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Assignment 10: PTime reductions and NP-completeness

Solutions

A. For each of the following determine whether it is true, and explain your answer.

(i) If LLL is NP and L 6p L′L 6p L′L 6p L′ then L′L′L′ is NP.

Solution. False. Let KKK be a non-NP language (for example an undecid-

able language). Take L′ = L · # · KL′ = L · # · KL′ = L · # · K. Then L 6p L′L 6p L′L 6p L′. But also K 6p L′K 6p L′K 6p L′,

so L′L′L′ is non-NP.

(ii) If LLL is NP-hard and L 6p L′L 6p L′L 6p L′ then L′L′L′ is NP-hard.

Solution. True. If LLL is NP-hard then (by dfn) every NP-problem is

6p L6p L6p L . By transitivity of 6p6p6p , every NP problem is 6p L′6p L′
6p L′ .

(iii) If L′L′L′ is NP-hard and L 6p L′L 6p L′L 6p L′ then LLL is NP-hard.

Solution. False. The extra assumption implies that there is a PTime-

decidable problem PPP that is not NP-hard, for otherwise PPP would be re-

ducible to any non-trivial problem L′L′L′ and yet not be NP-hard.

1. (20%) Consider the following decision problems, and the corresponding claims

that they are NP. For each claim determine whether it is valid. (If bbb is a binary

string then we write [b]2[b]2[b]2 for its numeric value as a binary numeral.)

(a) Given a Turing acceptor MMM , does it accept some string www within 6 |w|26 |w|26 |w|2

steps.

Claim: We can take as PTime certificate for MMM a string www accepted by

MMM in 6 |w|26 |w|26 |w|2 steps.

(b) Given a Turing acceptor MMM and a binary numeral bbb,

MMM accepts some www of length 6 [b]26 [b]26 [b]2 in 6 |w|26 |w|26 |w|2 steps.

Claim: We can take as PTime-certificate for an instance (M, b)(M, b)(M, b) a string

www accepted by MMM in 6 |w|26 |w|26 |w|2 steps.

(c) Given a Turing acceptor MMM and a unary numeral InInIn,

MMM accepts some www of length 666 in 6 n26 n2
6 n2 steps

Claim: As PTime-certificate for (M, v)(M, v)(M, v) we can take a string www of length

6 n6 n6 n accepted by MMM in 6 |w|26 |w|26 |w|2 steps.

(d) Given a Turing acceptor MMM , does it accept εεε.

Claim: We can take as PTime-certificate for MMM an accepting trace of MMM

for input εεε.



(e) Given a boolean expression EEE, is EEE satisfied by a majority of all valua-

tions for EEE’s variables?

Claim: We can take as PTime certificate for EEE a list of valuations that

satisfy EEE.

B. Define INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH: Given two finite sets S, TS, TS, T of positive integers,

are there non-empty subsets P ⊆ SP ⊆ SP ⊆ S and Q ⊆ TQ ⊆ TQ ⊆ T such that
∑

P =
∑

Q
∑

P =
∑

Q
∑

P =
∑

Q.

Given that EXACT-SUMEXACT-SUMEXACT-SUM is NP-hard, show that INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH is NP-complete.

Solution. INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH has a PTime certification, with instance (S, T )(S, T )(S, T )
certified by sets P ⊆ SP ⊆ SP ⊆ S and Q ⊆ TQ ⊆ TQ ⊆ T such that

∑
P =

∑
Q

∑
P =

∑
Q

∑
P =

∑
Q.

The certificate’s size is bounded by the size of (S, T )(S, T )(S, T ) and its correctness can

be verified in PTime. So INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH is NP.

To show NP-hardness we define a reduction ρ : EXACT-SUM 6p INTEGER-MATCHρ : EXACT-SUM 6p INTEGER-MATCHρ : EXACT-SUM 6p INTEGER-MATCH.

ρρρ maps an instance (S, t)(S, t)(S, t) of EXACT-SUMEXACT-SUMEXACT-SUM to the instance (S, {t})(S, {t})(S, {t}) of INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH.

ρρρ is clearly computable in PTime. It is a reduction: If (S, t)(S, t)(S, t) satisfies EXACT-SUMEXACT-SUMEXACT-SUM

with a subset PPP then (S, {t})(S, {t})(S, {t}) satisfies INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH with the given PPP

and Q = {t}Q = {t}Q = {t}.

Conversely, if INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH is satisfied with subsets P, QP, QP, Q then Q = {t}Q = {t}Q = {t},

since QQQ can’t be empty, and so (S, t)(S, t)(S, t) satisfies EXACT-SUMEXACT-SUMEXACT-SUM with that same

PPP .

