MATHEMATICAL MACHINES

Computing

- Most computing consists in actions that modify data:
 - ► The data is textual
 - ► The actions are discrete: well-defined and single-step.

Computing

- Most computing consists in actions that modify data:
 - The data is textual
 - ► The actions are discrete: well-defined and single-step.
- The data is textual because discrete data has textual representation. (Though not all computing is discrete, eg Analog Computing is not.)

Acceptors

• What do algorithms do?

Acceptors

- What do algorithms do?
- Two main options: acceptors and transducers.
- An *acceptor* is an algorithm that takes a textual input (representing input data) and upon termination may or may not issue *accept* as output.

Acceptors

- What do algorithms do?
- Two main options: acceptors and transducers.
- An *acceptor* is an algorithm that takes a textual input (representing input data) and upon termination may or may not issue *accept* as output.
- An acceptor that terminates for all input is a *decider.*
- When a decider terminate for an input without accepting we say that it rejects the input.
- A decider is thus a solution for a decision problem.

Transducers

• A *transducer* is an algorithm that takes strings as input, and upon termination yields a string as output.

Transducers

- A *transducer* is an algorithm that takes strings as input, and upon termination yields a string as output.
- A transducer computes a *partial-function* (i.e. univalent mapping).

Transducers

- A *transducer* is an algorithm that takes strings as input, and upon termination yields a string as output.
- A transducer computes a *partial-function* (i.e. univalent mapping).
- An acceptor can be viewed as a transducer with *accept* as the only possible output;

and a decider as a total transducer with *accept* and *reject* as the only possible outputs.

- What is the simplest possible mathematical machine:
 - ► Transducer, or acceptor?

- What is the simplest possible mathematical machine:
 - ► Transducer, or acceptor?
 - Fixed, or expandable external memory?

- What is the simplest possible mathematical machine:
 - Transducer, or acceptor?
 - Fixed, or expandable external memory?
 - Random-access, or sequential reading?

- What is the simplest possible mathematical machine:
 - ► Transducer, or acceptor?
 - Fixed, or expandable external memory?
 - Random-access, or sequential reading?
- We start with the *automaton,*

an acceptor with no external memory that reads its input sequentially!

- What is the simplest possible mathematical machine:
 - ► Transducer, or acceptor?
 - Fixed, or expandable external memory?
 - Random-access, or sequential reading?
- We start with the *automaton*,

an acceptor with no external memory that reads its input sequentially!

 This model captures the behavior of many familiar physical devices. Let's look at a couple of very simple ones.

The electric switch

• The position of the switch is inverted after an odd number of toggles, and remains unchanged after an even number.

The ceiling fan

• A ceiling fan with manual cord-controlled: The speed is incremented (mod 2) with each pull.

The toll-turnstile

- The turnstile can be in one of two states: locked or unlocked.
- The action *insert token* changes the state *locked* into *unlocked*.
- The action *push and pass* changes the state *unlocked* into *locked*.

States

- A core concept of mathematical machines is the state.
- E.g. a state of an elevator might consist of its position, motion (up, down, rest), upcoming destinations, time idle, etc.
- States are often labeled, for convenience, but don't have to be.

States

- A core concept of mathematical machines is the state.
- E.g. a state of an elevator might consist of its position, motion (up, down, rest), upcoming destinations, time idle, etc.
- States are often labeled, for convenience, but don't have to be.
- Given a practical problem, deciding what are the relevant "states" often requires careful analysis.
- But once a mathematical model is distilled, the states become an abstraction, which we can represent graphically, e.g. by a circle.

• A transition-rule

• A transition-rule

- We focus for now on transitions that are *functions*,
 - i.e. univalent and total.

• A transition-rule

- We focus for now on transitions that are *functions*,
 - i.e. univalent and total.
- A pair of states related by a transition-rule **a** is an **action** of **a**.

• A transition-rule

- We focus for now on transitions that are *functions*, i.e. univalent and total.
- A pair of states related by a transition-rule **a** is an **action** of **a**.
- For the toll-turnstile and the stopwatch the transition-rules are determined by certain human actions.

Textual form of transitions

- Since all finite discrete structures have simple textual codes, we can assume that:
 - 1. All input data is textual
 - 2. Each transition is coded by a single reserved letter
 - The action of the transition labeled a is the reading (i.e. consumption) of a, much like the movement of a cursor.

A transition system

• A *transition-system* consists of a set of states and transition-rules over them.

A transition system

- A *transition-system* consists of a set of states and transition-rules over them.
- So a transition-system can be represented as a labeled di-graph: The nodes are the states,
 - and the the actions are labeled edges.

A transition system

- A *transition-system* consists of a set of states and transition-rules over them.
- So a transition-system can be represented as a labeled di-graph: The nodes are the states, and the the actions are labeled edges.
- When all transition-rules are functions, there is exactly one edge for each state and action:

Example: Detecting an odd number of actions

- Consider the switch.
 - We represent the transition "toggle" by the letter **a**, and label the states as 1 and 2:

Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition "toggle" by the letter a, and label the states as 1 and 2:

- The device reads strings of a's, and with each letter read it switch state.
- Reading odd number of a 's leads to the opposite state.
- The physical nature of the toggle action is no longer present, and is indeed irrelevant.

Start state and accepting states

 We intend to start at a particular state, so we single out one state as the *initial* (starting) state, indicated graphically by an incoming arrow.

Start state and accepting states

 We intend to start at a particular state, so we single out one state as the *initial* (starting) state, indicated graphically by an incoming arrow.

Where do the strings of length 1,3,... odd n lead?

Start state and accepting states

 We intend to start at a particular state, so we single out one state as the *initial* (starting) state, indicated graphically by an incoming arrow.

- The strings of odd length leads to state 2, so to accept just those strings we'd set 2 as the unique accepting state.
- We do this graphically by doubling the contour of state 2.
- In general there can be several accepting states.

