
Fall 2023

© Daniel Leivant 2023

Review problems on Space Complexity

Solutions

1. Consider the decision problem

DFA-ACCEPTDFA-ACCEPTDFA-ACCEPT: Given a DFA MMM over an alphabet ΣΣΣ and a ΣΣΣ-string www

does MMM accept www.

The problem NFA-ACCEPTNFA-ACCEPTNFA-ACCEPT is defined similarly, referring to nondeterministic

automata (NFAs).

(a) Show that DFA-ACCEPTDFA-ACCEPTDFA-ACCEPT is decidable in linear time.

(b) Show that NFA-ACCEPTNFA-ACCEPTNFA-ACCEPT is decidable in linear space.

Argue informally, referring to transition diagrams.

Solution.

◮ An instance M, w of DFA-ACCEPT can be decided by an on-site accep-

tor that runs M on w. The simulation is in time linear in w, since a DFA

consumes one symbol of its input at each computation step. But with re-

spect to the combined input M, w, the simulation is in time |M |×|w|, since

every move of M requires a scan of M to detect the applicable transition.

◮ An instance N, wN, wN, w of NFA-ACCEPTNFA-ACCEPTNFA-ACCEPT can be decided by an on-site ac-

ceptor that reads www and successively updates the set of states reached by

reading the initial substring www read so far, as in the conversion of an NFA

to a DFA. Each updates requires only a scan of the transition table of MMM

and no additional space.

2. A string-ladder over an alphabet ΣΣΣ is a sequence w1, . . . , wk ∈ Σnw1, . . . , wk ∈ Σn
w1, . . . , wk ∈ Σn of equal-

length strings (separated by commas), where each wi+1wi+1wi+1 differs from wiwiwi in

exactly one letter. For example, here is a string-ladder of English words, with

commas used as a separator between entries: near, fear, feat, beat, best, vest, vast.

Show that the set of string-ladders over Σ∗Σ∗Σ∗ , is in LLL (i.e. log-space decidable).

To do this, describe an algorithm implementable on a multi-cursor two-way

automaton, that recognizes the string-ladders.

Solution. On input www the algorithm

(a) Steps one cursor forward until it finds a comma, and places a second cursor

at the first symbol.

(b) It then repeats until the lead cursor reaches then end of the input:

scan adjacent strings with the two cursors stepping in tandem. Proceed

if the two strings differ by exactly one symbol, abort otherwise.

(c) Accept if and when the loop above terminates without aborting.

3. Consider the CFL BBB consisting of balanced parentheses, such as (()()) but

not (())(. Show that BBB is in L. [Hint: Think of counting the excess of left

parentheses over right parentheses. A string of parentheses is balanced iff that

count is never negative, and it gets to 0 at the end of the input.]

Solution. An acceptor for BBB is obtained by counting on the work-string,

in binary, the excess of the count of left parentheses over the count of right

parentheses. If a right parenthesis is encountered when the count is 0, abort.

The input is accepted if the count is 0 at the end of the input.

For input of size nnn the count cannot exceed nnn , so the binary counters have

length 6 log n.

4. Show that the following decision-problem is in PSpace.

DFA-EMPTINESSDFA-EMPTINESSDFA-EMPTINESS: Given a DFA MMM does it accept some string?

(I.e., is L(M) 6= ∅L(M) 6= ∅L(M) 6= ∅ ?)

[Hint: How long is the shortest string accepted by a DFA with kkk states? It is

easy to show that the problem is in co-NP, from which PSpace easily follows.]

Solution. If a kkk-state DFA MMM accepts a string www of length n > kn > kn > k then the

Clipping Theorem applies to www and MMM accepts some string of length p < np < np < n.

