B501, Fall 2023 © Daniel Leivant 2023

Assignment 10: PTime reductions and NP-completeness

- A. For each of the following determine whether it is true, and explain your answer.
 - (i) If L is NP and L ≤_p L' then L' is NP.
 Solution. False. Let K be a non-NP language (for example an undecidable language). Take L' = L · # · K. Then L ≤_p L'. But also K ≤_p L', so L' is non-NP.
 - (ii) If L is NP-hard and $L \leq_p L'$ then L' is NP-hard. Solution. True. If L is NP-hard then (by dfn) every NP-problem is $\leq_p L$. By transitivity of \leq_p , every NP problem is $\leq_p L'$.
 - (iii) If L' is NP-hard and $L \leq_p L'$ then L is NP-hard.

Solution. False. The extra assumption implies that there is a PTimedecidable problem \mathcal{P} that is not NP-hard, for otherwise \mathcal{P} would be reducible to any non-trivial problem L' and yet not be NP-hard.

- 1. (20%) Consider the following decision problems, and the corresponding claims that they are NP. For each claim determine whether it is valid. (If b is a binary string then we write $[b]_2$ for its numeric value as a binary numeral.)
 - (a) Given a Turing acceptor M, does it accept some string w within $\leq |w|^2$ steps.

Claim: We can take as PTime certificate for M a string w accepted by M in $\leq |w|^2$ steps.

(b) Given a Turing acceptor M and a binary numeral b, M accepts some w of length $\leq [b]_2$ in $\leq |w|^2$ steps.

Claim: We can take as PTime-certificate for an instance (M, b) a string w accepted by M in $\leq |w|^2$ steps.

(c) Given a Turing acceptor M and a unary numeral I^n , M accepts some w of length $\leq in \leq n^2$ steps

Claim: As PTime-certificate for (M, v) we can take a string w of length $\leq n$ accepted by M in $\leq |w|^2$ steps.

(d) Given a Turing acceptor M, does it accept ε .

Claim: We can take as PTime-certificate for M an accepting trace of M for input ε .

(e) Given a boolean expression *E*, is *E* satisfied by a majority of all valuations for *E*'s variables?

Claim: We can take as PTime certificate for E a list of valuations that satisfy E.

B. Define **INTEGER-MATCH**: Given two finite sets S, T of positive integers, are there non-empty subsets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P = \sum Q$.

Given that **EXACT-SUM** is NP-hard, show that **INTEGER-MATCH** is NP-complete.

Solution. INTEGER-MATCH has a PTime certification, with instance (S, T) certified by sets $P \subseteq S$ and $Q \subseteq T$ such that $\sum P = \sum Q$.

The certificate's size is bounded by the size of (S, T) and its correctness can be verified in PTime. So **INTEGER-MATCH** is NP.

To show NP-hardness we define a reduction ρ : **EXACT-SUM** \leq_p **INTEGER-MATCH**. ρ maps an instance (S, t) of **EXACT-SUM** to the instance $(S, \{t\})$ of **INTEGER-MATCH**.

 ρ is clearly computable in PTime. It is a reduction: If (S, t) satisfies **EXACT-SUM** with a subset P then $(S, \{t\})$ satisfies **INTEGER-MATCH** with the given P and $Q = \{t\}$.

Conversely, if **INTEGER-MATCH** is satisfied with subsets P, Q then $Q = \{t\}$, since Q can't be empty, and so (S,t) satisfies **EXACT-SUM** with that same P.

Given that **EXACT-SUM** is NP-hard, it follows that **INTEGER-MATCH** is NP-hard as well, and since it is NP, **EXACT-SUM** is NP-complete.

2. (20%) **ZERO-SUM**: Given a finite set S of integers (not necessarily positive), is there a non-empty subset $Z \subseteq S$ that adds up to 0, i.e. $\sum Z = 0$.

Given that **EXACT-SUM** is NP-hard, prove that **ZERO-SUM** is NP-complete. [Hint: For the reduction from **EXACT-SUM** add to the set one entry.]

3. BISAT: Given a boolean expression E, is it satisfied by at least two different valuations.

Given that **BOOL-SAT** is NP-hard, prove that **BISAT** is NP-complete.

- 4. Recall that the HAMILTONIAN-PATH (HP) problem asks, given a directed graph *G*, whether it has a Hamiltonian-path (H-path), i.e. a path visiting every vertex once. The HAMILTONIAN-CYCLE (HC) problem asks the same question for a *cycle*, i.e. a closed loop.
 - (i) Define a reduction ρ : HC \leq_p HP.

Solution. Given a digraph G = (V, E) Chose a vertex $v \in V$. Let $G' = \rho(G)$ be G with v split into two vertices v_{in} and v_{out} . v_{in} inherits the incoming edges of v, and v_{out} the outgoing edges of v.

 ρ is computed in PTime trivially.

Suppose *G* has a H-cycle. $v \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v$. Then $v_{out} \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v_{in}$ is a H-path in *G'*. Conversely, if *G'* has a H-path then the path's first vertex must be v_{out} (which has no incoming edges) and it must end at v_{in} (which has no outgoing edges). So $v \rightarrow v_1 \cdots \rightarrow v_k \rightarrow v$ is a H-cycle in *G*.

- (a) Define a reduction ρ : HP \leq_p HC. [Hint: For the reduction add a vertex]
- 5. (20%) A simple graph G = (V, E) is *subgraph* of G' = (V', E') if $V \subseteq V'$ and E consists of the edges in E' between vertices in V.

SUBGRAPH: Given simple graphs G = (V, E) and G' = (V', E'), is G a subgraph of G'.

Given that **CLIQUE** is NP-hard, show that **SUBGRAPH** is NP-complete.