
B501, Fall 2023

© Daniel Leivant 2023

Assignment 7: Dual-Clipping, PDAs

In this assignment, “construct directly a PDA” means that no auxiliary stack

symbols are used other than the bottom-marker. This implies that you cannot con-

struct your PDA by converting a CFG to it.

1. (15+15%) Show that the following languages over Σ = {a,b}Σ = {a,b}Σ = {a,b} are not CF.

i. L = {ai
ba

i
ba

i | i > 0 }L = {ai
ba

i
ba

i | i > 0 }L = {ai
ba

i
ba

i | i > 0 }

Solution. Solution phrased as failure of the dual-clipping property:

Given k > 0k > 0k > 0 , let w = b
k
ab

k
ab

kw = b
k
ab

k
ab

kw = b
k
ab

k
ab

k. We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

If ppp is a substring of www of length 6 k6 k6 k then ppp intersects at most two of

the three substrings b
k
b

k
b

k, so clipping letters our of ppp either removes an aaa ,

and the resulting string would not be in LLL , or removes at least one bbb , but

not from all three blocks b
k
b

k
b

k, yielding also a string not in LLL. Thus LLL fails

the dual-clipping property, and cannot be CF.

Same solution via the dual-clipping theorem:

Suppose LLL is generated by a CFG GGG. Let mmm be the number of variables

in GGG , ddd the degree of GGG, and k = dmk = dmk = dm.

Take w = b
k
ab

k
ab

kw = b
k
ab

k
ab

kw = b
k
ab

k
ab

k. Since w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k it follows by the

Dual-Clipping Theorem that there is a substring ppp of www , of length 6 k6 k6 k ,

so that the string w′w′w′ obtained from www by removing some letters in ppp is

also in LLL .

But since ppp has length 6 k6 k6 k it intersects at most two of the blocks b
k
b

k
b

k.

So clipping letters out of ppp either removes an aaa , and the resulting string

would not be in LLL , or removes some bbb ’s from some but not all three

blocks b
k
b

k
b

k, yielding also a string not in LLL. Thus w′ 6∈ Lw′ 6∈ Lw′ 6∈ L, contradicting

the assumption that GGG is a CFG generating LLL.

(a) L = {ai
b

j
a

i | j > i}L = {ai
b

j
a

i | j > i}L = {ai
b

j
a

i | j > i}.

Solution stated as failure of dual-clipping:

Given k > 0k > 0k > 0 ,

let w = b
k
ab

k
ab

kw = b
k
ab

k
ab

kw = b
k
ab

k
ab

k. We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

If ppp is any substring of www of length 6 k6 k6 k then ppp intersects at most two

of the blocks b
k
b

k
b

k. So clipping letters our of ppp either removes an aaa , and

the resulting string would not be in LLL , or removes at least one bbb , but not

from all three blocks b
k
b

k
b

k, yielding also a string not in LLL. Thus LLL fails the

dual-clipping property, and cannot be CF.

Same solution stated as a contradiction derived from the existence of a

CFG generating LLL:

Suppose LLL is generated by some CFG GGG. Let mmm be the number of GGG’s

variables, and ddd the maximal degree of GGG’s productions.

Let w = b
k
ab

k
ab

kw = b
k
ab

k
ab

kw = b
k
ab

k
ab

k. We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k. So by the Dual-

Clipping Theorem there is a substring ppp of www of length 6 k6 k6 k , so that the

string w′w′w′ obtained from www by removing some letters in ppp is also in LLL.

But such a ppp, having length 6 k6 k6 k, intersects at most two of the blocks

b
k
b

k
b

k. So clipping letters out of ppp either removes an aaa , and the resulting

string would not be in LLL, or removes at least one bbb, but not from all three

blocks b
k
b

k
b

k, yielding also a string not in LLL. Thus w′ 6∈ Lw′ 6∈ Lw′ 6∈ L, contradicting

the conclusion above.

Thus there is no CFG GGG that generates LLL, and LLL cannot be a CFL.

(b) L = {ai
b

j
a

i
b

j | i, j > 0 }L = {ai
b

j
a

i
b

j | i, j > 0 }L = {ai
b

j
a

i
b

j | i, j > 0 }.

Suppose L = L(G)L = L(G)L = L(G) , GGG a CFG, and let kkk be GGG ’s clipping constant.