Thus a kkk-state instance MMM of DFA-EMPTINESSDFA-EMPTINESSDFA-EMPTINESS recognizes a non-empty lan-

guage iff MMM accepts a string www of length 6 k6 k6 k. It suffices therefore to cycle

through all such strings www and check, in space linear in M✷wM✷wM✷w, whether MMM ac-

cepts www. Each such cycle reuses the space occupied by www , and |w| 6 k 6 |M ||w| 6 k 6 |M ||w| 6 k 6 |M |,
so the algorithm is in linear space.

5. We say that boolean expressions EEE and FFF are equivalent if they have the same

truth table; that is, msE and FFF use the same set number of variables and return

the same truth value for each valuation.

Show that the following problem is in PSpace:

BOOL-EQUIVBOOL-EQUIVBOOL-EQUIV: Given two boolean expressions, are they equivalent?

[Hint: Show that EXP-EQUIVEXP-EQUIVEXP-EQUIV is Co-NP, then use NP ⊆⊆⊆ PSpace and Problem

1.]

Solution. The complement problem EXP-NONEQUIVEXP-NONEQUIVEXP-NONEQUIV is NP:

the witness for the non-equivalence of expressions EEE and FFF s a valuation

that yields 0 for one of the expressions and 1 for the other. Thus EXP-EQUIVEXP-EQUIVEXP-EQUIV is

co-NP. But since NP ⊆⊆⊆ PSpace , So coNP ⊆⊆⊆ co-PSpace = PSpace.

2

6. An expression msE is minimal if there is no shorter expression equivalent to it.

Show that the following problem is in PSpace:

MIN-BOOLMIN-BOOLMIN-BOOL: Given a boolean expression, is it minimal?

Solution. Consider the following decision algorithm: Given an instance FFF of

MIN-BOOLMIN-BOOLMIN-BOOL cycle through all shorter expressions GGG , checking for each whether

it is equivalent to FFF . The space required for checking equivalence is PSpace

in the size of (F, G)(F, G)(F, G) , by the previous problem, space is reused for each cycle,

and the expressions GGG considered are of size 6 |F |6 |F |6 |F | . So the entire algorithm

uses space polynomial in the size of FFF .

7. Show that if BOOL-SATBOOL-SATBOOL-SAT were PSpace-hard then PSpace = NP.

Solution. We already know that NP ⊆⊆⊆ PSpace.

If BOOL-SATBOOL-SATBOOL-SAT were PSpace-hard, i.e. for each PSpace problem PPP is 6p6p6p bool-

sat then PPP would be NP, because NP is closed under 6p6p6p.

8. If M is an automaton (DFA), a string-ladder (as defined in Problem 3) is an

MMM -ladder if each pair wi, wi+1wi, wi+1wi, wi+1 in the ladder is accepted by MMM .

Show that for each DFA MMM the set of MMM -ladders over ΣΣΣ is in PSpace.

9. Let DDD be the CFL consisting of balanced parentheses and brackets, such as

([()()])[] but not ([)]. Show that D is in L. [Hint: Use a multi-cursor two-way

automaton to recognize D, then invoke Hartmanis’s Theorem.]

Solution. Given an input string www we make a first pass through www to deter-

mine the nesting-depth of parens and brackets, by counting the excess of left

parens/brackets over right ones, and keeping record of the maximum count ddd

(the depth of the potential parse tree of www). We have d 6 |w|d 6 |w|d 6 |w| so the count is

in log-space.

(We may abort the count if it gets below 0, but note that this does not guarantee

a balanced expression: The count for ([)], which should be rejected, is never

negative.))

For each i = 1 . . . di = 1 . . . di = 1 . . . d we make two passes through www one for parens and one

for brackets. The pass for parens maintains a count of the excess of right parens

of depth iii over left parens of depth iii (depth being counted with respect to both

parens and brackets). That excess should never be negative, and should reach 0

at the end of www. The pass for brackes is similar.

For example, ([)] will be rejected, because [is of depth i = 2i = 2i = 2 but] is of depth

i = 1i = 1i = 1, so they are not matched in the same pass.

3

