Assignment 10: PTime reductions and NP-completeness

A. For each of the following determine whether it is true, and explain your answer.
(i) If L is NP and $L \leqslant_{p} L^{\prime}$ then L^{\prime} is NP.

Solution. False. Let K be a non-NP language (for example an undecidable language). Take $L^{\prime}=L \cdot \# \cdot K$. Then $L \leqslant_{p} L^{\prime}$. But also $K \leqslant_{p} L^{\prime}$, so L^{\prime} is non-NP.
(ii) If L is NP-hard and $L \leqslant_{p} L^{\prime}$ then L^{\prime} is NP-hard.

Solution. True. If L is NP-hard then (by dfn) every NP-problem is $\leqslant_{p} L$. By transitivity of \leqslant_{p}, every NP problem is $\leqslant_{p} L^{\prime}$.
(iii) If L^{\prime} is NP-hard and $L \leqslant_{p} L^{\prime}$ then L is NP-hard.

Solution. False. The extra assumption implies that there is a PTimedecidable problem \mathcal{P} that is not NP-hard, for otherwise \mathcal{P} would be reducible to any non-trivial problem L^{\prime} and yet not be NP-hard.

1. (20%) Consider the following decision problems, and the corresponding claims that they are NP. For each claim determine whether it is valid. (If b is a binary string then we write $[b]_{2}$ for its numeric value as a binary numeral.)
(a) Given a Turing acceptor M, does it accept some string w within $\leqslant|w|^{2}$ steps.
Claim: We can take as PTime certificate for M a string w accepted by M in $\leqslant|w|^{2}$ steps.
(b) Given a Turing acceptor M and a binary numeral b, M accepts some w of length $\leqslant[b]_{2}$ in $\leqslant|w|^{2}$ steps.
Claim: We can take as PTime-certificate for an instance (M, b) a string w accepted by M in $\leqslant|w|^{2}$ steps.
(c) Given a Turing acceptor M and a unary numeral I^{n}, M accepts some w of length \leqslant in $\leqslant n^{2}$ steps
Claim: As PTime-certificate for (M, v) we can take a string w of length $\leqslant n$ accepted by M in $\leqslant|w|^{2}$ steps.
(d) Given a Turing acceptor M, does it accept ε.

Claim: We can take as PTime-certificate for M an accepting trace of M for input ε.
(e) Given a boolean expression E, is E satisfied by a majority of all valuations for E 's variables?
Claim: We can take as PTime certificate for E a list of valuations that satisfy E.
B. Define Integer-match: Given two finite sets S, T of positive integers, are there non-empty subsets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P=\Sigma Q$.
Given that EXACT-SUM is NP-hard, show that INTEGER-MATCH is NP-complete.
Solution. INTEGER-MATCH has a PTime certification, with instance (S, T) certified by sets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P=\sum Q$.
The certificate's size is bounded by the size of (S, T) and its correctness can be verified in PTime. So INTEGER-MATCH is NP.
To show NP-hardness we define a reduction ρ : EXACT-SUM \leqslant_{p} INTEGER-MATCH. ρ maps an instance (S, t) of EXACT-SUM to the instance $(S,\{t\})$ of INTEGER-MATCH.
ρ is clearly computable in PTime. It is a reduction: If (S, t) satisfies EXACT-SUM with a subset P then $(S,\{t\})$ satisfies INTEGER-MATCH with the given P and $Q=\{t\}$.
Conversely, if INTEGER-MATCH is satisfied with subsets P, Q then $Q=\{t\}$, since Q can't be empty, and so (S, t) satisfies EXACT-SUM with that same P.
Given that EXACT-SUM is NP-hard, it follows that INTEGER-MATCH is NPhard as well, and since it is NP, EXACT-SUM is NP-complete.
2. (20\%) ZERO-SUM: Given a finite set S of integers (not necessarily positive), is there a non-empty subset $Z \subseteq S$ that adds up to 0 , i.e. $\sum Z=0$.
Given that EXACT-SUM is NP-hard, prove that ZERO-SUM is NP-complete. [Hint: For the reduction from EXACT-SUM add to the set one entry.]
3. BISAT: Given a boolean expression E, is it satisfied by at least two different valuations.
Given that BOOL-SAT is NP-hard, prove that BISAT is NP-complete.
4. Recall that the HAMILTONIAN-PATH (HP) problem asks, given a directed graph G, whether it has a Hamiltonian-path (H-path), i.e. a path visiting every vertex once. The HAMILTONIAN-CYCLE (HC) problem asks the same question for a cycle, i.e. a closed loop.
(i) Define a reduction $\quad \rho: \mathrm{HC} \leqslant_{p} \mathrm{HP}$.

Solution. Given a digraph $G=(V, E)$ Chose a vertex $v \in V$. Let $G^{\prime}=\rho(G)$ be G with v split into two vertices $v_{\text {in }}$ and $v_{\text {out }} . v_{\text {in }}$ inherits the incoming edges of v, and $v_{o u t}$ the outgoing edges of v.

ρ is computed in PTime trivially.
Suppose G has a H-cycle. $v \rightarrow v_{1} \cdots \rightarrow v_{k} \rightarrow v$. Then $\quad v_{\text {out }} \rightarrow v_{1} \cdots \rightarrow v_{k} \rightarrow v_{\text {in }} \quad$ is a H-path in $G^{\prime \prime}$.
Conversely, if G^{\prime} has a H-path then the path's first vertex must be $v_{\text {out }}$ (which has no incoming edges) and it must end at $v_{\text {in }}$ (which has no outgoing edges). So $\quad v \rightarrow v_{1} \cdots \rightarrow v_{k} \rightarrow v \quad$ is a H-cycle in G.
(a) Define a reduction $\rho: \mathrm{HP} \leqslant_{p} \mathrm{HC}$.
[Hint: For the reduction add a vertex]
5. (20\%) A simple graph $G=(V, E)$ is subgraph of $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ if $V \subseteq V^{\prime}$ and E consists of the edges in E^{\prime} between vertices in V.
SUBGRAPH: Given simple graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, is G a subgraph of G^{\prime}.
Given that CLIQUE is NP-hard, show that SUBGRAPH is NP-complete.

