
B501, Fall 2023

© Daniel Leivant 2023

Assignment 7: Dual-Clipping, PDAs

In this assignment, “construct directly a PDA” means that no auxiliary stack

symbols are used other than the bottom-marker. This implies that you cannot con-

struct your PDA by converting a CFG to it.

1. (15+15%) Show that the following languages over Σ = {a,b}Σ = {a,b}Σ = {a,b} are not CF.

i. L = {ai
ba

i
ba

i | i > 0 }L = {ai
ba

i
ba

i | i > 0 }L = {ai
ba

i
ba

i | i > 0 }

Solution. Solution phrased as failure of the dual-clipping property:

Given k > 0k > 0k > 0 , let w = b
k
ab

k
ab

kw = b
k
ab

k
ab

kw = b
k
ab

k
ab

k. We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

If ppp is a substring of www of length 6 k6 k6 k then ppp intersects at most two of

the three substrings b
k
b

k
b

k, so clipping letters our of ppp either removes an aaa ,

and the resulting string would not be in LLL , or removes at least one bbb , but

not from all three blocks b
k
b

k
b

k, yielding also a string not in LLL. Thus LLL fails

the dual-clipping property, and cannot be CF.

Same solution via the dual-clipping theorem:

Suppose LLL is generated by a CFG GGG. Let mmm be the number of variables

in GGG , ddd the degree of GGG, and k = dmk = dmk = dm.

Take w = b
k
ab

k
ab

kw = b
k
ab

k
ab

kw = b
k
ab

k
ab

k. Since w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k it follows by the

Dual-Clipping Theorem that there is a substring ppp of www , of length 6 k6 k6 k ,

so that the string w′w′w′ obtained from www by removing some letters in ppp is

also in LLL .

But since ppp has length 6 k6 k6 k it intersects at most two of the blocks b
k
b

k
b

k.

So clipping letters out of ppp either removes an aaa , and the resulting string

would not be in LLL , or removes some bbb ’s from some but not all three

blocks b
k
b

k
b

k, yielding also a string not in LLL. Thus w′ 6∈ Lw′ 6∈ Lw′ 6∈ L, contradicting

the assumption that GGG is a CFG generating LLL.

(a) L = {ai
b

j
a

i | j > i}L = {ai
b

j
a

i | j > i}L = {ai
b

j
a

i | j > i}.

(b) L = {ai
b

j
a

i
b

j | i, j > 0 }L = {ai
b

j
a

i
b

j | i, j > 0 }L = {ai
b

j
a

i
b

j | i, j > 0 }.

A.
i. Construct directly a PDA that recognizes the language L = {ai

c(ab)i | i > 0}.L = {ai
c(ab)i | i > 0}.L = {ai
c(ab)i | i > 0}.

Solution. LLL is recognized by the following PDA MMM . MMM pushes aaa’s

on the stack as long as it reads aaa’s. On reading ccc MMM switches to a pair

of states that pops an aaa for every ababab read:

• States: {s, q, p0, p1, f}{s, q, p0, p1, f}{s, q, p0, p1, f}, initial state sss, accepting state fff .

• Transition rules:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
c (ǫ→ǫ)

−−−−→ p0q
c (ǫ→ǫ)

−−−−→ p0q
c (ǫ→ǫ)

−−−−→ p0

p0
a (a→ǫ)

−−−−→ p1p0
a (a→ǫ)

−−−−→ p1p0
a (a→ǫ)

−−−−→ p1

p1
b (ǫ→ǫ)

−−−−→ p0p1
b (ǫ→ǫ)

−−−−→ p0p1
b (ǫ→ǫ)

−−−−→ p0

p0
ǫ ($→$)

−−−−→ fp0
ǫ ($→$)

−−−−→ fp0
ǫ ($→$)

−−−−→ f

ii. Give an accepting computation trace of your PDA for acababacababacabab.

Solution.

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
b (ǫ→b)

−−−−→ pp
b (ǫ→b)

−−−−→ pp
b (ǫ→b)

−−−−→ p

p
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ rp
ǫ (ǫ→ǫ)

−−−−→ r

r
a (b→ǫ)

−−−−→ rr
a (b→ǫ)

−−−−→ rr
a (b→ǫ)

−−−−→ r

r
ǫ (ǫ→ǫ)

−−−−→ tr
ǫ (ǫ→ǫ)

−−−−→ tr
ǫ (ǫ→ǫ)

−−−−→ t

t
b (a→ǫ)

−−−−→ tt
b (a→ǫ)

−−−−→ tt
b (a→ǫ)

−−−−→ t

t
ǫ ($→ǫ)

−−−−→ ft
ǫ ($→ǫ)

−−−−→ ft
ǫ ($→ǫ)

−−−−→ f

iii. Give a CFG GGG that generates LLL .