Initial state can be accepting

- It is possible that the initial state is accepting.
- To accept the strings of even length set **1** as the only accepting state:

The device in action

• Device accepting odd length:

string accepted IFF has odd #a
aaa accepted

The device in action

• Device accepting even length:

string accepted IFF has even #a aaa not accepted

Definition of automata

- An *automaton,* aka *deterministic finite automaton (DFA)* consists of
 - An alphabet Σ .

Definition of automata

- An *automaton,* aka *deterministic finite automaton (DFA)* consists of
 - An alphabet Σ .
 - A non-empty finite set Q of objects called **states**.
 - One state $s \in Q$ singled out as *initial-state* (or *initial-state*).
 - A set $A \subseteq S$ of states singled out as **accepting states**.

Definition of automata

- An *automaton,* aka *deterministic finite automaton (DFA)* consists of
 - An alphabet Σ .
 - A non-empty finite set Q of objects called **states**.
 - One state $s \in Q$ singled out as *initial-state* (or *initial-state*).
 - A set $A \subseteq S$ of states singled out as **accepting states**.
 - A transition function $\delta: Q \times \Sigma \to Q$. Given state $q \in Q$ and input-symbol σ $\delta(q, \sigma)$ is the new (target) state.
- We also write $q \xrightarrow{\sigma} p$ for $\delta(q, \sigma) = p$. Note: p may be the same as q.

• Formally, M above is a tuple $(\Sigma, Q, s, A, \delta)$ of its components.

- Formally, M above is a tuple $(\Sigma, Q, s, A, \delta)$ of its components.
- M is over the alphabet Σ . We don't mention Σ when irrelevant or clear.

- Formally, M above is a tuple $(\Sigma, Q, s, A, \delta)$ of its components.
- M is over the alphabet Σ . We don't mention Σ when irrelevant or clear.
- Automaton is of Greek origin: auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

- Formally, M above is a tuple $(\Sigma, Q, s, A, \delta)$ of its components.
- M is over the alphabet Σ . We don't mention Σ when irrelevant or clear.
- Automaton is of Greek origin: auto = self, matos = move.
 Plural: automata or automatons. Automata is never singular.
- · Since automata play a central role,

they've acquired over time several alternative names, in particular *deterministic finite automaton (DFA)*.which we'll frequently use.

Textual applications

- Pattern matching, search engines
- Lexical analysis for compilation
- Data compression
- Automatic translation

Software systems

- Cyber-security
- System planning
- Information streaming
- Bio-informatics

Hardware systems

- Circuit design
- Robotics

Verification

- System modeling
- Verification of communication protocols
- Verification of embedded systems
- Model checking

Example of a formal description

• Here's an automaton M over $\Sigma = \{a, b\}$ that accepts strings with an odd number of a's (and no others).

Example of a formal description

• Here's an automaton M over $\Sigma = \{a, b\}$ that accepts strings with an odd number of a's (and no others).

• Its formal definition: $M = (\Sigma, Q, s, A, \delta)$ where * $\Sigma = \{a, b\}$ * $Q = \{1, 2\}$ * s = 1* $A = \{2\}$

• Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function δ .

- Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function δ .
- The steps of an automaton change just the state, and the implicit move to the next input symbol.
- Since the transition mapping of an automaton is a function, there is exactly one next-state for each symbol read.

- Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function δ .
- The steps of an automaton change just the state, and the implicit move to the next input symbol.
- Since the transition mapping of an automaton is a function, there is exactly one next-state for each symbol read.
- Computation terminates iff the end of the input string is reached.

- Intuitively, an automaton reads successive input symbols starting with the initial state, and updating the state according to the transition function δ .
- The steps of an automaton change just the state, and the implicit move to the next input symbol.
- Since the transition mapping of an automaton is a function, there is exactly one next-state for each symbol read.
- Computation terminates iff the end of the input string is reached.
- The essence of a DFA is in its being an online acceptor.

Traces

• If $w = \sigma_1 \cdots \sigma_n$ then we write $q \xrightarrow{\sigma_1 \cdots \sigma_n} p$ to state that $q \xrightarrow{\sigma_1} r_1 \xrightarrow{\sigma_2} r_2 \cdots r_{n-1} \xrightarrow{\sigma_n} p$ for some states r_1, \ldots, r_{n-1} .

Traces

- If $w = \sigma_1 \cdots \sigma_n$ then we write $q \xrightarrow{\sigma_1 \cdots \sigma_n} p$ to state that $q \xrightarrow{\sigma_1} r_1 \xrightarrow{\sigma_2} r_2 \cdots r_{n-1} \xrightarrow{\sigma_n} p$ for some states r_1, \dots, r_{n-1} . • The sequence of states $q \xrightarrow{r_1} r_2 \cdots r_n \rightarrow p$
- The sequence of states $q, r_1, r_2, \cdots r_{n-1}, p$

is a **state-trace** of the automaton.

Inductive definition of traces

- The ternary relation $q \xrightarrow{w} p$ can be defined inductively, by recurrence on w:
 - $\begin{array}{cccc} \bullet & q & \stackrel{\boldsymbol{\varepsilon}}{\longrightarrow} & q \\ \bullet & \text{If } & \delta(q,\sigma) = p & \text{that is } & q & \stackrel{\boldsymbol{\sigma} \cdot \boldsymbol{u}}{\longrightarrow} & r, \\ & \text{and } & p & \stackrel{\boldsymbol{u}}{\longrightarrow} & r & \text{then } & p & \stackrel{\boldsymbol{\sigma}}{\rightarrow} & q. \end{array}$

Inductive definition of traces

- The ternary relation $q \xrightarrow{w} p$ can be defined inductively, by recurrence on w:
 - $\begin{array}{cccc} \bullet & q & \stackrel{\boldsymbol{\varepsilon}}{\longrightarrow} & q \\ \bullet & \text{If } & \delta(q,\sigma) = p & \text{that is } & q & \stackrel{\boldsymbol{\sigma} \boldsymbol{u}}{\longrightarrow} & r, \\ & \text{and } & p & \stackrel{\boldsymbol{u}}{\longrightarrow} & r & \text{then } & p & \stackrel{\boldsymbol{\sigma}}{\rightarrow} & q. \end{array}$
- This definition invokes no auxiliary data that might be modified during execution.
- No mathematical machine we'll encounter (except NFAs) has such a definition:

They all are based on a notion of *configuration*,

which combines the machine's states with modifiable data.

