Assignment 4: Residues, NFAs
 Solutions

Solved practice problems are numbered in red, assigned problems and sub-problems in green.

1. (6%) What needs to be changed in the definition of product automata to obtain a correct definition of the product of partial-automata?
Solution. Suppose the given partial-automata are $M_{0}=\left(\Sigma, Q_{0}, s_{0}, A_{0}, \delta_{0}\right)$ and $M_{1}=\left(\Sigma, Q_{1}, s_{1}, A_{1}, \delta_{1}\right)$.
The conjunctive product is then $\left(\Sigma, Q_{0} \times Q_{1},\left\langle s_{0}, s_{1}\right\rangle, A, \delta\right)$ where

- $\delta\left(\left\langle q_{0}, q_{1}\right\rangle, \sigma\right)=\left\langle\delta_{0}\left(q_{0}, \sigma\right), \delta_{1}\left(q_{1}, \sigma\right)\right\rangle$ if $\delta_{i}\left(q_{i} \sigma\right)$ is defined, and is undefined otherwise.
- $A=A_{0} \times A_{1}$

For disjunctive product we need to refer explicitly to undefinability, say by using \square as a token for "undefined". Write Q_{0}^{\square} for $Q_{0} \cup\{\square\}$, and similarly for other sets of states. Also let $\delta_{i}^{\square}(q, \sigma)=\delta_{i}(q, \sigma)$ if defined, and $=\square$ otherwise. The disjunctive product is then $\left(\Sigma, Q_{0}^{\square} \times Q_{1}^{\square},\left\langle s_{0}, s_{1}\right\rangle, A, \delta\right)$ where

- $\delta\left(\left\langle q_{0}, q_{1}\right\rangle, \sigma\right)$ is undefined if if both $\delta_{0}^{\square}\left(q_{0}, \sigma\right)$ and $\delta_{1}^{\square}\left(q_{1}, \sigma\right)$ are not and is $\left\langle\delta_{0}^{\square}\left(q_{0}, \sigma\right), \delta_{1}^{\square}\left(q_{1}, \sigma\right)\right\rangle$ otherwise.
- $A=\left(A_{0} \times Q_{1}\right) \cup\left(Q_{0} \times A_{1}\right)$.

2. $(7+7+10 \%)$
(a) Let $L_{a 1} \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ consist of the strings with a in some odd position. Identify the residues of L and build a DFA $M_{a 1}$ from them.

Solution.

(b) Let $L_{b 0} \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ consist of the strings with b in all even positions. Identify the residues of L and build a DFA $M_{b 0}$ from them.

Solution.

(c) Using your answer to the problem above, construct the conjunctive product of $M_{a 1}$ and $M_{b 0}$ to obtain a DFA that recognizes $L_{a 1} \cap L_{b 0}$.

Solution.

3. (20%) A CFA (conjunctive NFA) C (over alphabet Σ) is like an NFA, except that a string w is accepted if every state p such that $s \xrightarrow{w} p$ is accepting.
(a) Prove that a language is recognized by a CFA iff its complement is recognized by an NFA.
Solution. Given an NFA $N=(\Sigma, Q, s, A, \Delta)$ define its dual to be the CFA $\widehat{N}=(\Sigma, Q, s, Q-A, \Delta) . N$ accepts a string w iff there is some $a \in A$ such $s \xrightarrow{w} a$, which happens iff it is not the case that $s \xrightarrow{w} b$ for all $b \in Q-A$, i.e. exactly when \widehat{N}, as a CNFA, does not accept w. Thus $\mathcal{L}(N)=\Sigma^{*}-\mathcal{L}(\widehat{N})$.
(b) Conclude that every language recognized by a CFA is recognized by a DFA. Solution. $L \subseteq \Sigma^{*}$ is regular iff $\bar{L} \equiv \Sigma^{*}-L$ is regular, i.e. iff \bar{L} is recognized by some NFA N. By (a) that is equivalent to L being recognized by the CNFA \widehat{N}.
A. Convert the following NFA into an equivalent DFA.

4. (15%)
i. Construct an NFA N with three states that recognizes the language $\quad L=\mathcal{L}\left(\left(a b \cup b c^{+}\right)^{*}\right)$.

Solution.

(a) Convert the NFA N above into an equivalent DFA. (Place any sink in the center of your diagram.)

Solution.

5. (20\%) Use residues to show that $L \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ defined by $L=\left\{x \cdot \mathrm{a}^{n}|n>0,|x|=n\} \quad\right.$ is not regular.
Solution. The residues L / b^{n} for $n>0$ are all different, because if $i<j$ then
(a) $\mathrm{a}^{i} \in L / \mathrm{b}^{i}$ because $\mathrm{b}^{i} \mathrm{a}^{i} \in L$; but
(b) $\mathrm{a}^{i} \notin L / \mathrm{b}^{j}$ because when $j>i$ we have $\mathrm{b}^{j} \mathrm{a}^{i} \notin L$, since if $\mathrm{b}^{j} \mathrm{a}^{i}=x \cdot \mathrm{a}^{n}$ for some x and n, then $\quad|x|=n<i<j$, and so $\quad\left|x \cdot \mathrm{a}^{n}\right|=2 n<j+i$.
Thus L has infinitely many residues, and cannot be regular.
6. (15%) Convert the following NFA into an equivalent DFA.
(Note that two states here have the same residue, so this is not a minimal DFA for L.)

Solution.