Consider the string w = a
k
b

k
a

kw = a
k
b

k
a

kw = a
k
b

k
a

k. Since w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k www has a

substring ppp of length 6 k6 k6 k , such that w′w′w′ obtained from WWW by removing

certain letters from www is in LLL. Since |p| 6 k|p| 6 k|p| 6 k it spans at most two of

the substrings a
k
a

k
a

k, bk
b

k
b

k and a
k
a

k
a

k. If an occurrence of aaa is removed in one

block of ttattatta ’s then no instance is removed in the other. And similarly for

bbb . Thus w′ 6∈ Lw′ 6∈ Lw′ 6∈ L , a contradiction.

2

A.
i. Construct directly a PDA that recognizes the language L = {ai

c(ab)i | i > 0}.L = {ai
c(ab)i | i > 0}.L = {ai
c(ab)i | i > 0}.

Solution. LLL is recognized by the following PDA MMM . MMM pushes aaa’s on

the stack as long as it reads aaa’s. On reading ccc MMM switches to a pair of

states that pops an aaa for every ababab read:

• States: {s, q, p0, p1, f}{s, q, p0, p1, f}{s, q, p0, p1, f}, initial state sss, accepting state fff .

• Transition rules:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
c (ǫ→ǫ)

−−−−→ p0q
c (ǫ→ǫ)

−−−−→ p0q
c (ǫ→ǫ)

−−−−→ p0

p0
a (a→ǫ)

−−−−→ p1p0
a (a→ǫ)

−−−−→ p1p0
a (a→ǫ)

−−−−→ p1

p1
b (ǫ→ǫ)

−−−−→ p0p1
b (ǫ→ǫ)

−−−−→ p0p1
b (ǫ→ǫ)

−−−−→ p0

p0
ǫ ($→$)

−−−−→ fp0
ǫ ($→$)

−−−−→ fp0
ǫ ($→$)

−−−−→ f

ii. Give an accepting computation trace of your PDA for acababacababacabab.

Solution.

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
b (ǫ→b)

−−−−→ pp
b (ǫ→b)

−−−−→ pp
b (ǫ→b)

−−−−→ p

p
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ r

r
a (b→ǫ)

−−−−→ rr
a (b→ǫ)

−−−−→ rr
a (b→ǫ)

−−−−→ r

r
ǫ (ǫ→ǫ)

−−−−→ tr
ǫ (ǫ→ǫ)

−−−−→ tr
ǫ (ǫ→ǫ)

−−−−→ t

t
b (a→ǫ)

−−−−→ tt
b (a→ǫ)

−−−−→ tt
b (a→ǫ)

−−−−→ t

t
ǫ ($→ǫ)

−−−−→ ft
ǫ ($→ǫ)

−−−−→ ft
ǫ ($→ǫ)

−−−−→ f

iii. Give a CFG GGG that generates LLL .

Solution. S → aS ab | cS → aS ab | cS → aS ab | c

iv. Convert GGG into another PDA that recognizes LLL .

Solution. With initial state sss and accepting state fff :

s
ǫ (ǫ→S$)

−−−−−→ qs
ǫ (ǫ→S$)

−−−−−→ qs
ǫ (ǫ→S$)

−−−−−→ q

q
ǫ (S→aSab)

−−−−−−→ qq
ǫ (S→aSab)

−−−−−−→ qq
ǫ (S→aSab)

−−−−−−→ q

q
ǫ (S→c)

−−−−→ qq
ǫ (S→c)

−−−−→ qq
ǫ (S→c)

−−−−→ q

q
a (a→ǫ)

−−−−→ qq
a (a→ǫ)

−−−−→ qq
a (a→ǫ)

−−−−→ q

q
b (b→ǫ)

−−−−→ qq
b (b→ǫ)

−−−−→ qq
b (b→ǫ)

−−−−→ q

q
ǫ ($→ǫ)

−−−−→ fq
ǫ ($→ǫ)

−−−−→ fq
ǫ ($→ǫ)

−−−−→ f

3

2. (10+5+10%)

(a) Construct directly a PDA that recognizes the language

L = {ap+q
b

q
c

p | p, q > 0}.L = {ap+q
b

q
c

p | p, q > 0}.L = {ap+q
b

q
c

p | p, q > 0}.

Q = {s, q, r, f}Q = {s, q, r, f}Q = {s, q, r, f}, Γ = {a, b, c, $}Γ = {a, b, c, $}Γ = {a, b, c, $}; initial state sss; accepting states A = {s, f}A = {s, f}A = {s, f}.