Accepted strings, recognized languages

• For
$$A \subseteq Q$$
 let's write $q \stackrel{w}{\rightarrow} A$
when $q \stackrel{w}{\rightarrow} p$ for some $p \in A$.

•
$$M \mid accepts \mid w \text{ when } s \xrightarrow{w} A.$$

Accepted strings, recognized languages

• We re-use here the notation $\mathcal{L}(\cdots)$ that we used for regular expressions.

Accepted strings, recognized languages

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$
$$= \{ w \in \Sigma^* \mid s \xrightarrow{w} A \}$$

- We re-use here the notation $\mathcal{L}(\cdots)$ that we used for regular expressions.
- Two automata are *equivalent* if they recognize the same language.

1. Automata are acceptors: they produce no output.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.
- 6. Computation stops when the input's end is reached.

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.
- 6. Computation stops when the input's end is reached.
- 7. No auxiliary memory or devices.

Only two are crucial: violating them changes computing's nature:

- 1. Automata are acceptors: they produce no output.
- 2. The input must be lexical (strings over a fixed alphabet).
- 3. Scanning forward: no backtracking or repositioning.
- 4. Scanning at a single point (i.e. computation is *on-line*).
- 5. Exactly one move exists for each state and symbol.
- 6. Computation stops when the input's end is reached.
- 7. No auxiliary memory or devices.

Example: An automaton for Mod 3

Example of an accepted string

• State 1 (initial). Nothing read yet.

An accepted string

• Still state 1. Initial b read.

An accepted string

• Read ba, state 2.

An accepted string

• Read baa, state 3.

An accepted string

• Finished reading *baab*, state 3, accepted.

• State 1 (initial). Nothing read yet.

• Read a, State 2.

• Read aa, state 3.

• Read aab, state 3.

• Finished reading aaba, state 1, not accepted.

A computation trace

• For our example above, the computation for the string baab is

 $1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} 2 \xrightarrow{\mathbf{a}} 3 \xrightarrow{\mathbf{b}} 3.$

Abbreviated notation: 1 baab 3

• The computation for the string **aaba** is

 $1 \xrightarrow{\mathbf{a}} 2 \xrightarrow{\mathbf{a}} 3 \xrightarrow{\mathbf{b}} 3 \xrightarrow{\mathbf{a}} 1.$

Abbreviated notation: 1 _____ 3

Example: Addition mod 4

- The following automaton is over the alphabet {0, 1, 2, 3}
- It accept a string of digits iff they add up to 2 modulo 4.

• Reading input 21032 from initial state A:

A 21032

• Reads remaining string 1032:

• Reads remaining string 032:

D 032

• Reads remainder 32:

D 32

• Reads remainder 2:

2

C

• Reads remainder ε (empty string):

• Ends reading. A not an accept-state, 21032 not accepted.

Additional examples

What is the language recognized?

Three letter example

What are the language accepted?

An automaton with a sink

$0 \xrightarrow{\mathbf{a}} 0 \xrightarrow{\mathbf{a}} 0 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1$

$0 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{b}} 1 \xrightarrow{\mathbf{a}} X \xrightarrow{\mathbf{b}} X \xrightarrow{\mathbf{a}} X$

Note: Every state has exactly one arrow for every $\sigma \in \Sigma$.

• A **sink** is a non-accepting state with all outgoing transitions pointing to itself.

Here is a trivial automaton with a single state:

What strings are accepted?

Example

accepts the strings with exactly one a, and no other.

Example

accepts the string **aab** and no other.

AUTOMATA ARE REPETITIVE

• Here's an automaton that accepts a string $w \in \{1, 2\}^*$ iff the sum of the digits in w is $2 \mod (4)$.

• This is its trace for input 111212. The input has 6 symbols, so the trace lists 7 states.

• Looking at the first 5 of the 7, we must have a state repeating, because there are only 4 states.

The same happens for the next stretch of 5 states (i.e. 4 input symbols)

And the next one.

No matter which window of 5 states we take there will be a state repeating!

We can short-circuit the steps from the yellow state to itself, and the result will still be a legit trace, but for 112.

We can short-circuit the steps from the yellow state to itself, and the result will still be a legit trace, but for 112.

Shortcuts in traces

• We observed:

Let M be a k-state DFA. If $q \xrightarrow{u} p$ and $|u| \ge k$ then $q \xrightarrow{u'} p$ where u' is u with some substring $y \ne \varepsilon$ clipped off, i.e. removed.

with $|u| \ge k$.

Shortcuts in traces

• We observed:

Let M be a k-state DFA. If $q \xrightarrow{u} p$ and $|u| \ge k$ then $q \xrightarrow{u'} p$ where u' is u with some substring $y \ne \varepsilon$ clipped off, i.e. removed.

• Suppose we have

$$s \stackrel{w_0}{\rightarrow} p \stackrel{u}{\rightarrow} q \stackrel{w_1}{\rightarrow} A$$

with $|u| \ge k$.

Shortcuts in traces

• We observed:

Let M be a k-state DFA. If $q \xrightarrow{u} p$ and $|u| \ge k$ then $q \xrightarrow{u'} p$ where u' is u with some substring $y \ne \varepsilon$ clipped off, i.e. removed.

• Suppose we have

$$s \stackrel{w_0}{\rightarrow} p \stackrel{u}{\rightarrow} q \stackrel{w_1}{\rightarrow} A$$

with $|u| \geqslant k$.

Then

$$s \stackrel{w_0}{\rightarrow} p \stackrel{u'}{\rightarrow} q \stackrel{w_1}{\rightarrow} A$$

F23

• Theorem. If a k-state DFA accepts a string w, and u is a substring of w of length $\ge k$, then u has a substring $y \neq \varepsilon$ such that w with y removed is also accepted.

