigned problems and sub-problems in green.

1. (6%) What needs to be changed in the definition of product automata to obtain a correct definition of the product of *partial*-automata?

Solution. Suppose the given partial-automata are $M_0 = (\Sigma, Q_0, s_0, A_0, \delta_0)$ and $M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1)$.

The conjunctive product is then $(\Sigma, Q_0 \times Q_1, \langle s_0, s_1 \rangle, A, \delta)$ where

• $\delta(\langle q_0, q_1 \rangle, \sigma) = \langle \delta_0(q_0, \sigma), \delta_1(q_1, \sigma) \rangle$ if $\delta_i(q_i \sigma)$ is defined, and is undefined otherwise.

 $\blacktriangleright \quad A = A_0 \times A_1$

,

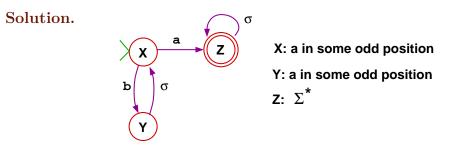
For **disjunctive** product we need to refer explicitly to undefinability, say by using \Box as a token for "undefined". Write Q_0^{\Box} for $Q_0 \cup \{\Box\}$, and similarly for other sets of states. Also let $\delta_i^{\Box}(q,\sigma) = \delta_i(q,\sigma)$ if defined, and $= \Box$ otherwise. The **disjunctive product** is then $(\sum Q_0^{\Box} \times Q_0^{\Box} \otimes Q_0 \otimes A_0)$, where

The *disjunctive product* is then $(\Sigma, Q_0^{\Box} \times Q_1^{\Box}, \langle s_0, s_1 \rangle, A, \delta)$ where

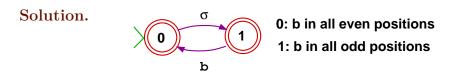
- $\delta(\langle q_0, q_1 \rangle, \sigma)$ is undefined if if both $\delta_0^{\square}(q_0, \sigma)$ and $\delta_1^{\square}(q_1, \sigma)$ are not \square ,
 - and is $\langle \delta_0^{\square}(q_0,\sigma), \delta_1^{\square}(q_1,\sigma) \rangle$ otherwise.
- $A = (A_0 \times Q_1) \cup (Q_0 \times A_1)$.

2. (7+7+10%)

(a) Let $L_{a1} \subseteq \{a, b\}^*$ consist of the strings with **a** in *some* odd position. Identify the residues of L and build a DFA M_{a1} from them.

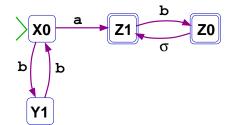


(b) Let $L_{b0} \subseteq \{a, b\}^*$ consist of the strings with **b** in *all* even positions. Identify the residues of L and build a DFA M_{b0} from them.



(c) Using your answer to the problem above, construct the conjunctive product of M_{a1} and M_{b0} to obtain a DFA that recognizes $L_{a1} \cap L_{b0}$.

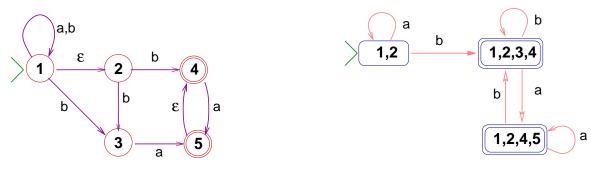
Solution.



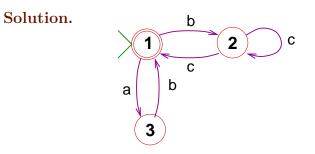
- 3. (20%) A CFA (conjunctive NFA) C (over alphabet Σ) is like an NFA, except that a string w is accepted if *every* state p such that $s \stackrel{w}{\to} p$ is accepting.
 - (a) Prove that a language is recognized by a CFA iff its complement is recognized by an NFA.

Solution. Given an NFA $N = (\Sigma, Q, s, A, \Delta)$ define its *dual* to be the CFA $\widehat{N} = (\Sigma, Q, s, Q - A, \Delta)$. N accepts a string w iff there is some $a \in A$ such $s \stackrel{w}{\rightarrow} a$, which happens iff it is not the case that $s \stackrel{w}{\rightarrow} b$ for all $b \in Q - A$, i.e. exactly when \widehat{N} , as a CNFA, does not accept w. Thus $\mathcal{L}(N) = \Sigma^* - \mathcal{L}(\widehat{N})$.

(b) Conclude that every language recognized by a CFA is recognized by a DFA. Solution. $L \subseteq \Sigma^*$ is regular iff $\overline{L} \equiv \Sigma^* - L$ is regular, i.e. iff \overline{L} is recognized by some NFA N. By (a) that is equivalent to L being recognized by the CNFA \widehat{N} . **A.** Convert the following NFA into an equivalent DFA.

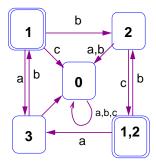


- **4.** (15%)
 - i. Construct an NFA N with three states that recognizes the language $L = \mathcal{L}((ab \cup bc^+)^*)$.



(a) Convert the NFA N above into an equivalent DFA. (Place any sink in the center of your diagram.)

Solution.



5. (20%) Use *residues* to show that $L \subseteq \{\mathbf{a}, \mathbf{b}\}^*$ defined by $L = \{x \cdot \mathbf{a}^n \mid n > 0, |x| = n\}$ is not regular.

Solution. The residues L/b^n for n > 0 are all different, because if i < j then

- (a) $\mathbf{a}^i \in L/\mathbf{b}^i$ because $\mathbf{b}^i \mathbf{a}^i \in L$; but
- (b) $\mathbf{a}^i \notin L/\mathbf{b}^j$ because when j > i we have $\mathbf{b}^j \mathbf{a}^i \notin L$, since if $\mathbf{b}^j \mathbf{a}^i = x \cdot \mathbf{a}^n$ for some x and n, then |x| = n < i < j, and so $|x \cdot \mathbf{a}^n| = 2n < j + i$. Thus L has infinitely many residues, and cannot be regular.
- **6.** (15%) Convert the following NFA into an equivalent DFA.

(Note that two states here have the same residue, so this is not a minimal DFA for L.)