Solution. S → aS ab | cS → aS ab | cS → aS ab | c

iv. Convert GGG into another PDA that recognizes LLL .

Solution. With initial state sss and accepting state fff :

s
ǫ (ǫ→S$)

−−−−−→ qs
ǫ (ǫ→S$)

−−−−−→ qs
ǫ (ǫ→S$)

−−−−−→ q

q
ǫ (S→aSab)

−−−−−−→ qq
ǫ (S→aSab)

−−−−−−→ qq
ǫ (S→aSab)

−−−−−−→ q

q
ǫ (S→c)

−−−−→ qq
ǫ (S→c)

−−−−→ qq
ǫ (S→c)

−−−−→ q

q
a (a→ǫ)

−−−−→ qq
a (a→ǫ)

−−−−→ qq
a (a→ǫ)

−−−−→ q

q
b (b→ǫ)

−−−−→ qq
b (b→ǫ)

−−−−→ qq
b (b→ǫ)

−−−−→ q

q
ǫ ($→ǫ)

−−−−→ fq
ǫ ($→ǫ)

−−−−→ fq
ǫ ($→ǫ)

−−−−→ f

2

2. (10+5+10%)

(a) Construct directly a PDA that recognizes the language

L = {ap+q
b

q
c

p | p, q > 0}.L = {ap+q
b

q
c

p | p, q > 0}.L = {ap+q
b

q
c

p | p, q > 0}.

(b) Give an (accepting) computation trace of your PDA for aaabccaaabccaaabcc , and a

(non-accepting) trace for abcabcabc.

(c) Define a CFG that generates LLL , and then convert it into another PDA NNN

that recognizes LLL, different from the one in (a).

3. (25%) Construct directly a PDA recognizing the language

L = {ai+j
b

j+k
c

k+i | i, j, k > 0}L = {ai+j
b

j+k
c

k+i | i, j, k > 0}L = {ai+j
b

j+k
c

k+i | i, j, k > 0} .

4. (20%) Let Σ = {a,b,c}Σ = {a,b,c}Σ = {a,b,c}, and let X, Y ⊆ Σ∗X, Y ⊆ Σ∗
X, Y ⊆ Σ∗ be CFL’s.

Prove that the following languages are also CF.

i. L = { u · v | u ∈ A, v ∈ B,L = { u · v | u ∈ A, v ∈ B,L = { u · v | u ∈ A, v ∈ B, uuu without aaa ’s and vvv without bbb ’s }}}.

Solution. Let X ′ = X ∩ {b,c}∗X ′ = X ∩ {b,c}∗X ′ = X ∩ {b,c}∗ and Y ′ = Y ∩ {a,c}∗Y ′ = Y ∩ {a,c}∗Y ′ = Y ∩ {a,c}∗. Thus L = X ′ · Y ′L = X ′ · Y ′L = X ′ · Y ′.

X ′X ′X ′ is a CFL as the intersection of a CFL and a regular language, and sim-

ilarly for Y ′Y ′Y ′. So LLL is a CFL as the concatenation of two CFL’s.

ii. L = { x · y · x′ | x, x′ ∈ X, y ∈ Y }L = { x · y · x′ | x, x′ ∈ X, y ∈ Y }L = { x · y · x′ | x, x′ ∈ X, y ∈ Y }.

Solution. L = X · Y · XL = X · Y · XL = X · Y · X , a concatenation of CFL’s, and therefore a

CFL.

(a) Let RRR be a regular language and KKK a CFL. Show that the following is a

CFL.

L = { x · # · x′ | x, x′ ∈ R, |x| = |x′| }L = { x · # · x′ | x, x′ ∈ R, |x| = |x′| }L = { x · # · x′ | x, x′ ∈ R, |x| = |x′| } (where ### is a fresh symbol).

(b) For RRR and KKK as above. L = { x · y · x′ | x, x′ ∈ R, y ∈ K, |x| = |x′| }L = { x · y · x′ | x, x′ ∈ R, y ∈ K, |x| = |x′| }L = { x · y · x′ | x, x′ ∈ R, y ∈ K, |x| = |x′| }.

3