- Theorem. If a k-state DFA accepts a string w, and u is a substring of w of length $\ge k$, then u has a substring $y \neq \varepsilon$ such that w with y removed is also accepted.
- That is, if M accepts $w_0 \cdot u \cdot w_1$, where $|u| \ge k$, then there is a split $u = x \cdot y \cdot z$, with $y \ne \varepsilon$, such that $w' = w_0 \cdot x \cdot z \cdot w_1$ is also accepted.

- Theorem. If a k-state DFA accepts a string w, and u is a substring of w of length $\ge k$, then u has a substring $y \neq \varepsilon$ such that w with y removed is also accepted.
- That is, if M accepts $w_0 \cdot u \cdot w_1$, where $|u| \ge k$, then there is a split $u = x \cdot y \cdot z$, with $y \ne \varepsilon$, such that $w' = w_0 \cdot x \cdot z \cdot w_1$ is also accepted.
- We call u the *critical* substring, the particular occurrence of substring y the *clipped* substring, and w' the *reduced* string.

- Theorem. If a k-state DFA accepts a string w, and u is a substring of w of length $\ge k$, then u has a substring $y \neq \varepsilon$ such that w with y removed is also accepted.
- That is, if M accepts $w_0 \cdot u \cdot w_1$, where $|u| \ge k$, then there is a split $u = x \cdot y \cdot z$, with $y \ne \varepsilon$, such that $w' = w_0 \cdot x \cdot z \cdot w_1$ is also accepted.
- We call u the *critical* substring, the particular occurrence of substring y the *clipped* substring, and w' the *reduced* string.

- If M is a 10 state automaton that accepts some string. What is the length ℓ of the *shortest* string accepted?
 - 1. $\ell \in [30..100]$
 - 2. ℓ ∈ [10..25]
 - 3. $\ell \in [0..9]$
 - 4. Can't tell, could be anything.

- If M is a 10 state automaton that accepts some string. What is the length ℓ of the *shortest* string accepted?
- Theorem. If a k-state automaton M accepts some string, then it accepts a string of length < k.

- If *M* is a 10 state automaton that accepts some string. What is the length *l* of the *shortest* string accepted?
- Theorem. If a k-state automaton M accepts some string, then it accepts a string of length < k.

Proof: Let w be a shortest string accepted by M.
If |w| ≥ k then we invoke the Clipping Theorem, with w itself for u, and obtain a w' ∈ L shorter than w.
This contradicts the assumed minimality of |w|.

- If M is a 10 state automaton that accepts some string. What is the length ℓ of the *shortest* string accepted?
- Theorem. If a k-state automaton M accepts some string, then it accepts a string of length < k.
- Proof: Let *w* be a shortest string accepted by *M*.
 If |*w*| ≥ *k* then we invoke the Clipping Theorem, with *w* itself for *u*, and obtain a *w'* ∈ *L* shorter than *w*.
 This contradicts the assumed minimality of |*w*|.
- Example: What is the shortest string accepted by

The dual question

- I want a DFA that accepts exactly the strings of length ≥ 100 .
- What's the smallest number ℓ of states I need?
 - 1. $\ell \in [1..9]$
 - 2. ℓ ∈ [10..99]
 - 3. $\ell \in [100...999]$
 - 4. Can't tell, could be anything.

The dual question

- I want a DFA that accepts exactly the strings of length ≥ 100 .
- What's the smallest number ℓ of states I need?
 - 1. $\ell \in [1..9]$
 - 2. ℓ ∈ [10..99]
 - 3. $\ell \in [100...999]$
 - 4. Can't tell, could be anything.
- Answer: 101:

A DFA with 100 states will accept some string of length < 100.

On not being an insect

• How do you tell that the critter on your desk is not an insect?

On not being an insect

- How do you tell that the critter on your desk is not an insect?
- Check that it violates some property of insects, e.g. it has eight rather than six legs.
- How do you tell that a given language *L* is not recognized by any automaton?
- Refer to a property that all recognized languages have, but *L* does not.

On not being an insect

- How do you tell that the critter on your desk is not an insect?
- Check that it violates some property of insects, e.g. it has eight rather than six legs.
- How do you tell that a given language *L* is not recognized by any automaton?
- Refer to a property that all recognized languages have, but *L* does not.

The Clipping Property

- The Clipping Theorem says that Every language L recognized by a DFA has the following Clipping Property:
 - \star There is a k (the number of states in an acceptor for L),
 - \star so that for every $w \in L$
 - \star if u is a substring of w of length $\geqslant k$,
 - * then it has a "clippable" substring $y \neq \varepsilon$: removing y from w yields a string in L.

The Clipping Property

- The Clipping Theorem says that Every language L recognized by a DFA has the following Clipping Property:
 - \star There is a k (the number of states in an acceptor for L),
 - \star so that for every $w \in L$
 - \star if u is a substring of w of length $\geqslant k$,
 - * then it has a "clippable" substring $y \neq \varepsilon$: removing y from w yields a string in L.
- A language *fails Clipping* when
 - \star for any k > 0
 - \star we can choose some $w \in L$
 - and a substring u of w of length $\geqslant k$,
 - \star so that **any** clipping within **u** yields a $w' \notin L$.

The Clipping Property

- The Clipping Theorem says that Every language L recognized by a DFA has the following Clipping Property:
 - \star There is a k (the number of states in an acceptor for L),
 - \star so that for every $w \in L$
 - \star if u is a substring of w of length $\geqslant k$,
 - * then it has a "clippable" substring $y \neq \varepsilon$: removing y from w yields a string in L.
- A language *fails Clipping* when
 - \star for any k > 0
 - \star we can choose some $w \in L$
 - and a substring u of w of length $\geqslant k$,
 - \star so that **any** clipping within **u** yields a $w' \notin L$.
- If L fails Clipping then it is not recognized.

