Assignment 10: PTime reductions and NP-completeness

Solutions

A. For each of the following determine whether it is true, and explain your answer.
(i) If L is NP and $L \leqslant_{p} L^{\prime}$ then L^{\prime} is NP.

Solution. False. Let K be a non-NP language (for example an undecidable language). Take $L^{\prime}=L \cdot \# \cdot K$. Then $L \leqslant p L^{\prime}$. But also $K \leqslant_{p} L^{\prime}$, so L^{\prime} is non-NP.
(ii) If L is NP-hard and $L \leqslant_{p} L^{\prime}$ then L^{\prime} is NP-hard.

Solution. True. If L is NP-hard then (by dfn) every NP-problem is $\leqslant_{p} L$. By transitivity of \leqslant_{p}, every NP problem is $\leqslant_{p} L^{\prime}$.
(iii) If L^{\prime} is NP-hard and $L \leqslant_{p} L^{\prime}$ then L is NP-hard.

Solution. False. The extra assumption implies that there is a PTimedecidable problem \mathcal{P} that is not NP-hard, for otherwise \mathcal{P} would be reducible to any non-trivial problem L^{\prime} and yet not be NP-hard.

1. (20%) Consider the following decision problems, and the corresponding claims that they are NP. For each claim determine whether it is valid. (If b is a binary string then we write $[b]_{2}$ for its numeric value as a binary numeral.)
(a) Given a Turing acceptor M, does it accept some string w within $\leqslant|w|^{2}$ steps.
Claim: We can take as PTime certificate for M a string w accepted by M in $\leqslant|w|^{2}$ steps.
(b) Given a Turing acceptor M and a binary numeral b,
M accepts some w of length $\leqslant[b]_{2}$ in $\leqslant|w|^{2}$ steps.
Claim: We can take as PTime-certificate for an instance (M, b) a string w accepted by M in $\leqslant|w|^{2}$ steps.
(c) Given a Turing acceptor M and a unary numeral I^{n}, M accepts some w of length \leqslant in $\leqslant n^{2}$ steps
Claim: As PTime-certificate for (M, v) we can take a string w of length $\leqslant n$ accepted by M in $\leqslant|w|^{2}$ steps.
(d) Given a Turing acceptor M, does it accept ε.

Claim: We can take as PTime-certificate for M an accepting trace of M for input ε.
(e) Given a boolean expression E, is E satisfied by a majority of all valuations for E 's variables?
Claim: We can take as PTime certificate for E a list of valuations that satisfy E.
B. Define Integer-match: Given two finite sets S, T of positive integers, are there non-empty subsets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P=\Sigma Q$.
Given that EXACT-SUM is NP-hard, show that INTEGER-MATCH is NP-complete.
Solution. INTEGER-MATCH has a PTime certification, with instance (S, T) certified by sets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P=\sum Q$.
The certificate's size is bounded by the size of (S, T) and its correctness can be verified in PTime. So Integer-MATCH is NP.

To show NP-hardness we define a reduction ρ : EXACT-SUM \leqslant_{p} INTEGER-MATCH. ρ maps an instance (S, t) of EXACT-SUM to the instance ($S,\{t\}$) of INTEGER-MATCH.
ρ is clearly computable in PTime. It is a reduction: If (S, t) satisfies EXACT-SUM with a subset P then $(S,\{t\})$ satisfies INTEGER-MATCH with the given P and $Q=\{t\}$.
Conversely, if INTEGER-MATCH is satisfied with subsets P, Q then $Q=\{t\}$, since Q can't be empty, and so (S, t) satisfies EXACT-SUM with that same P.
Given that EXACT-SUM is NP-hard, it follows that INTEGER-MATCH is NPhard as well, and since it is NP, EXACT-SUM is NP-complete.
2. (20%) ZERO-SUM: Given a finite set S of integers (not necessarily positive), is there a non-empty subset $Z \subseteq S$ that adds up to 0 , i.e. $\sum Z=0$.
Given that EXACT-SUM is NP-hard, prove that ZERO-SUM is NP-complete. [Hint: For the reduction from EXACT-SUM add to the set one entry.]

Solution. We saw that ZERO-SUM is NP. We prove that it is NP-hard by a reduction of EXACT-SUM to it.
Let ρ : EXACT-SUM \leqslant_{p} ZERO-SUM mapinstance (S, t) of EXACT-SUM to the instance $S \cup\{-t\}$ of ZERO-SUM. We have $\sum S=t$ iff $\sum(S \cup\{-t\})+t=0$, so this is a reduction. It is trivially P-size, and PTime-computable.
3. (20%) BISAT: Given a boolean expression E, is it satisfied by at least two different valuations.
Given that BOOL-SAT is NP-hard, prove that BISAT is NP-complete.
Solution. A certificate for an instance E is a pair of different valuations, each satisfying E. The certificate is of size linear in $|E|$, and can be checked in linear time.

