Assignment 7: Dual-Clipping, PDAs

In this assignment, "construct directly a PDA" means that no auxiliary stack symbols are used other than the bottom-marker. This implies that you cannot construct your PDA by converting a CFG to it.

1. $(15+15 \%)$ Show that the following languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ are not CF .
i. $L=\left\{\mathrm{a}^{i} \mathrm{ba}^{i} \mathrm{ba}^{i} \mid i \geqslant 0\right\}$

Solution. Solution phrased as failure of the dual-clipping property: Given $k>0$, let $w=\mathrm{b}^{k} \mathrm{ab}^{k} \mathrm{ab}^{k}$. We have $w \in L$ and $|w|>k$.
If p is a substring of w of length $\leqslant k$ then p intersects at most two of the three substrings b^{k}, so clipping letters our of p either removes an a, and the resulting string would not be in L, or removes at least one b, but not from all three blocks b^{k}, yielding also a string not in L. Thus L fails the dual-clipping property, and cannot be CF.

Same solution via the dual-clipping theorem:
Suppose L is generated by a CFG G. Let m be the number of variables in G, d the degree of G, and $k=d^{m}$.
Take $w=\mathrm{b}^{k} \mathrm{ab}^{k} \mathrm{ab}^{k}$. Since $w \in L$ and $|w|>k$ it follows by the Dual-Clipping Theorem that there is a substring p of w, of length $\leqslant k$, so that the string w^{\prime} obtained from w by removing some letters in p is also in L.
But since p has length $\leqslant k$ it intersects at most two of the blocks b^{k}. So clipping letters out of p either removes an a, and the resulting string would not be in L, or removes some b 's from some but not all three blocks b^{k}, yielding also a string not in L. Thus $w^{\prime} \notin L$, contradicting the assumption that G is a CFG generating L.
(a) $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{a}^{i} \mid j>i\right\}$.
(b) $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{a}^{i} \mathrm{~b}^{j} \mid i, j \geqslant 0\right\}$.
A.
i. Construct directly a PDA that recognizes the language $L=\left\{\mathrm{a}^{i} \mathrm{c}(\mathrm{ab})^{i} \mid i \geqslant 0\right\}$.

Solution. $\quad L$ is recognized by the following PDA $M . M$ pushes a's on the stack as long as it reads a's. On reading c M switches to a pair of states that pops an a for every ab read:

- States: $\left\{s, q, p_{0}, p_{1}, f\right\}$, initial state s, accepting state f.
- Transition rules:

$$
\begin{array}{ll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & p_{0} \xrightarrow{a(a \rightarrow \epsilon)} p_{1} \\
q \xrightarrow[a(\epsilon \rightarrow a)]{ } q & p_{1} \xrightarrow{b(\epsilon \rightarrow \epsilon)} p_{0} \\
q \xrightarrow{c(\epsilon \rightarrow \epsilon)} p_{0} & p_{0} \xrightarrow{\epsilon(\$ \rightarrow \delta)} f
\end{array}
$$

ii. Give an accepting computation trace of your PDA for acabab.

Solution.

$$
\begin{array}{lll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & p \xrightarrow{\mathrm{~b}(\epsilon \rightarrow \mathrm{~b})} p & r \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} t \\
q \xrightarrow[\mathrm{a}(\epsilon \rightarrow \mathrm{a})]{ } q & p \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} r & t \xrightarrow{\mathrm{~b}(\mathrm{a} \rightarrow \epsilon)} t \\
q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p & r \xrightarrow{\mathrm{a}(\mathrm{~b} \rightarrow \epsilon)} r & t \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f
\end{array}
$$

iii. Give a CFG G that generates L.

Solution. $\quad S \rightarrow$ a S ab | c
iv. Convert G into another PDA that recognizes L.

Solution. With initial state s and accepting state f :
$s \xrightarrow{\epsilon(\epsilon \rightarrow S \$)} q$
$q \xrightarrow{\epsilon(S \rightarrow \mathrm{a} \text { ab) }} q$
$q \xrightarrow{\epsilon(S \rightarrow c)} q$
$q \xrightarrow{\mathrm{~b}(\mathrm{~b} \rightarrow \epsilon)} q$ $\square \rightarrow$
$q \xrightarrow{\mathrm{a}(\mathrm{a} \rightarrow \epsilon)} q$
$q \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f$
2. $(10+5+10 \%)$
(a) Construct directly a PDA that recognizes the language

$$
L=\left\{\mathrm{a}^{p+q} \mathrm{~b}^{q} \mathrm{c}^{p} \mid p, q \geqslant 0\right\} .
$$

(b) Give an (accepting) computation trace of your PDA for aaabcc, and a (non-accepting) trace for abc .
(c) Define a CFG that generates L, and then convert it into another PDA N that recognizes L, different from the one in (a).
3. (25%) Construct directly a PDA recognizing the language

$$
L=\left\{\mathrm{a}^{i+j} \mathrm{~b}^{j+k} \mathrm{c}^{k+i} \mid i, j, k \geqslant 0\right\} .
$$

4. (20\%) Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and let $X, Y \subseteq \Sigma^{*}$ be CFL's.

Prove that the following languages are also CF.
i. $L=\{u \cdot v \mid u \in A, v \in B, u$ without a 's and v without b's $\}$.

Solution. Let $X^{\prime}=X \cap\{\mathrm{~b}, \mathrm{c}\}^{*}$ and $Y^{\prime}=Y \cap\{\mathrm{a}, \mathrm{c}\}^{*}$. Thus $L=X^{\prime} \cdot Y^{\prime}$. X^{\prime} is a CFL as the intersection of a CFL and a regular language, and similarly for Y^{\prime}. So L is a CFL as the concatenation of two CFL's.
ii. $L=\left\{x \cdot y \cdot x^{\prime} \mid x, x^{\prime} \in X, y \in Y\right\}$.

Solution. $L=X \cdot Y \cdot X$, a concatenation of CFL's, and therefore a CFL.
(a) Let R be a regular language and K a CFL. Show that the following is a CFL.
$L=\left\{x \cdot \# \cdot x^{\prime}\left|x, x^{\prime} \in R,|x|=\left|x^{\prime}\right|\right\}\right.$ (where \# is a fresh symbol).
(b) For R and K as above. $L=\left\{x \cdot y \cdot x^{\prime}\left|x, x^{\prime} \in R, y \in K,|x|=\left|x^{\prime}\right|\right\}\right.$.