Example: an-bn

- Let $L = \{a^n b^n \mid n \ge 0\}$
- *L* fails clipping:
 - 1. Let k > 0
 - 2. Choose $w = a^k b^k$ and $u = a^k$. We have $w \in L$ and $|u| \ge k$.
 - 3. Any clipping in u yields from wa w' of the form $a^p b^k$ with p < k. So $w' \notin L$.
- Consequence: L fails the Clipping Property and cannot be recognized.

Example: Unary addition

- Consider the strings representing addition in unary: $A = \{ \mathbf{1}^p + \mathbf{1}^q = \mathbf{1}^{p+q} \mid p, q > 0 \}.$
- A fails the Clipping Property:
 - 1. Let k > 0.
 - 2. Choose $w = 1^k + 1 = 1^{k+1}$ and u the substring 1^{k+1} . $w \in A$ and $|u| \ge k$.
 - 3. Any clipping in u yields from w a string $w' = 1^{\ell} + 1 = 1^{k+1}$ with $\ell < k$. $w' \notin A$.
- A fails Clipping, and so cannot be recognized.

Example: Perfect squares in unary

- Consider $L = \{\mathbf{1}^{n^2} \mid n \ge 0\}.$
- *L* fails the Clipping Property:
 - 1. Let k > 0.
 - 2. Choose $w = 1^{k^2}$ and $u = 1^k$. $w \in L$ and $|u| \ge k$.
 - 3. For any clipped y we have $1 \leq |y| \leq |u| = k$, so for the reduced string $w' = 1^{\ell}$ where $k^2 - k \leq \ell < k^2$. $w' \notin L$ because ℓ cannot be a square: the largest square preceding k^2 is $(k-1)^2 = k^2 - 2k + 1$ which is $< k^2 - k \leq \ell$.
- So L fails Clipping, and cannot be recognized.

- Consider $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take $w = x \cdot x$ with x that starts with a marker.

- Consider $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take $w = x \cdot x$ with x that starts with a marker.
 - 1. Let k > 0.
 - 2. Choose $w = 01^k 01^k$ and u = left substring 1^k in w. $w \in L$ and $|u| \ge k$.

- Consider $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take $w = x \cdot x$ with x that starts with a marker.
 - 1. Let k > 0.
 - 2. Choose $w = 01^k 01^k$ and u = left substring 1^k in w. $w \in L$ and $|u| \ge k$.
 - 3. Any clipped y in u yields from wa reduced string $w' = 01^{\ell}01^k$ where $\ell < k$.
 - Such w' cannot be of the form xx, because its first half starts with 0 while its second half starts with 1.

- Consider $L = \{x \cdot x \mid x \in \{0, 1\}^*\}$
- Idea: Take $w = x \cdot x$ with x that starts with a marker.
 - 1. Let k > 0.
 - 2. Choose $w = 01^k 01^k$ and u = left substring 1^k in w. $w \in L$ and $|u| \ge k$.
 - 3. Any clipped y in u yields from wa reduced string $w' = 01^{\ell}01^k$ where $\ell < k$. Such w' cannot be of the form xx, because its first half starts with 0
 - while its second half starts with 1.
- *L* fails the Clipping Property, and cannot be recognized.

Pumping up rather than clipping

F23

Pumping instances

• Let $w \in \Sigma^*$ and

y a particular substring of w: $w = x \cdot y \cdot z$.

• The *n-th pumping instance* of $w = x \cdot y \cdot z$ over (the exhibited occurrence of) yis defined to be $x \cdot y^n \cdot z$.

The Pumping Theorem

- Let M be a k-state DFA over Σ , $L = \mathcal{L}(M)$.
- As for Clipping, choose $w \in L$ and a substring u of w of length $\geq k$.
- CONCLUDE: u has a non-empty substring y such that all pumping instances of w over y are in L.
- Recall: The *n*-th pumping instance of *w* over (a particular occurrence of) *y* is the result of replacing *y* by *yⁿ*.

Failing Pumping

A language *fails Pumping* when:

- 1. For any k > 0
- 2. there are $w \in L$

and substring u of w of length $\geq k$

3. so that for *every* y within u

there is a pumping instance w over y which is not in L.

- $L = \{1^p \mid p \text{ is prime }\}$
- Suppose L is recognized by a k-state DFA M.

- $L = \{ \mathbf{1}^p \mid p \text{ is prime } \}$
- Suppose L is recognized by a k-state DFA M.
- Take a prime p > k and $w = 1^p \in L$.
- There is a pumping segment y in w of length $\ell \neq 0$.

- $L = \{ \mathbf{1}^p \mid p \text{ is prime } \}$
- Suppose L is recognized by a k-state DFA M.
- Take a prime p > k and $w = 1^p \in L$.
- There is a pumping segment y in w of length $\ell \neq 0$.
- The (p+1)-st pumping instance of w over yhas length $|w| - \ell + (p+1)\ell = p + p\ell = p(\ell + 1)$, which is not prime.

- $L = \{1^p \mid p \text{ is prime }\}$
- Suppose L is recognized by a k-state DFA M.
- Take a prime p > k and $w = 1^p \in L$.
- There is a pumping segment y in w of length $\ell \neq 0$.
- The (p+1)-st pumping instance of w over yhas length $|w| - \ell + (p+1)\ell = p + p\ell = p(\ell + 1)$, which is not prime.
- Contradiction. M cannot exist.

• Show that the language

$$L = \{ w \cdot a^n \mid w \in \{a, b\}^*, \ \#_a(w) = n \}$$

is not recognized.

• Show that the language

$$L = \{ w \cdot a^n \mid w \in \{a, b\}^*, \ \#_a(w) = n \}$$

is not recognized.

• Suppose *L* were recognized by a *k*-state DFA. Let $w = b^k a^k$, which is in *L*, and take $u = b^k$, the prefix of *w*.

• Show that the language

$$L = \{ w \cdot a^n \mid w \in \{a, b\}^*, \ \#_a(w) = n \}$$

is not recognized.