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p

p
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ r

r
c (a→ǫ)

−−−−→ rr
c (a→ǫ)

−−−−→ rr
c (a→ǫ)

−−−−→ r

r
ǫ ($→ǫ)

−−−−→ fr
ǫ ($→ǫ)

−−−−→ fr
ǫ ($→ǫ)

−−−−→ f

(b) Give an (accepting) computation trace of your PDA for aaabccaaabccaaabcc , and a

(non-accepting) trace for abcabcabc.

(s, aaabcc, ε)(s, aaabcc, ε)(s, aaabcc, ε) ⇒⇒⇒ (q, aaabcc, $)(q, aaabcc, $)(q, aaabcc, $)
⇒⇒⇒ (q, abcc, aa$)(q, abcc, aa$)(q, abcc, aa$)
⇒⇒⇒ (q, bcc, aaa$)(q, bcc, aaa$)(q, bcc, aaa$)
⇒⇒⇒ (p, bcc, aaa$)(p, bcc, aaa$)(p, bcc, aaa$)
⇒⇒⇒ (p, cc, aa$)(p, cc, aa$)(p, cc, aa$)
⇒⇒⇒ (r, cc, aa$)(r, cc, aa$)(r, cc, aa$)
⇒⇒⇒ (r, c, a$)(r, c, a$)(r, c, a$)
⇒⇒⇒ (r, ε, $)(r, ε, $)(r, ε, $)
⇒⇒⇒ (f, ε, $)(f, ε, $)(f, ε, $)

(s, abc, ε)(s, abc, ε)(s, abc, ε) ⇒⇒⇒ (q, abc, $)(q, abc, $)(q, abc, $)
⇒⇒⇒ (q, bc, a$)(q, bc, a$)(q, bc, a$)
⇒⇒⇒ (p, bc, a$)(p, bc, a$)(p, bc, a$)
⇒⇒⇒ (p, c, aa$)(p, c, aa$)(p, c, aa$)
⇒⇒⇒ (r, c, aa$)(r, c, aa$)(r, c, aa$)
⇒⇒⇒ (r, ε, a$)(r, ε, a$)(r, ε, a$)

(c) Define a CFG that generates LLL , and then convert it into another PDA NNN

that recognizes LLL, different from the one in (a).

Let GGG have the productions S → aSc | T, T → aTb | εS → aSc | T, T → aTb | εS → aSc | T, T → aTb | ε. The initial

variable is S.

s
ǫ (ǫ→S$)

−−−−−→ qs
ǫ (ǫ→S$)

−−−−−→ qs
ǫ (ǫ→S$)

−−−−−→ q

q
ǫ (S→aSc)

−−−−−−−→ qq
ǫ (S→aSc)

−−−−−−−→ qq
ǫ (S→aSc)

−−−−−−−→ q

q
ǫ (S→T)

−−−−−→ qq
ǫ (S→T)

−−−−−→ qq
ǫ (S→T)

−−−−−→ q

q
ǫ (T →aTb)

−−−−−−−→ qq
ǫ (T →aTb)

−−−−−−−→ qq
ǫ (T →aTb)

−−−−−−−→ q

q
a (a→ǫ)

−−−−−→ qq
a (a→ǫ)

−−−−−→ qq
a (a→ǫ)

−−−−−→ q

q
b (b→ǫ)

−−−−→ qq
b (b→ǫ)

−−−−→ qq
b (b→ǫ)

−−−−→ q

q
ǫ ($→ǫ)

−−−−→ fq
ǫ ($→ǫ)

−−−−→ fq
ǫ ($→ǫ)

−−−−→ f

3. (25%) Construct directly a PDA recognizing the language

L = {ai+j
b

j+k
c

k+i | i, j, k > 0}L = {ai+j
b

j+k
c

k+i | i, j, k > 0}L = {ai+j
b

j+k
c

k+i | i, j, k > 0} .

LLL is recognized by a PDA that

4

(a) pushes x’s while reading aaa’s, then

(b) pops x’s while reading bbb’s, then switching on a whim to

(c) pushing xxx’s while reading bbb’s, then

(d) popping xxx’s while reading ccc’s.

An accepting trace would have stage (a) push i+ji+ji+j xxx’s, then, in phase (b),

would pop jjj of these, thus leaving iii xxx’s on the stack. Stage (c) then reads

the remaining kkk bbb’s, ending with i+ki+ki+k xxx’s on the stack, which stage (d) pops

off.