Given that EXACT-SUMEXACT-SUMEXACT-SUM is NP-hard, it follows that INTEGER-MATCHINTEGER-MATCHINTEGER-MATCH is NP-

hard as well, and since it is NP, EXACT-SUMEXACT-SUMEXACT-SUM is NP-complete.

2. (20%) ZERO-SUMZERO-SUMZERO-SUM: Given a finite set SSS of integers (not necessarily positive),

is there a non-empty subset Z ⊆ SZ ⊆ SZ ⊆ S that adds up to 0, i.e.
∑

Z = 0
∑

Z = 0
∑

Z = 0.

Given that EXACT-SUMEXACT-SUMEXACT-SUM is NP-hard, prove that ZERO-SUMZERO-SUMZERO-SUM is NP-complete.

[Hint: For the reduction from EXACT-SUMEXACT-SUMEXACT-SUM add to the set one entry.]

Solution. We saw that ZERO-SUMZERO-SUMZERO-SUM is NP. We prove that it is NP-hard by a

reduction of EXACT-SUMEXACT-SUMEXACT-SUM to it.

Let ρ : EXACT-SUM 6p ZERO-SUMρ : EXACT-SUM 6p ZERO-SUMρ : EXACT-SUM 6p ZERO-SUM map instance (S, t)(S, t)(S, t) of EXACT-SUMEXACT-SUMEXACT-SUM

to the instance S ∪ {−t}S ∪ {−t}S ∪ {−t} of ZERO-SUMZERO-SUMZERO-SUM. We have
∑

S = t
∑

S = t
∑

S = t iff
∑

(S ∪ {−t}) + t = 0
∑

(S ∪ {−t}) + t = 0
∑

(S ∪ {−t}) + t = 0,

so this is a reduction. It is trivially P-size, and PTime-computable.

3. (20%) BISATBISATBISAT: Given a boolean expression EEE , is it satisfied by at least two

different valuations.

Given that BOOL-SATBOOL-SATBOOL-SAT is NP-hard, prove that BISATBISATBISAT is NP-complete.

Solution. A certificate for an instance EEE is a pair of different valuations, each

satisfying EEE . The certificate is of size linear in |E||E||E| , and can be checked in

linear time.
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BISATBISATBISAT is NP-hard because BOOL-SAT is NP-hard and ρ : BOOL-SAT 6p BISATρ : BOOL-SAT 6p BISATρ : BOOL-SAT 6p BISAT

where ρρρ maps an instance E[x1 . . . xk]E[x1 . . . xk]E[x1 . . . xk] of BOOL-SAT to the expression

E[x1 . . . xk] ∨ E[y1 . . . yk]E[x1 . . . xk] ∨ E[y1 . . . yk]E[x1 . . . xk] ∨ E[y1 . . . yk] , with y1 . . . yky1 . . . yky1 . . . yk fresh and distinct variables.

ρρρ is in linear-time trivially.

ρρρ is a reduction: Suppose E[x1 . . . xk]E[x1 . . . xk]E[x1 . . . xk] is satisfied by a valuation V [x1 . . . xk]V [x1 . . . xk]V [x1 . . . xk];
let V ′[~x]V ′[~x]V ′[~x] be some other valuation over ~x~x~x . Then E[~x] ∨ E[~y]E[~x] ∨ E[~y]E[~x] ∨ E[~y] is satisfied by

the valuation V [x1 . . . xk] ∪ V ′[y1 . . . yk]V [x1 . . . xk] ∪ V ′[y1 . . . yk]V [x1 . . . xk] ∪ V ′[y1 . . . yk] as well as by the valuation

V ′[x1 . . . xk] ∪ V [y1 . . . yk]V ′[x1 . . . xk] ∪ V [y1 . . . yk]V ′[x1 . . . xk] ∪ V [y1 . . . yk] . These valuations are different, because we took

V ′V ′V ′ to be different from VVV .

Conversely, if E[x1 . . . xk] ∨ E[y1 . . . yk]E[x1 . . . xk] ∨ E[y1 . . . yk]E[x1 . . . xk] ∨ E[y1 . . . yk] is satisfied by a valuation VVV then

one of the disjunct is satisfied by VVV and so EEE is satisfiable.

4. Recall that the HAMILTONIAN-PATH (HP)HAMILTONIAN-PATH (HP)HAMILTONIAN-PATH (HP) problem asks, given a directed graph

GGG , whether it has a Hamiltonian-path (H-path), i.e. a path visiting every vertex

once. The HAMILTONIAN-CYCLE (HC)HAMILTONIAN-CYCLE (HC)HAMILTONIAN-CYCLE (HC) problem asks the same question for a

cycle, i.e. a closed loop.

