## Assignment 7: Dual-Clipping, PDAs

In this assignment, "construct directly a PDA" means that no auxiliary stack symbols are used other than the bottom-marker. This implies that you cannot construct your PDA by converting a CFG to it.

1. $(15+15 \%)$ Show that the following languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ are not CF .
i. $L=\left\{\mathrm{a}^{i} \mathrm{~b} \mathrm{a}^{i} \mathrm{~b}^{2} \mathrm{a}^{i} \mid i \geqslant 0\right\}$

Solution. Solution phrased as failure of the dual-clipping property: Given $k>0$, let $w=\mathrm{b}^{k} \mathrm{ab}^{k} \mathrm{ab}^{k}$. We have $w \in L$ and $|w|>k$.
If $p$ is a substring of $w$ of length $\leqslant k$ then $p$ intersects at most two of the three substrings $b^{k}$, so clipping letters our of $p$ either removes an $a$, and the resulting string would not be in $L$, or removes at least one $b$, but not from all three blocks $\mathrm{b}^{k}$, yielding also a string not in $L$. Thus $L$ fails the dual-clipping property, and cannot be CF.

Same solution via the dual-clipping theorem:
Suppose $L$ is generated by a CFG $G$. Let $m$ be the number of variables in $G, d$ the degree of $G$, and $k=d^{m}$.
Take $w=\mathrm{b}^{k} \mathrm{ab}^{k} \mathrm{ab}^{k}$. Since $w \in L$ and $|w|>k$ it follows by the Dual-Clipping Theorem that there is a substring $p$ of $w$, of length $\leqslant k$, so that the string $w^{\prime}$ obtained from $w$ by removing some letters in $p$ is also in $L$.
But since $p$ has length $\leqslant k$ it intersects at most two of the blocks $b^{k}$. So clipping letters out of $p$ either removes an a, and the resulting string would not be in $L$, or removes some $b$ 's from some but not all three blocks $\mathrm{b}^{k}$, yielding also a string not in $L$. Thus $w^{\prime} \notin L$, contradicting the assumption that $G$ is a CFG generating $L$.
(a) $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{a}^{i} \mid j>i\right\}$.

Solution stated as failure of dual-clipping:
Given $k>0$,
let $w=\mathrm{b}^{k} \mathrm{ab}^{k} \mathrm{ab}^{k}$. We have $w \in L$ and $|w|>k$.
If $p$ is any substring of $w$ of length $\leqslant k$ then $p$ intersects at most two of the blocks $\mathrm{b}^{k}$. So clipping letters our of $p$ either removes an a , and the resulting string would not be in $L$, or removes at least one $b$, but not from all three blocks $b^{k}$, yielding also a string not in $L$. Thus $L$ fails the
dual-clipping property, and cannot be CF.
Same solution stated as a contradiction derived from the existence of a CFG generating $L$ :
Suppose $L$ is generated by some CFG $G$. Let $m$ be the number of $G$ 's variables, and $d$ the maximal degree of $G$ 's productions.
Let $w=\mathrm{b}^{k} \mathrm{ab}^{k} \mathrm{ab}^{k}$. We have $w \in L$ and $|w|>k$. So by the DualClipping Theorem there is a substring $p$ of $w$ of length $\leqslant k$, so that the string $w^{\prime}$ obtained from $w$ by removing some letters in $p$ is also in $L$.
But such a $p$, having length $\leqslant k$, intersects at most two of the blocks $\mathrm{b}^{k}$. So clipping letters out of $p$ either removes an a , and the resulting string would not be in $L$, or removes at least one $b$, but not from all three blocks $\mathrm{b}^{k}$, yielding also a string not in $L$. Thus $w^{\prime} \notin L$, contradicting the conclusion above.
Thus there is no CFG $G$ that generates $L$, and $L$ cannot be a CFL.
(b) $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{a}^{i} \mathrm{~b}^{j} \mid i, j \geqslant 0\right\}$.

Suppose $L=\mathcal{L}(G), G$ a CFG, and let $k$ be $G$ 's clipping constant. Consider the string $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{a}^{k}$. Since $w \in L$ and $|w| \geqslant k w$ has a substring $p$ of length $\leqslant k$, such that $w^{\prime}$ obtained from $W$ by removing certain letters from $w$ is in $L$. Since $|p| \leqslant k$ it spans at most two of the substrings $a^{k}, b^{k}$ and $a^{k}$. If an occurrence of $a$ is removed in one block of $t t a$ 's then no instance is removed in the other. And similarly for b. Thus $w^{\prime} \notin L$, a contradiction.
A.
i. Construct directly a PDA that recognizes the language $L=\left\{\mathrm{a}^{i} \mathrm{c}(\mathrm{ab})^{i} \mid i \geqslant 0\right\}$.

