Assignment 8: Decidability and reductions

This assignment contains solved practice problems, numbered in red. The assigned problems and sub-problems are numbered in green.

1. (5%)
i. Prove that the concatenation of decidable languages is decidable.

Solution. If L and K have decision algorithms, then decide whether $w \in L \cdot K$ by cycling through all partitions $w=u \cdot v$, and checking, using the given decision algorithms for L and K, whether $u \in L$ and $v \in K$. If both are true for some u, v then stop and accept. If not, reject.
(a) Prove that the star of a decidable language is decidable.

Prove that every regular language is decidable. [Hint: Use the closure of the collection of decidable languages under set operations. Alternatively, explain how a DFA can be construed as an algorithm.]
2. $(5+10+10 \%)$
(a) Exhibit two disjoint undecidable languages whose union is decidable.
(b) Show that if $D, N \subseteq \Sigma^{*}$ are disjoint, where D is decidable and N undecidable, then the union $D \cup N$ is undecidable.
(c) Exhibit two undecidable languages who intersection is infinite but decidable. [Hint: Consider $\Sigma=\{a, b, c\}$, undecidable Σ-languages L, K and decidable Σ-language D. What about $\mathrm{a} \cdot D \cup \mathrm{~b} \cdot L$ and $\mathrm{a} \cdot D \cup \mathrm{c} \cdot K$?]
3. $(10+5+5 \%)$ Let $L \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}$, and define $X=\mathrm{a} \cdot L \cup \mathrm{~b} \cdot \bar{L}$
(a) Prove that if L is decidable then so is X.
(b) Prove that $\bar{L} \leqslant_{c} X$.
(c) Conclude that if X is decidable then so is \bar{L}.
4. (5\%) We showed that the problem ACCEPTANCE is SD but not decidable. Show that its complement is not even SD.
5. (15\%) Show that every infinite SD language has an infinite decidable sublanguage. [Hint: An infinite SD language is computably enumerated, and from its computable enumeration we can extract an orderly enumeration of a sublanguage.]
i. Show that there is an infinite language L without any infinite decidable sublanguage. [Hint: Explain why there is a listing L_{1}, L_{2}, \ldots of all infinite decidable languages $L \subseteq\{0,1\}^{*}$. Now define $L=\left\{w_{0}, w_{1}, w_{2} \ldots\right\}$ as follows. Let $w_{0}=\varepsilon$; and given w_{i}, let u be the first string in L_{i} longer than w_{i}, and take w_{i+1} to be a string longer than u. Why is L infinite? Why can't we have $L_{i} \subseteq L$ for any i ?]
Solution. The collection of Turing deciders is countable (when no computability condition is required). So, by elementary Set Theory, there is a listing L_{1}, L_{2}, \ldots of all infinite decidable languages $L \subseteq\{0,1\}^{*}$.
Define $L=\left\{w_{0}, w_{1}, w_{2} \ldots\right\}$ as follows. Let $w_{0}=\varepsilon$; and given w_{i} let u_{i} be the first string in L_{i} longer than w_{i}. Such a u_{i} must exist, since L_{i} is infinite. Take w_{i+1} to be any string longer than u_{i}. So $\left|w_{i+1}\right|>\left|u_{i}\right|>\left|w_{i}\right|$. By definition, $u_{i} \in L_{i}$. But $u_{i} \notin L$, because the longest string in L of length $\leqslant\left|u_{i}\right|$ is w_{i}, which is shorter than u_{i}. Since $u_{i} \in L_{i}-L$ it follows that $L_{i} \nsubseteq L$ for all $i \geqslant 1$.
6. (15\%) Let $L \subseteq \Sigma^{*}$ and define $D={ }_{\mathrm{df}}\{w w \mid w \in L\}$.
(a) Show that $L \leqslant_{c} D$.
i. Assume that $\varepsilon \notin L$. Show that $D \leqslant_{c} L$.

Solution. Define

$$
\rho(x)=\text { if } x \text { is of the form } w w \text { then } w \text { else } \varepsilon .
$$

Clearly, ρ is computable.
If $x \in D$ then, by the definition of $D, x=w w$ for some $w \in L$. By the definition of ρ this implies that $\rho(x)=w$, so $\rho(x) \in L$.
Conversely, if $\rho(x) \in L$ then, since $\varepsilon \notin L, x$ is the form $w w$ and $\rho(x)=w$. But we have $w w \in D$ only if $w \in L$, so $\rho(x)=w \in L$.
7. (15%) Let E be the set of acceptors that accept every even-length string, and D the set of accepters over $\Sigma=\{a, b\}$ that accept every odd-length string. Construct a computable reduction $\rho: D \leqslant_{c} E$.

