B501, Fall 2023 © Daniel Leivant 2023

Assignment 10: PTime reductions and NP-completeness Solutions

- **A**. For each of the following determine whether it is true, and explain your answer.
 - (i) If L is NP and L ≤_p L' then L' is NP.
 Solution. False. Let K be a non-NP language (for example an undecidable language). Take L' = L · # · K. Then L ≤_p L'. But also K ≤_p L', so L' is non-NP.
 - (ii) If L is NP-hard and $L \leq_p L'$ then L' is NP-hard. Solution. True. If L is NP-hard then (by dfn) every NP-problem is $\leq_p L$. By transitivity of \leq_p , every NP problem is $\leq_p L'$.
 - (iii) If L' is NP-hard and L ≤_p L' then L is NP-hard.
 Solution. False. The extra assumption implies that there is a PTime-decidable problem P that is not NP-hard, for otherwise P would be reducible to any non-trivial problem L' and yet not be NP-hard.
- 1. (20%) Consider the following decision problems, and the corresponding claims that they are NP. For each claim determine whether it is valid. (If b is a binary string then we write $[b]_2$ for its numeric value as a binary numeral.)
 - (a) Given a Turing acceptor M, does it accept some string w within $\leq |w|^2$ steps.

Claim: We can take as PTime certificate for M a string w accepted by M in $\leq |w|^2$ steps.

(b) Given a Turing acceptor M and a binary numeral b,
 M accepts some w of length ≤ [b]₂ in ≤ |w|² steps.

Claim: We can take as PTime-certificate for an instance (M, b) a string w accepted by M in $\leq |w|^2$ steps.

(c) Given a Turing acceptor M and a unary numeral I^n , M accepts some w of length $\leq in \leq n^2$ steps

Claim: As PTime-certificate for (M, v) we can take a string w of length $\leq n$ accepted by M in $\leq |w|^2$ steps.

(d) Given a Turing acceptor M, does it accept ε .

Claim: We can take as PTime-certificate for M an accepting trace of M for input ε .

(e) Given a boolean expression *E*, is *E* satisfied by a majority of all valuations for *E*'s variables?

Claim: We can take as PTime certificate for E a list of valuations that satisfy E.

B. Define **INTEGER-MATCH**: Given two finite sets S, T of positive integers, are there non-empty subsets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P = \sum Q$.

Given that **EXACT-SUM** is NP-hard, show that **INTEGER-MATCH** is NP-complete.

Solution. INTEGER-MATCH has a PTime certification, with instance (S, T) certified by sets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P = \sum Q$.

The certificate's size is bounded by the size of (S, T) and its correctness can be verified in PTime. So **INTEGER-MATCH** is NP.

To show NP-hardness we define a reduction ρ : **EXACT-SUM** \leq_p **INTEGER-MATCH**. ρ maps an instance (S, t) of **EXACT-SUM** to the instance $(S, \{t\})$ of **INTEGER-MATCH**.

 ρ is clearly computable in PTime. It is a reduction: If (S, t) satisfies **EXACT-SUM** with a subset P then $(S, \{t\})$ satisfies **INTEGER-MATCH** with the given P and $Q = \{t\}$.

Conversely, if **INTEGER-MATCH** is satisfied with subsets P, Q then $Q = \{t\}$, since Q can't be empty, and so (S, t) satisfies **EXACT-SUM** with that same P.

Given that **EXACT-SUM** is NP-hard, it follows that **INTEGER-MATCH** is NP-hard as well, and since it is NP, **EXACT-SUM** is NP-complete.

2. (20%) ZERO-SUM: Given a finite set S of integers (not necessarily positive), is there a non-empty subset $Z \subseteq S$ that adds up to 0, i.e. $\sum Z = 0$.

Given that **EXACT-SUM** is NP-hard, prove that **ZERO-SUM** is NP-complete. [Hint: For the reduction from **EXACT-SUM** add to the set one entry.]

Solution. We saw that **ZERO-SUM** is NP. We prove that it is NP-hard by a reduction of **EXACT-SUM** to it.

Let ρ : EXACT-SUM \leq_p ZERO-SUM map instance (S, t) of EXACT-SUM to the instance $S \cup \{-t\}$ of ZERO-SUM. We have $\sum S = t$ iff $\sum (S \cup \{-t\}) + t = 0$, so this is a reduction. It is trivially P-size, and PTime-computable.