Solution. $L$ is recognized by the following PDA $M . M$ pushes a's on the stack as long as it reads a's. On reading c $M$ switches to a pair of states that pops an a for every ab read:

- States: $\left\{s, q, p_{0}, p_{1}, f\right\}$, initial state $s$, accepting state $f$.
- Transition rules:

$$
\begin{array}{ll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & p_{0} \xrightarrow{a(a \rightarrow \epsilon)} p_{1} \\
q \xrightarrow[a(\epsilon \rightarrow a)]{ } q & p_{1} \xrightarrow{b(\epsilon \rightarrow \epsilon)} p_{0} \\
q \xrightarrow{c(\epsilon \rightarrow \epsilon)} p_{0} & p_{0} \xrightarrow{\epsilon(\$ \rightarrow \delta)} f
\end{array}
$$

ii. Give an accepting computation trace of your PDA for acabab.

## Solution.

$$
\begin{array}{lll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & p \xrightarrow{\mathrm{~b}(\epsilon \rightarrow \mathrm{~b})} p & r \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} t \\
q \xrightarrow[\mathrm{a}(\epsilon \rightarrow \mathrm{a})]{ } q & p \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} r & t \xrightarrow{\mathrm{~b}(\mathrm{a} \rightarrow \epsilon)} t \\
q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p & r \xrightarrow{\mathrm{a}(\mathrm{~b} \rightarrow \epsilon)} r & t \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f
\end{array}
$$

iii. Give a CFG $G$ that generates $L$.

Solution. $\quad S \rightarrow$ a $S$ ab|c
iv. Convert $G$ into another PDA that recognizes $L$.

Solution. With initial state $s$ and accepting state $f$ :
$s \xrightarrow{\epsilon(\epsilon \rightarrow S \$)} q$
$q \xrightarrow{\epsilon(S \rightarrow \mathrm{a} S \mathrm{ab})} q$
$q \xrightarrow{\epsilon(S \rightarrow \mathrm{c})} q$
$q \xrightarrow{\mathrm{a}(\mathrm{a} \rightarrow \epsilon)} q$
$q \xrightarrow{\mathrm{~b}(\mathrm{~b} \rightarrow \epsilon)} q$
$\square \rightarrow$

2. $(10+5+10 \%)$
(a) Construct directly a PDA that recognizes the language

$$
L=\left\{\mathrm{a}^{p+q} \mathrm{~b}^{q} \mathrm{C}^{p} \mid p, q \geqslant 0\right\}
$$

$Q=\{s, q, r, f\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \$\} ;$ initial state $s ;$ accepting states $A=\{s, f\}$.

$$
\begin{array}{ll}
s \xrightarrow{s(\epsilon \rightarrow \delta)} q & p \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} r \\
q \xrightarrow{\mathrm{a}(\epsilon \rightarrow \mathrm{a})} q & r \xrightarrow{\mathrm{c}(\mathrm{a} \rightarrow \epsilon)} r \\
q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p & r \xrightarrow{\epsilon(\mathrm{~S} \rightarrow \epsilon)}
\end{array}
$$

(b) Give an (accepting) computation trace of your PDA for aaabcc, and a (non-accepting) trace for $a b c$.

$$
\begin{aligned}
(s, \text { aaabcc }, \varepsilon) & \Rightarrow(q, \text { aaabcc }, \$) & (s, \mathrm{abc}, \varepsilon) & \Rightarrow(q, \mathrm{abc}, \$) \\
& \Rightarrow(q, \mathrm{abcc}, \mathrm{aa} \$) & & \Rightarrow(q, \mathrm{bc}, \mathrm{a} \$) \\
& \Rightarrow(q, \mathrm{bcc}, \mathrm{aaa} \$) & & \Rightarrow(p, \mathrm{bc}, \mathrm{a} \$) \\
& \Rightarrow(p, \mathrm{bcc}, \mathrm{aaa} \$) & & \Rightarrow(p, \mathrm{c}, \mathrm{aa} \$) \\
& \Rightarrow(p, \mathrm{cc}, \mathrm{aa} \$) & & \Rightarrow(r, \varepsilon, \mathrm{a} \$) \\
& \Rightarrow(r, \mathrm{cc}, \mathrm{aa} \$) & & \\
& \Rightarrow(r, \mathrm{c}, \mathrm{a} \$) & & \\
& \Rightarrow(r, \varepsilon, \$) & & \\
& \Rightarrow(f, \varepsilon, \$) & &
\end{aligned}
$$

