Assignment 4: Residues, NFAs

Solved practice problems are numbered in red, assigned problems and sub-problems in green.

1. (30%)
(a) Let $L_{a 1} \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ consist of the strings with a in some odd position. Identify the residues of L and build a partialautomaton $M_{a 1}$ from them.
(b) Let $L_{b 0} \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ consist of the strings with b in all even positions. Identify the residues of L and build a partialautomaton $M_{b 0}$ from them.
(c) What needs to be changed in the definition of product automata to obtain a correct definition of the product of partial-automata?
(d) Using your answer to (c) construct the conjunctive product of $M_{a 1}$ and $M_{b 0}$ to obtain a partial-automaton that recognizes $L_{a 1} \cap L_{b 0}$.
2. (20%) A CFA (conjunctive NFA) C (over alphabet Σ) is like an NFA, except that a string w is accepted if every state p such that $s \xrightarrow{w} p$ is accepting.
(a) Prove that a language is recognized by a CFA iff its complement is recognized by an NFA.
(b) Conclude that every language recognized by a CFA is recognized by a DFA.
A. Convert the following NFA into an equivalent DFA.

3. (15%)
i. Construct an NFA N with three states that recognizes the language $\quad L=\mathcal{L}\left(\left(\mathrm{ab} \cup \mathrm{bc}^{+}\right)^{*}\right)$.

Solution.

(a) Convert the NFA N above into an equivalent DFA. (Place any sink in the center of your diagram.)
4. (20\%) Use residues to show that $L \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$ defined by $L=\left\{x \cdot \mathrm{a}^{n}|n>0,|x|=n\} \quad\right.$ is not regular.
5. (15%) Convert the following NFA into an equivalent DFA.
(Note that two states here have the same residue, so this is not a minimal DFA for L.)

