B501, Fall 2023 © Daniel Leivant 2023

Assignment 7: Dual-Clipping, PDAs

In this assignment, "**construct directly a PDA**" means that no auxiliary stack symbols are used other than the bottom-marker. This implies that you cannot construct your PDA by converting a CFG to it.

1. (15+15%) Show that the following languages over $\Sigma = \{a, b\}$ are not CF.

i. $L = \{a^i b a^i b a^i \mid i \ge 0\}$

Solution. Solution phrased as failure of the dual-clipping property: Given k > 0, let $w = b^k a b^k a b^k$. We have $w \in L$ and |w| > k.

If p is a substring of w of length $\leq k$ then p intersects at most two of the three substrings b^k , so clipping letters our of p either removes an a, and the resulting string would not be in L, or removes at least one b, but not from all three blocks b^k , yielding also a string not in L. Thus L fails the dual-clipping property, and cannot be CF.

Same solution via the dual-clipping theorem:

Suppose *L* is generated by a CFG *G*. Let *m* be the number of variables in *G*, *d* the degree of *G*, and $k = d^m$.

Take $w = b^k a b^k a b^k$. Since $w \in L$ and |w| > k it follows by the Dual-Clipping Theorem that there is a substring p of w, of length $\leq k$, so that the string w' obtained from w by removing some letters in p is also in L.

But since p has length $\leq k$ it intersects at most two of the blocks b^k . So clipping letters out of p either removes an a, and the resulting string would not be in L, or removes some b's from some but not all three blocks b^k , yielding also a string not in L. Thus $w' \notin L$, contradicting the assumption that G is a CFG generating L.

(a) $L = \{ a^i b^j a^i \mid j > i \}.$

Solution stated as failure of dual-clipping: Given k > 0, let $w = b^k a b^k a b^k$. We have $w \in L$ and |w| > k.

If p is any substring of w of length $\leq k$ then p intersects at most two of the blocks b^k . So clipping letters our of p either removes an a, and the resulting string would not be in L, or removes at least one b, but not from all three blocks b^k , yielding also a string not in L. Thus L fails the

dual-clipping property, and cannot be CF.

Same solution stated as a contradiction derived from the existence of a CFG generating L:

Suppose L is generated by some CFG G. Let m be the number of G's variables, and d the maximal degree of G's productions.

Let $w = b^k a b^k a b^k$. We have $w \in L$ and |w| > k. So by the Dual-Clipping Theorem there is a substring p of w of length $\leq k$, so that the string w' obtained from w by removing some letters in p is also in L.

But such a p, having length $\leq k$, intersects at most two of the blocks \mathbf{b}^k . So clipping letters out of p either removes an \mathbf{a} , and the resulting string would not be in L, or removes at least one \mathbf{b} , but not from all three blocks \mathbf{b}^k , yielding also a string not in L. Thus $w' \notin L$, contradicting the conclusion above.

Thus there is no CFG G that generates L, and L cannot be a CFL.

(b) $L = \{ a^i b^j a^i b^j \mid i, j \ge 0 \}.$

Suppose $L = \mathcal{L}(G)$, G a CFG, and let k be G's clipping constant. Consider the string $w = a^k b^k a^k$. Since $w \in L$ and $|w| \ge k w$ has a substring p of length $\le k$, such that w' obtained from W by removing certain letters from w is in L. Since $|p| \le k$ it spans at most two of the substrings a^k , b^k and a^k . If an occurrence of a is removed in one block of *tta*'s then no instance is removed in the other. And similarly for b. Thus $w' \notin L$, a contradiction. i. Construct directly a PDA that recognizes the language $L = \{a^i c(ab)^i \mid i \ge 0\}$.

Solution. L is recognized by the following PDA M. M pushes a's on the stack as long as it reads a's. On reading c M switches to a pair of states that pops an a for every ab read:

- States: $\{s, q, p_0, p_1, f\}$, initial state s, accepting state f.
- Transition rules:

$s \xrightarrow{\epsilon \ (\epsilon ightarrow \$)} q$	$p_0 \xrightarrow{a \ (a o \epsilon)} p_1$
$q \xrightarrow{a (\epsilon \to a)} q$	$p_1 \xrightarrow{b(\epsilon \to \epsilon)} p_0$
$q \xrightarrow{c \ (\epsilon ightarrow \epsilon)} p_0$	$p_0 \xrightarrow{\epsilon (\$ ightarrow \$)} f$

ii. Give an accepting computation trace of your PDA for acabab.

Solution.

$s \xrightarrow{\epsilon \ (\epsilon ightarrow \$)} q$	$p \xrightarrow{\mathrm{b}(\epsilon ightarrow \mathrm{b})} p$	$r \xrightarrow{\epsilon \ (\epsilon ightarrow \epsilon)} t$
$q \xrightarrow{a(\epsilon ightarrow a)} q$	$p \xrightarrow{\epsilon \ (\epsilon ightarrow \epsilon)} r$	$t \xrightarrow{b(a \to \epsilon)} t$
$q \xrightarrow{\epsilon (\epsilon ightarrow \epsilon)} p$	$r \xrightarrow{a(b ightarrow \epsilon)} r$	$t \xrightarrow{\epsilon (\$ ightarrow \epsilon)} f$

iii. Give a CFG G that generates L.