(c) Define a CFG that generates $L$, and then convert it into another PDA $N$ that recognizes $L$, different from the one in (a).
Let $G$ have the productions $\quad S \rightarrow \mathrm{aSc}|T, \quad T \rightarrow \mathrm{a} T \mathrm{~b}| \varepsilon$. The initial variable is $S$.
3. (25\%) Construct directly a PDA recognizing the language $L=\left\{\mathrm{a}^{i+j} \mathrm{~b}^{j+k} \mathrm{C}^{k+i} \mid i, j, k \geqslant 0\right\}$.
$L$ is recognized by a PDA that
(a) pushes x's while reading a's, then
(b) pops x's while reading b's, then switching on a whim to
(c) pushing $x$ 's while reading b's, then
(d) popping x's while reading c's.

An accepting trace would have stage (a) push $i+j$ x's, then, in phase (b), would pop $j$ of these, thus leaving $i$ x's on the stack. Stage (c) then reads the remaining $k \quad \mathrm{~b}$ 's, ending with $i+k$ x's on the stack, which stage (d) pops off.

With $s$ the start state and $f$ the accepting state, the PDA is:

$$
\begin{array}{ll}
s \xrightarrow{(\epsilon \rightarrow \$)} q & r \xrightarrow{\mathrm{~b}(\epsilon \rightarrow \mathrm{x})} r \\
q \xrightarrow{\mathrm{a}(\epsilon \rightarrow \mathrm{x})} q & r \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} t \\
q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p & t \xrightarrow{\mathrm{c}(\mathrm{x} \rightarrow \epsilon)} t \\
p \xrightarrow{\mathrm{~b}(\mathrm{x} \rightarrow \epsilon)} p & t \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f \\
p \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} r &
\end{array}
$$

If the input is $w=\mathrm{a}^{i+j} \mathrm{~b}^{j+k} \mathrm{C}^{k+i}$ then it is accepted by a trace that switches states from $q$ to $p$ after $i+j$ pushes, from $p$ to $r$ after $j$ pops, and from $r$ to $t$ after $k$ pushes.
Conversely, if $w$ is accepted where $m$ is the number of pushes in state $q$, $j$ is the number of pops in state $p$, and $k$ the number of pushes in state $r$, then $m \geqslant j$, and writing $i$ for $m-j$ we have $i+k$ x's on the stack when state $t$ takes over, leading to acceptance.
4. ( $20 \%$ ) Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and let $X, Y \subseteq \Sigma^{*}$ be CFL's.

Prove that the following languages are also CF.
i. $L=\{u \cdot v \mid u \in A, v \in B, u$ without a 's and $v$ without b 's $\}$.

Solution. Let $X^{\prime}=X \cap\{\mathrm{~b}, \mathrm{c}\}^{*}$ and $Y^{\prime}=Y \cap\{\mathrm{a}, \mathrm{c}\}^{*}$. Thus $L=X^{\prime} \cdot Y^{\prime}$. $X^{\prime}$ is a CFL as the intersection of a CFL and a regular language, and similarly for $Y^{\prime}$. So $L$ is a CFL as the concatenation of two CFL's.
ii. $L=\left\{x \cdot y \cdot x^{\prime} \mid x, x^{\prime} \in X, y \in Y\right\}$.

Solution. $L=X \cdot Y \cdot X$, a concatenation of CFL's, and therefore a CFL.
(a) Let $R$ be a regular language and $K$ a CFL. Show that the following is a CFL.
$L=\left\{x \cdot \# \cdot x^{\prime}\left|x, x^{\prime} \in R,|x|=\left|x^{\prime}\right|\right\}\right.$ (where \# is a fresh symbol). $L$ is generated by the following CFG:
$S \rightarrow X S X|\#, \quad X \rightarrow \mathrm{a}| \mathrm{b}$.
(b) For $R$ and $K$ as above, let $L^{\prime}=\left\{x \cdot y \cdot x^{\prime}\left|x, x^{\prime} \in R, y \in K,|x|=\left|x^{\prime}\right|\right\}\right.$. $L^{\prime}$ is the intersection of CFL language $L$ and the language $R \cdot\{\#\} \cdot R$, which is regular as the concatenation of regular languages. The intersection of a CFL with a regular language is a CFL.