- Suppose L were recognized by a k-state DFA. Let $w = b^k a^k$, which is in L, and take $u = b^k$, the prefix of w.
- By the Pumping Theorem u has a substring $y = b^{\ell}$ where $\ell > 0$ such that $b^{k+n\ell} a^k \in L$ for all $n \ge 0$. In particular, for n = 1 we have $w' = b^{k+\ell} a^k \in L$.

• Show that the language

$$L = \{ w \cdot a^n \mid w \in \{a, b\}^*, \ \#_a(w) = n \}$$

is not recognized.

- Suppose L were recognized by a k-state DFA. Let $w = b^k a^k$, which is in L, and take $u = b^k$, the prefix of w.
- By the Pumping Theorem u has a substring $y = b^{\ell}$ where $\ell > 0$ such that $b^{k+n\ell} a^k \in L$ for all $n \ge 0$. In particular, for n = 1 we have $w' = b^{k+\ell} a^k \in L$.

But this is impossible, because the second half of w' must have **b** 's.

• Thus no DFA recognizing L exists.

F23

Minimum states for finite language recognition

- Any *finite* language L is recognized by an automaton!
- But how many states are needed?

Minimum states for finite language recognition

- Any *finite* language L is recognized by an automaton!
- But how many states are needed?
- At least as many as the longest string-length in *L*.

Minimum states for finite language recognition

- Any *finite* language L is recognized by an automaton!
- But how many states are needed?
- At least as many as the longest string-length in L.
- Proof: If M with k states recognizes a string longer than k, then Pumping applies, and L is infinite!

CONSTRUCTING AUTOMATA

- We give a method that, given a language L, attempts to construct a DFA M recognizing L.
- If and when the process teminates, we obtain such an $oldsymbol{M}$.
- We start with a couple of non-trivial examples, before articulating the method and giving more examples.

- Construct an automaton recognizing *L*(a*bb*). That is, accepting strings of a 's followed by one or more b 's, and *only* those.
- The initial state is the declaration of this goal.
- What will be an updated goal after reading an a?

Reading an a

- The goal is unchanged!.
- But what happens if we read a b?

Reading a b

- A new goal: from now on only **b** 's, any number.
- What if we read a b *now*?

Reading another b

- No change.
- And what if, instead, we read an a?

Reading an a instead

What are the accepting states

- Construct an automaton accepting strings $\sigma w \sigma$, i.e. with last letter identical to the first, and **no others**.
- The initial state is the declaration of this goal.
- What will be the updated goals after reading the first letter?

Reading the first letter:

0	σωσ		
1	8	I	wa
2		I	wb

- Either this is the last letter, or else it repeats at the end.
- What if we now read this letter again?

Sought letter repeated:

0 σwσ
1 ε | wa
2 ε | wb

- The goal does not change.
- And what about the opposite letter *now*?

Reading opposite letter:

*

• The option of not reading further has been blocked.

Opposite letter repeating:

- But if the sought letter is read now, the previous goal is restored.
- And if we keep reading the wrong letter?

Return to sought letter:

- No change of goal.
- What are the accepting states?

The accepting states:

- Accept if current goal is satisfied when nothing left to read.
- This completes the construction.

Goal oriented automaton construction

• When you head to an unfamiliar destination, would you prefer the GPS map to display the road already covered, or rather the road ahead?

Goal oriented automaton construction

- When you head to an unfamiliar destination, would you prefer the GPS map to display the road already covered, or rather the road ahead?
- Programming is a *goal oriented* process. The relevant mission is to achieve a goal. The initial task of an acceptor for *L* is *"accept the strings in L and no others"!*

Goal oriented automaton construction

- When you head to an unfamiliar destination, would you prefer the GPS map to display the road already covered, or rather the road ahead?
- Programming is a *goal oriented* process. The relevant mission is to achieve a goal. The initial task of an acceptor for *L* is *"accept the strings in L and no others"!*
- The tasks are adjusted as the input string is read.
 Each task is of the form

the string ahead leads into a string in L

Identifying accepting tasks

- The development above updates states (conditions) as required when symbols σ are read.
- A string $x = \sigma u$ satisfying the current condition (=state) leads to A iff u started at the next condition leads to A.
- So the accepting conditions are the ones that are satisfied when reading ends, i.e. when the string-ahead is ε .

0 w σσ1 a | w σσ

- **Ο** *w*σσ
- a | w σσ
- b | wσσ
- ε | a | wσσ
- ε | b | wσσ

- w бб а | w бб b | w бб
- **3** ε | a | wσσ
- **4** ε | b | wσσ

- **Ο** *w* σσ
- a | wσσ
- b | wσσ
- ε | a | wσσ
- ε | b | wσσ

Initial task: accept strings with an odd number of a's

Reading a b does not change the task

 Reading an a revises the task to: accept strings with an even number of a's

Same reasoning for the "even" task

► Accept description fulfilled by *ε*.

Example: aba*

Accepts the strings of the form aba^n with $n \ge 0$, and no others.

Example: aba*

Accepts the strings of the form aba^n with $n \ge 0$, and no others.

• Note the sink at the bottom of the diagram.

A trivial example: Just a 's

Construct an automaton recognizing $\mathcal{L}(a^*)$ as a sub-language of $\{a, b\}^*$

Initial task: accept strings of a's

A trivial example: Just a 's

Reading an a does not change the task

A trivial example: Just a 's

 Reading a b revises the task to not accepting anything. A sink.

A trivial example: Just a 's

► No escape from the sink

Automaton over $\{a, \#\}$ recognizing $\{a^i \# a^j \# a^k \mid i+j = k \pmod{2} \}$

$$\sum \begin{bmatrix} a^i \# a^j \# a^k \\ i+j=k \end{bmatrix}$$

Automaton over $\{a, \#\}$ recognizing $\{a^i \# a^j \# a^k \mid i+j=k \pmod{2}\}$

$$a^{i} # a^{j} # a^{k}$$

$$i + j = k$$

$$a^{i} # a^{j} # a^{k}$$

$$a^{i} # a^{j} # a^{k}$$

$$i + j \neq k$$

Reading a's toggles between equiity and inequality of parities.

