Assignment 5: Regular languages, other machines

1. (30\%) Convert each of the following NFA's N into an equivalent regular expression α (i.e. such that $\mathcal{L}(\alpha)=\mathcal{L}(N)$). Exhibit the stages of each conversion.
i.

Solution.

(a)

(b)

2. (25%)
(a) Construct an LBA that recognizes the language

$$
L=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mathrm{c}^{n+m} \mid n, m \geqslant 1\right\} .
$$

(b) (25%) Give the computation-trace for abcc. assdsub Give the computation-trace for abaccc.
3. (25%)
(a) Construct an LBA recognizing $L=\left\{w \cdot w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$, where w^{R} is the reverse of w. Define your LBA in a modular format. [Hint: This is similar to the problem of accepting the strings $a^{n} b^{n}$ considered in class.]
(b) Give the computation trace of your acceptor for abba.
A. i. Construct a Turing transducer that replaces the last input symbol by ba.

Solution. \quad Start state S, print state P.

$$
\begin{array}{lll}
S \xrightarrow{\sigma(+)} & S & (\sigma \neq \mathrm{u}) \\
S \xrightarrow[\mathrm{u(a)}]{ } & R & \\
R \xrightarrow[\mathrm{a}(-)]{ } & B & \\
B \xrightarrow{\sigma(\mathrm{~b})} & P &
\end{array}
$$

ii. Give the computation trace of your transducer for input baa.

$$
\begin{aligned}
(S, \geq \text { baau }) & \Rightarrow(S,>\text { baau }) \\
& \Rightarrow(R,>\text { baaa }) \\
& \Rightarrow(B,>\text { baaaa }) \\
& \Rightarrow(P,>\text { babab })
\end{aligned}
$$

4. (20\%) Construct a Turing transducer that swaps the first and last input symbols. For example, abcd is mapped to dbca . (Single-letter strings and ε are mapped to themselves.)
