Assignment 6: Context-free languages

Points for each problem coming up, as well as a layout revision.

1. (20%) For each grammar below describe in words the language it generates.
(a) $S \rightarrow a S b|b S a| \varepsilon$
(b) $S \rightarrow S S \mid$ a
(c) $S \rightarrow \mathrm{a} S|\mathrm{c} T, \quad T \rightarrow \mathrm{a} T| \mathrm{c} R, \quad R \rightarrow \mathrm{a} R \mid \varepsilon$.
(d) $S \rightarrow \mathrm{a} A|\mathrm{~b} B, \quad A \rightarrow \mathrm{a} A| \mathrm{b} A|\mathrm{a}, \quad B \rightarrow \mathrm{a} B| \mathrm{b} B \mid \mathrm{b}$.
2. (30\%) For each of the following languages give a CFG that generates it.
(a) $L=\left\{\mathrm{a}^{p} \mathrm{~b}^{q} \mathrm{C}^{r} \mid p+q=r\right\}$
(b) $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{k} \mathrm{c}^{n} \mid k, n \geqslant 0\right\}$
(c) $L=\left\{\mathrm{a}^{p} \mathrm{~b}^{q} \mathrm{C}^{r} \mid p+q<r\right\}$
3. (30\%) Consider the CFG G over the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, with initial nonterminal S and with productions
$S \rightarrow A B \mid B A$
$A \rightarrow S A|A S| \mathrm{a}$
$B \rightarrow S B|B S| \mathrm{b}$
(a) Give a parse tree of G for the string abbaba.
(b) Give the leftmost-derivation for your parse-tree, as well as another derivation for it.
(c) Show that G is an ambiguous grammar, by giving two different parse-trees for the same string.
A. Let $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{i+j} \mathrm{C}^{j} \mid i, j \geqslant 0\right\}$
i. Give a CFG G that generates L.

Solution.

$$
\begin{aligned}
& S \rightarrow L R \\
& L \rightarrow a L b \\
& L \rightarrow \varepsilon \\
& R \rightarrow b R c \\
& R \rightarrow \varepsilon
\end{aligned}
$$

ii. Give a parse tree of G for the string aaabbbbc.

Solution.

iii. Give the leftmost derivation for T.

Solution.

$$
\begin{aligned}
& S \Rightarrow L R \Rightarrow \mathrm{a} L \mathrm{~b} R \Rightarrow \mathrm{aa} L \mathrm{bb} R \\
& \quad \Rightarrow \text { aaa } L \mathrm{bbb} R \Rightarrow \text { aaabbb } R \Rightarrow \text { aaabbbb } R \mathrm{c} \Rightarrow \text { aaabbbbc }
\end{aligned}
$$

B. The following problem refers to the symbols $\#$ and $\$$, to draw attention to their being different.
i. Construct a CFG generating $\left\{a^{i} \# b^{k} \$ a^{i}\right\}$.

Solution. $\quad S \rightarrow \mathrm{a} S \mathrm{a}|\# M, \quad M \rightarrow \mathrm{~b} M| \$$.
ii. Show that the language $L=\left\{u \# w \$ u^{\prime}| | u^{\prime}|=|u|\} \quad\right.$ is CF.

Solution. This is like (a), except that the a's can be any letter.
iii. Show that no string in L can be a palindrome.

Solution. Each $w \in L$ has $\#$ and $\$$ are at symmetric positions. Since these are different symbols w can't be a palindrome.
iv. Show that the non-palindromes (over an alphabet Σ) constitute a CFL.

Solution. For each pair σ, τ of different letters, the set of strings with σ and τ in symmetric positions is a CFL: just take σ for \# above and τ for $\$$.
The set of non-palindromes is the union over all pairs of distinct letters of languages as above, and the union of CFL's is a CFL.
4. (20%)
(a) Construct a CFG generating $\left\{a^{i} \# b^{i+j} \$ \mathrm{a}^{j}\right\}$.
(b) Show that the language $\left\{u \# v \cdot u^{\prime} \$ v^{\prime}| | u^{\prime}\left|=|u|,\left|v^{\prime}\right|=|v|\right\}\right.$ is CF. [Hint: The proof idea is (a).]
(c) Recall the Mahi-Mahi language $M=\left\{w \cdot w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$. Show that the complement of M is a CFL.