Automaton over $\{a, \#\}$ recognizing $\{a^i \# a^j \# a^k \mid i+j=k \pmod{2}\}$

$$a^{i} \# a^{j} \# a^{k} \# a^{j} \# a^{k}$$

$$i + j = k$$

$$a^{i} \# a^{j} \# a^{k}$$

$$a^{i} \# a^{j} \# a^{k}$$

$$i + j \neq k$$

Reading the separator # means i = 0.

Automaton over $\{a, \#\}$ recognizing $\{a^i \# a^j \# a^k \mid i+j=k \pmod{2}\}$

The same arguments are repeated

Automaton over $\{a, \#\}$ recognizing $\{a^i \# a^j \# a^k \mid i+j=k \pmod{2}\}$

Encountering an extra separator leads to a sink

Automaton over $\{a, \#\}$ recognizing $\{a^i \# a^j \# a^k \mid i+j=k \pmod{2}\}$

The single one accepting state is the one satisfied by ε .

Summary of the method, again

- The initial acceptance-condition is the language to be recognized.
- Given a new acceptance-condition we calculate for each σ ∈ Σ how reading σ leads to a new acceptance-condition.
 That is, a string w = σu satisfies the current acceptance condition iff u satisfies the acceptance-condition after σ is read.
- An acceptance-condition is an accepting state iff it is satisfied by ϵ .

Construct an automaton recognizing $\mathcal{L}(\Sigma^* \cdot aa \cdot \Sigma^*)$

Reading **b** leaves the task unchanged:

No further reading alterns that conclusion: 2 consecutive a's b b b a,b a,b a,cept!

Example 7: a*b*c*

• Label states as we wish, with optional "dictionary."

F23

Example 8: Ends with two identical

0 *σσ

0 *σσ1 a | *σσ

- *σσ
- a | *σσ
- 2 b | *oo

- *σσ
- а | *оо
- 2 b | *oo

- *σσ
- а | *оо
- 2 b | *oo

0 *σσ
1 a | *σσ
2 b | *σσ
3 *

Example: Initial a or the string baa

Example: Symbolic binary addition

- The following example illustrates the use of compound data as "symbols" of an alphabet.

Example: Symbolic binary addition

- The following example illustrates the use of compound data as "symbols" of an alphabet.
- This table does not look like a string. But all such tables have height 3 we can consider each column as a "symbol" in the alphabet $\Sigma = \{0, 1\}^3$, that is

$$\Sigma^{3} = \{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \}$$

Example: Symbolic binary addition

- The following example illustrates the use of compound data as "symbols" of an alphabet.
- Consider a long addition in binary, such as
 + 0 1 1 0 1
 + 0 1 1 0 1
- The long addition above can be consrued as the string

0	0	[1]	1	0
0	1 0	1	0	1 1
1	0	0	1 0 1	1

- Is there an automaton over Σ^3 that recognizes the correct symbolic binary additions?
- That is, can we construct an automaton M that accepts strings like

 $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

but not strings like

0	1	1	1
1	1	1	0
1	1	0	1 0 0

Start state is the goal that the table *adds-up*: *remaining columns add up*

Start state is the goal that the table *adds-up*: *remaining columns add up* The main other state is *remaining columns yield carry-over*

There is one column switching from *add-up* to *carry-over*

There is one column switching from *add-up* to *carry-over* and one column switching back from *carry-over* to *add-up*

Three columns leave the *add-up* goal unchanged

Three columns leave the *add-up* goal unchanged and three leaave *carry-over* unchaged

Four columns lead from *add-up* to a *sink*

Four columns lead from *add-up* to a *sink* and four from *carry-over* to that *sink*

An automaton recognizing symbolic binary addition

Finally, *sink* is a sink.

F23

- Consider every string $w \in \{0, 1\}^*$ to be a binary numerals.
- The *numeric value* $[w]_2$ of a string $w = d_k d_{k-1} \cdots d_0$ is $\sum_i 2^i$.
- The numerals divisible by 2 are those that end with **0**.

- Consider every string $w \in \{0, 1\}^*$ to be a binary numerals.
- The *numeric value* $[w]_2$ of a string $w = d_k d_{k-1} \cdots d_0$ is $\sum_i 2^i$.
- Problem: Construct a DFA over {0,1}* that accepts the numerals divisble by 3.

- Consider every string $w \in \{0, 1\}^*$ to be a binary numerals.
- The *numeric value* $[w]_2$ of a string $w = d_k d_{k-1} \cdots d_0$ is $\sum_i 2^i$.
- Problem: Construct a DFA over {0,1}* that accepts the numerals divisble by 3.
- Preliminary: What is the value mod(3) of the digits,
 i.e. what is 2^k mod(3).

- Consider every string $w \in \{0, 1\}^*$ to be a binary numerals.
- The *numeric value* $[w]_2$ of a string $w = d_k d_{k-1} \cdots d_0$ is $\sum_i 2^i$.
- Problem: Construct a DFA over {0,1}* that accepts the numerals divisble by 3.
- Preliminary: What is the value mod(3) of the digits,
 i.e. what is 2^k mod(3).

We have that $4^k =_3 1$, by induction on k.

►
$$4^0 = 1$$

• If $4^k = 3x + 1$ then $4^{k+1} = 4(3x + 1) = 13x + 1$.

- Consider every string $w \in \{0, 1\}^*$ to be a binary numerals.
- The *numeric value* $[w]_2$ of a string $w = d_k d_{k-1} \cdots d_0$ is $\sum_i 2^i$.
- Problem: Construct a DFA over {0,1}* that accepts the numerals divisble by 3.
- Preliminary: What is the value mod(3) of the digits,
 i.e. what is 2^k mod(3).
 We have that 4^k =₃ 1, by induction on k.
 So 2^{2k} = 3x + 1 for some x, and 2^{2k+1} = 2(3x + 1) = 6x + 2.
 ∴ 2ⁿ =₃ 1 for even n, and =₃ 2 for odd n.