(i) Define a reduction ρ : HC 6p HPρ : HC 6p HPρ : HC 6p HP.

Solution. Given a digraph G = (V, E)G = (V, E)G = (V, E) Chose a vertex v ∈ Vv ∈ Vv ∈ V . Let

G′ = ρ(G)G′ = ρ(G)G′ = ρ(G) be GGG with vvv split into two vertices vinvinvin and voutvoutvout. vinvinvin inher-

its the incoming edges of vvv , and voutvoutvout the outgoing edges of vvv .

v vin vout

G G’

ρρρ is computed in PTime trivially.

Suppose GGG has a H-cycle. v →v1 · · ·→vk →vv →v1 · · ·→vk →vv →v1 · · ·→vk →v .

Then vout →v1 · · ·→vk →vinvout →v1 · · ·→vk →vinvout →v1 · · ·→vk →vin is a H-path in G′G′G′.

Conversely, if G′G′G′ has a H-path then the path’s first vertex must be voutvoutvout

(which has no incoming edges) and it must end at vinvinvin (which has no out-

going edges). So v →v1 · · ·→vk →vv →v1 · · ·→vk →vv →v1 · · ·→vk →v is a H-cycle in GGG .

(a) Define a reduction ρ : HP 6p HCρ : HP 6p HCρ : HP 6p HC.

[Hint: For the reduction add a vertex]

Solution. Let ρρρ map an instance GGG of HPHPHP to the di-graph G′G′G′ obtained

by adding to GGG a new vertex vvv , and for each vertex uuu of GGG an edge from

vvv to uuu and an edge from uuu to vvv.

ρρρ is clearly computable in PTime. To show that it is a reduction, assume

GGG has a Hamiltonian path u1, · · · , uku1, · · · , uku1, · · · , uk . Then v, u1, · · · , uk, vv, u1, · · · , uk, vv, u1, · · · , uk, v is

a Hamiltonian cycle in G′G′G′ .

3



Conversely, if there is a Hamiltonian cycle in G′G′G′ , it can be listed starting

with vvv : v, u1, . . . , uk, vv, u1, . . . , uk, vv, u1, . . . , uk, v . Then u1, · · · , uku1, · · · , uku1, · · · , uk is a Hamiltonian path in

GGG.

5. (20%) A simple graph G = (V, E)G = (V, E)G = (V, E) is a subgraph of G′ = (V ′, E ′)G′ = (V ′, E ′)G′ = (V ′, E ′) if V ⊆ V ′V ⊆ V ′V ⊆ V ′

and there is an injection j : V →V ′j : V →V ′j : V →V ′ that preserves adjacency, i.e. for all

x, y ∈ Vx, y ∈ Vx, y ∈ V we have x(E)yx(E)yx(E)y iff (jx)(E ′)(jy)(jx)(E ′)(jy)(jx)(E ′)(jy).

SUBGRAPHSUBGRAPHSUBGRAPH: Given simple graphs G = (V, E)G = (V, E)G = (V, E) and G′ = (V ′, E ′)G′ = (V ′, E ′)G′ = (V ′, E ′),
is GGG a subgraph of G′G′G′ .

Given that CLIQUECLIQUECLIQUE is NP-hard, show that SUBGRAPHSUBGRAPHSUBGRAPH is NP-complete.

Solution. The problem is NP: A certificate for G = (V, E)G = (V, E)G = (V, E) being a subgraph

of G′ = (V ′, E ′)G′ = (V ′, E ′)G′ = (V ′, E ′) is an adjacency-preserving injection j : V → V ′j : V → V ′j : V → V ′. Check-

ing that jjj is an injection and that it is adjacency-preserving can be done in time

linear in |V | + |E||V | + |E||V | + |E| .

SUBGRAPHSUBGRAPHSUBGRAPH is NP-hard because we have ρ : CLIQUE 6p SUBGRAPHρ : CLIQUE 6p SUBGRAPHρ : CLIQUE 6p SUBGRAPH where

ρρρ maps each instance (G, t)(G, t)(G, t) of CLIQUECLIQUECLIQUE to the instance (Kt, G)(Kt, G)(Kt, G) of SUBGRAPHSUBGRAPHSUBGRAPH,

where KtKtKt is the complete graph over ttt vertices. ρρρ is a reduction, because GGG

has a clique of size > t> t> t iff KtKtKt is a subgraph of GGG. Moreover, ρρρ is trivially

computed in PTime.

Since CLIQUE 6p SUBGRAPHCLIQUE 6p SUBGRAPHCLIQUE 6p SUBGRAPH and CLIQUECLIQUECLIQUE is NP-hard, it folloes that

CLIQUE is NP-hard. And since CLIQUE is in NP, we conclude that it is NP-

complete.
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