BISAT is NP-hard because BOOL-SAT is NP-hard and ρ : BOOL-SAT \leqslant_{p} BISAT where ρ maps an instance $E\left[x_{1} \ldots x_{k}\right]$ of BOOL-SAT to the expression $E\left[x_{1} \ldots x_{k}\right] \vee E\left[y_{1} \ldots y_{k}\right]$, with $y_{1} \ldots y_{k}$ fresh and distinct variables.
ρ is in linear-time trivially.
ρ is a reduction: Suppose $E\left[x_{1} \ldots x_{k}\right]$ is satisfied by a valuation $V\left[x_{1} \ldots x_{k}\right]$; let $V^{\prime}[\vec{x}]$ be some other valuation over \vec{x}. Then $E[\vec{x}] \vee E[\vec{y}]$ is satisfied by the valuation $V\left[x_{1} \ldots x_{k}\right] \cup V^{\prime}\left[y_{1} \ldots y_{k}\right]$ as well as by the valuation $V^{\prime}\left[x_{1} \ldots x_{k}\right] \cup V\left[y_{1} \ldots y_{k}\right]$. These valuations are different, because we took V^{\prime} to be different from V.
Conversely, if $E\left[x_{1} \ldots x_{k}\right] \vee E\left[y_{1} \ldots y_{k}\right]$ is satisfied by a valuation V then one of the disjunct is satisfied by V and so E is satisfiable.
4. Recall that the HAMILTONIAN-PATH (HP) problem asks, given a directed graph G, whether it has a Hamiltonian-path (H-path), i.e. a path visiting every vertex once. The HAMILTONIAN-CYCLE (HC) problem asks the same question for a cycle, i.e. a closed loop.
(i) Define a reduction $\rho: \mathrm{HC} \leqslant_{p} \mathrm{HP}$.

Solution. Given a digraph $G=(V, E)$ Chose a vertex $v \in V$. Let $G^{\prime}=\rho(G)$ be G with v split into two vertices $v_{\text {in }}$ and $v_{\text {out }}$. $v_{\text {in }}$ inherits the incoming edges of v, and $v_{\text {out }}$ the outgoing edges of v.

ρ is computed in PTime trivially.
Suppose G has a H-cycle. $v \rightarrow v_{1} \cdots \rightarrow v_{k} \rightarrow v$.
Then $\quad v_{\text {out }} \rightarrow v_{1} \cdots \rightarrow v_{k} \rightarrow v_{\text {in }} \quad$ is a H-path in G^{\prime}.
Conversely, if G^{\prime} has a H-path then the path's first vertex must be $v_{\text {out }}$ (which has no incoming edges) and it must end at $v_{i n}$ (which has no outgoing edges). So $\quad v \rightarrow v_{1} \cdots \rightarrow v_{k} \rightarrow v$ is a H -cycle in G.
(a) Define a reduction $\rho: \mathrm{HP} \leqslant_{p} \mathrm{HC}$.
[Hint: For the reduction add a vertex]
Solution. Let ρ map an instance G of HP to the di-graph G^{\prime} obtained by adding to G a new vertex v, and for each vertex u of G an edge from v to u and an edge from u to v.
ρ is clearly computable in PTime. To show that it is a reduction, assume G has a Hamiltonian path $\quad u_{1}, \cdots, u_{k}$. Then $\quad v, u_{1}, \cdots, u_{k}, v$ is a Hamiltonian cycle in G^{\prime}.

Conversely, if there is a Hamiltonian cycle in G^{\prime}, it can be listed starting with $v: v, u_{1}, \ldots, u_{k}, v$. Then $u_{1}, \cdots, u_{k} \quad$ is a Hamiltonian path in G.
5. (20\%) A simple graph $G=(V, E)$ is a subgraph of $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ if $V \subseteq V^{\prime}$ and there is an injection $j: V \rightarrow V^{\prime}$ that preserves adjacency, i.e. for all $x, y \in V$ we have $x(E) y$ iff $(j x)\left(E^{\prime}\right)(j y)$.
SUBGRAPH: Given simple graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$,
is G a subgraph of G^{\prime}.
Given that CLIQUE is NP-hard, show that SUBGRAPH is NP-complete.
Solution. The problem is NP: A certificate for $G=(V, E)$ being a subgraph of $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is an adjacency-preserving injection $j: V \rightarrow V^{\prime}$. Checking that j is an injection and that it is adjacency-preserving can be done in time linear in $|V|+|E|$.
SUBGRAPH is NP-hard because we have ρ : CLIQUE \leqslant_{p} SUBGRAPH where ρ maps each instance (G, t) of CLIQUE to the instance $\left(K_{t}, G\right)$ of SUBGRAPH, where K_{t} is the complete graph over t vertices. ρ is a reduction, because G has a clique of size $\geqslant t$ iff K_{t} is a subgraph of G. Moreover, ρ is trivially computed in PTime.
Since CLIQUE \leqslant_{p} SUBGRAPH and CLIQUE is NP-hard, it folloes that Clique is NP-hard. And since clique is in NP, we conclude that it is NPcomplete.