Solution. $S \rightarrow a S a b \mid c$

iv. Convert G into another PDA that recognizes L.

Solution. With initial state s and accepting state f:

$$s \xrightarrow{\epsilon(\epsilon \to S\$)} q \qquad q \xrightarrow{\epsilon(S \to c)} q \qquad q \xrightarrow{b(b \to \epsilon)} q q \xrightarrow{\epsilon(S \to aSab)} q \qquad q \xrightarrow{a(a \to \epsilon)} q \qquad q \xrightarrow{e(\$ \to \epsilon)} f$$

A.

- **2.** (10+5+10%)
 - (a) Construct directly a PDA that recognizes the language
 L = {a^{p+q}b^qc^p | p,q ≥ 0}.
 Q = {s,q,r,f}, Γ = {a,b,c,\$}; initial state s; accepting states A = {s,f}.
 s ∉(ε→\$), q p ∉(ε→ε), r

(b) Give an (accepting) computation trace of your PDA for **aaabcc**, and a (non-accepting) trace for **abc**.

(c) Define a CFG that generates L, and then convert it into another PDA N that recognizes L, different from the one in (a). Let G have the productions $S \rightarrow aSc | T, T \rightarrow aTb | \varepsilon$. The initial variable is S.

$$s \xrightarrow{\epsilon(\epsilon \to S\$)} q$$

$$q \xrightarrow{\epsilon(S \to aSC)} q$$

$$q \xrightarrow{\epsilon(S \to T)} q$$

$$q \xrightarrow{\epsilon(T \to aTb)} q$$

$$q \xrightarrow{\epsilon(T \to aTb)} q$$

$$q \xrightarrow{a(a \to \epsilon)} q$$

$$q \xrightarrow{b(b \to \epsilon)} q$$

$$q \xrightarrow{\epsilon(\$ \to \epsilon)} f$$

- 3. (25%) Construct directly a PDA recognizing the language $L = \{a^{i+j}b^{j+k}c^{k+i} \mid i, j, k \ge 0\}.$
 - *L* is recognized by a PDA that

- (a) pushes x's while reading a's, then
- (b) pops x's while reading b's, then switching on a whim to
- (c) pushing **x**'s while reading **b**'s, then
- (d) popping **x**'s while reading **c**'s.

An accepting trace would have stage (a) push $i+j \times i$ s, then, in phase (b), would pop j of these, thus leaving $i \times i$ s on the stack. Stage (c) then reads the remaining k b's, ending with $i+k \times i$ s on the stack, which stage (d) pops off.

With s the start state and f the accepting state, the PDA is:

$s \xrightarrow{(\epsilon o \$)} q$	$r \xrightarrow{\mathrm{b}(\epsilon o \mathrm{x})} r$
$q \xrightarrow{a(\epsilon ightarrow x)} q$	$r \xrightarrow{\epsilon \ (\epsilon ightarrow \epsilon)} t$
$q \xrightarrow{\epsilon \ (\epsilon ightarrow \epsilon)} p$	$t \xrightarrow{c (x ightarrow \epsilon)} t$
$p \xrightarrow{b(\mathbf{x} o \epsilon)} p$	$t \xrightarrow{\epsilon (\$ ightarrow \epsilon)} f$
$p \xrightarrow{\epsilon \ (\epsilon ightarrow \epsilon)} r$	

If the input is $w = a^{i+j}b^{j+k}c^{k+i}$ then it is accepted by a trace that switches states from q to p after i+j pushes, from p to r after j pops, and from r to t after k pushes.

Conversely, if w is accepted where m is the number of pushes in state q, j is the number of pops in state p, and k the number of pushes in state r, then $m \ge j$, and writing i for m-j we have $i+k \ge i$'s on the stack when state t takes over, leading to acceptance.

4. (20%) Let $\Sigma = \{a, b, c\}$, and let $X, Y \subseteq \Sigma^*$ be CFL's.

Prove that the following languages are also CF.

i. $L = \{ u \cdot v \mid u \in A, v \in B, u \text{ without a 's and } v \text{ without b 's } \}.$

Solution. Let $X' = X \cap \{b, c\}^*$ and $Y' = Y \cap \{a, c\}^*$. Thus $L = X' \cdot Y'$. X' is a CFL as the intersection of a CFL and a regular language, and similarly for Y'. So L is a CFL as the concatenation of two CFL's.

ii. $L = \{ x \cdot y \cdot x' \mid x, x' \in X, y \in Y \}$. Solution. $L = X \cdot Y \cdot X$, a concatenation of CFL's, and therefore a CFL. (a) Let R be a regular language and K a CFL. Show that the following is a CFL.
L = { x ⋅ # ⋅ x' | x, x' ∈ R, |x| = |x'| } (where # is a fresh symbol).
L is generated by the following CFG:
S → XSX | #, X → a | b.

(b) For *R* and *K* as above, let L' = { x ⋅ y ⋅ x' | x, x' ∈ R, y ∈ K, |x| = |x'| }. L' is the intersection of CFL language L and the language R ⋅ {#} ⋅ R, which is regular as the concatenation of regular languages. The intersection of a CFL with a regular language is a CFL.