3. (20%) **BISAT**: Given a boolean expression E, is it satisfied by at least two different valuations.

Given that **BOOL-SAT** is NP-hard, prove that **BISAT** is NP-complete.

Solution. A certificate for an instance E is a pair of different valuations, each satisfying E. The certificate is of size linear in |E|, and can be checked in linear time.

BISAT is NP-hard because BOOL-SAT is NP-hard and ρ : **BOOL-SAT** \leq_p **BISAT** where ρ maps an instance $E[x_1 \dots x_k]$ of BOOL-SAT to the expression $E[x_1 \dots x_k] \vee E[y_1 \dots y_k]$, with $y_1 \dots y_k$ fresh and distinct variables.

 ρ is in linear-time trivially.

 ρ is a reduction: Suppose $E[x_1 \dots x_k]$ is satisfied by a valuation $V[x_1 \dots x_k]$; let $V'[\vec{x}]$ be some other valuation over \vec{x} . Then $E[\vec{x}] \vee E[\vec{y}]$ is satisfied by the valuation $V[x_1 \dots x_k] \cup V'[y_1 \dots y_k]$ as well as by the valuation $V'[x_1 \dots x_k] \cup V[y_1 \dots y_k]$. These valuations are different, because we took V' to be different from V.

Conversely, if $E[x_1 \dots x_k] \vee E[y_1 \dots y_k]$ is satisfied by a valuation V then one of the disjunct is satisfied by V and so E is satisfiable.

- Recall that the HAMILTONIAN-PATH (HP) problem asks, given a directed graph G, whether it has a Hamiltonian-path (H-path), i.e. a path visiting every vertex once. The HAMILTONIAN-CYCLE (HC) problem asks the same question for a cycle, i.e. a closed loop.
 - (i) Define a reduction ρ: HC ≤_p HP.
 Solution. Given a digraph G = (V, E) Chose a vertex v ∈ V. Let G' = ρ(G) be G with v split into two vertices v_{in} and v_{out}. v_{in} inherits the incoming edges of v, and v_{out} the outgoing edges of v.

 ρ is computed in PTime trivially.

Suppose G has a H-cycle. $v \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v$.

Then $v_{out} \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v_{in}$ is a H-path in G'.

Conversely, if G' has a H-path then the path's first vertex must be v_{out} (which has no incoming edges) and it must end at v_{in} (which has no outgoing edges). So $v \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v$ is a H-cycle in G.

(a) Define a reduction ρ : HP \leq_p HC. [Hint: For the reduction add a vertex]

Solution. Let ρ map an instance G of **HP** to the di-graph G' obtained by adding to G a new vertex v, and for each vertex u of G an edge from v to u and an edge from u to v.

 ρ is clearly computable in PTime. To show that it is a reduction, assume G has a Hamiltonian path u_1, \dots, u_k . Then v, u_1, \dots, u_k, v is a Hamiltonian cycle in G'.

Conversely, if there is a Hamiltonian cycle in G', it can be listed starting with $v: v, u_1, \ldots, u_k, v$. Then u_1, \cdots, u_k is a Hamiltonian path in G.

5. (20%) A simple graph G = (V, E) is a *subgraph* of G' = (V', E') if $V \subseteq V'$ and there is an injection $j: V \to V'$ that preserves adjacency, i.e. for all $x, y \in V$ we have x(E)y iff (jx)(E')(jy).

SUBGRAPH: Given simple graphs G = (V, E) and G' = (V', E'), is G a subgraph of G'.

Given that **CLIQUE** is NP-hard, show that **SUBGRAPH** is NP-complete.

Solution. The problem is NP: A certificate for G = (V, E) being a subgraph of G' = (V', E') is an adjacency-preserving injection $j: V \to V'$. Checking that j is an injection and that it is adjacency-preserving can be done in time linear in |V| + |E|.

SUBGRAPH is NP-hard because we have ρ : **CLIQUE** \leq_p **SUBGRAPH** where ρ maps each instance (G, t) of **CLIQUE** to the instance (K_t, G) of **SUBGRAPH**, where K_t is the complete graph over t vertices. ρ is a reduction, because G has a clique of size $\geq t$ iff K_t is a subgraph of G. Moreover, ρ is trivially computed in PTime.

Since $CLIQUE \leq_p SUBGRAPH$ and CLIQUE is NP-hard, it folloes that CLIQUE is NP-hard. And since CLIQUE is in NP, we conclude that it is NP-complete.