With sss the start state and fff the accepting state, the PDA is:

s
(ǫ→$)

−−−→ qs
(ǫ→$)

−−−→ qs
(ǫ→$)

−−−→ q

q
a (ǫ→x)

−−−−→ qq
a (ǫ→x)

−−−−→ qq
a (ǫ→x)

−−−−→ q

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
b (x→ǫ)

−−−−→ pp
b (x→ǫ)

−−−−→ pp
b (x→ǫ)

−−−−→ p

p
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ r

r
b (ǫ→x)

−−−−→ rr
b (ǫ→x)

−−−−→ rr
b (ǫ→x)

−−−−→ r

r
ǫ (ǫ→ǫ)

−−−−→ tr
ǫ (ǫ→ǫ)

−−−−→ tr
ǫ (ǫ→ǫ)

−−−−→ t

t
c (x→ǫ)

−−−−→ tt
c (x→ǫ)

−−−−→ tt
c (x→ǫ)

−−−−→ t

t
ǫ ($→ǫ)

−−−−→ ft
ǫ ($→ǫ)

−−−−→ ft
ǫ ($→ǫ)

−−−−→ f

If the input is w = a
i+j
b

j+k
c

k+iw = a
i+j
b

j+k
c

k+iw = a
i+j
b

j+k
c

k+i then it is accepted by a trace that switches

states from qqq to ppp after i+ji+ji+j pushes, from ppp to rrr after jjj pops, and from rrr

to ttt after kkk pushes.

Conversely, if www is accepted where

mmm is the number of pushes in state qqq ,

jjj is the number of pops in state ppp,

and kkk the number of pushes in state rrr,

then m > jm > jm > j , and writing iii for m−jm−jm−j we have i + ki + ki + k xxx ’s on the stack when

state ttt takes over, leading to acceptance.

4. (20%) Let Σ = {a,b,c}Σ = {a,b,c}Σ = {a,b,c}, and let X, Y ⊆ Σ∗X, Y ⊆ Σ∗
X, Y ⊆ Σ∗ be CFL’s.

Prove that the following languages are also CF.

i. L = { u · v | u ∈ A, v ∈ B,L = { u · v | u ∈ A, v ∈ B,L = { u · v | u ∈ A, v ∈ B, uuu without aaa ’s and vvv without bbb ’s }}}.

Solution. Let X ′ = X ∩ {b,c}∗X ′ = X ∩ {b,c}∗X ′ = X ∩ {b,c}∗ and Y ′ = Y ∩ {a,c}∗Y ′ = Y ∩ {a,c}∗Y ′ = Y ∩ {a,c}∗. Thus L = X ′ · Y ′L = X ′ · Y ′L = X ′ · Y ′.

X ′X ′X ′ is a CFL as the intersection of a CFL and a regular language, and sim-

ilarly for Y ′Y ′Y ′. So LLL is a CFL as the concatenation of two CFL’s.

ii. L = { x · y · x′ | x, x′ ∈ X, y ∈ Y }L = { x · y · x′ | x, x′ ∈ X, y ∈ Y }L = { x · y · x′ | x, x′ ∈ X, y ∈ Y }.

Solution. L = X · Y · XL = X · Y · XL = X · Y · X , a concatenation of CFL’s, and therefore a CFL.

5

(a) Let RRR be a regular language and KKK a CFL. Show that the following is a

CFL.

L = { x · # · x′ | x, x′ ∈ R, |x| = |x′| }L = { x · # · x′ | x, x′ ∈ R, |x| = |x′| }L = { x · # · x′ | x, x′ ∈ R, |x| = |x′| } (where ### is a fresh symbol).

LLL is generated by the following CFG:

S → XSX | #S → XSX | #S → XSX | #, X → a | bX → a | bX → a | b.

(b) For RRR and KKK as above, let L′ = { x · y · x′ | x, x′ ∈ R, y ∈ K, |x| = |x′| }L′ = { x · y · x′ | x, x′ ∈ R, y ∈ K, |x| = |x′| }L′ = { x · y · x′ | x, x′ ∈ R, y ∈ K, |x| = |x′| }.

L′L′L′ is the intersection of CFL language LLL and the language R · {#} · RR · {#} · RR · {#} · R ,

which is regular as the concatenation of regular languages. The intersec-

tion of a CFL with a regular language is a CFL.

6