• For any input w the expectation depends on the parity of |w|, the goals are therefore of the form

Either |w| is even and $[w] =_3 x$ or |w| is odd and $[w] =_3 y$ Let's abbreviate this as (x, y).

• For any input w the expectation depends on the parity of |w|, the goals are therefore of the form

Either |w| is even and $[w] =_3 x$ or |w| is odd and $[w] =_3 y$ Let's abbreviate this as (x, y).

• From the observation above it follows that $(x, y) \xrightarrow{1} (y+2, x+1)$, and $(x, y) \xrightarrow{0} (y, x)$.

• This yields the following DFA:

RESIDUES AND THEIR APPLICATIONS

More examples of residues

• Take L = English words.

L/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.

- ϵ is also in L/invent since invent is a word.
- The residue L/ad contains the strings vance, apt, opt, d, and ϵ .
- Take $L = \{ab\}$, a singleton language. We have $L/\varepsilon = \{ab\}, L/a = \{b\}$, and $L/ab = \varepsilon$. For any other string w, $L/w = \emptyset$.
- For any language L we have $L/\varepsilon = L$: $w \in L$ iff $\varepsilon \in L/w$.

• $L = \{0, 00, 010\}$

$$L/\varepsilon = L$$

$$L/0 = \{\varepsilon, 0, 10\}$$

$$L/00 = \{\varepsilon\}$$

$$L/01 = \{0\}$$

$$L/010 = \{\varepsilon\}$$

$$L/w = \emptyset \text{ for any other } w$$

L/00 = L/010, so there are five (different) residues.

• $L = \{aw \mid w \in \Sigma^*\} \cup \{baa\}.$

$$L/arepsilon = L$$

 $L/w = \Sigma^*$ if w starts with a
 $L/b = \{aa\}$
 $L/ba = \{a\}$
 $L/baa = \{\varepsilon\}$
 $L/w = \emptyset$ for any other w

There are 6 residues.

L and Σ^* are infinite languages, the others are finite.

A single-letter language

• $\Sigma = \{0, 1\}, L = \{0\}^*.$

• If $w \in \Sigma^*$ contains 1 then $L/w = \emptyset$. Otherwise L/w = L. There are two residues.

A language based on occurrence count

• $L = \{w \in \{0, 1\} \mid \#_0(w) \text{ is even } \}.$ If $\#_0(w)$ is even then L/w is L, otherwise $L/w = \{w \mid \#_0(w) \text{ is odd } \}$

Each state determines a language

• Consider a DFA M recognizing L and a state q in it. Some string x may lead from q to acceptance.

Each state determines a language

• Consider a DFA M recognizing L and a state q in it. Some string x may lead from q to acceptance.

• Denote the set of all such x 's by L_q . In particular, $L_s = L$.

q

Each state determines a language

• Consider a DFA M recognizing L and a state q in it. Some string x may lead from q to acceptance.

• Denote the set of all such x 's by L_q . In particular, $L_s = L$.

Note: We focus on the future of *q*, not its past!
 (The past would be the set of strings leading to *q*)

q

• Now suppose that $s \xrightarrow{w} q$. A string $w \cdot x$ is accepted by M iff $x \in L_q$.

- Now suppose that $s \xrightarrow{w} q$. A string $w \cdot x$ is accepted by M iff $x \in L_q$.
- x completes w to a string in L:

- Now suppose that $s \xrightarrow{w} q$. A string $w \cdot x$ is accepted by M iff $x \in L_q$.
- x completes w to a string in L:

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a k-state DFA has $\leq k$ residues.

A property of recognized languages

- Theorem. (Myhill-Nerode) A language recognized by a k-state DFA has $\leq k$ residues.
- Proof. If $s \xrightarrow{u} q$ and $s \xrightarrow{v} q$ then L/u = L/v.

A property of recognized languages

- Theorem. (Myhill-Nerode) A language recognized by a k-state DFA has $\leq k$ residues.
- Proof. If $s \xrightarrow{u} q$ and $s \xrightarrow{v} q$ then L/u = L/v.
- Consequently:

Theorem.

A language with infinitely many residues is not recognized.

• Let $L = \{ w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w) \}.$

- Let $L = \{ w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w) \}.$
- Consider the residues of L the form $L/1^n$ $(n \ge 0)$.

- Let $L = \{ w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w) \}.$
- Consider the residues of L the form $L/1^n$ $(n \ge 0)$.
- For each *n* we have

 $L/1^n = \{x \mid \#_0(x) = \#_1(x) + n\}$,

since to compensate for an initial substring of n 1's the rest of the string should have n extra 0's.

- Let $L = \{ w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w) \}.$
- Consider the residues of L the form $L/1^n$ $(n \ge 0)$.
- For each n we have

 $L/1^n = \{x \mid \#_0(x) = \#_1(x) + n\}$,

since to compensate for an initial substring of n 1's the rest of the string should have n extra 0's.

• If $i \neq j$ then $0^i \in L/1^i$ but $\notin L/1^j$ so the two residues are *different*.

- Let $L = \{ w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w) \}.$
- Consider the residues of L the form $L/1^n$ $(n \ge 0)$.
- For each n we have

 $L/1^n = \{x \mid \#_0(x) = \#_1(x) + n\}$,

since to compensate for an initial substring of n 1's the rest of the string should have n extra 0's.

• If $i \neq j$ then $0^i \in L/1^i$ but $\notin L/1^j$ so the two residues are *different*.

 $\therefore L$ is not recognized, since it has infinitely many residues.

- We developed automata by thinking of residues as states.
- Let M be an automaton over Σ . For a state q of M define

 $L_q =_{\mathrm{df}} \{ x \in \Sigma^* \mid q \xrightarrow{x} A \}$

• In particular, for the start state $L_s = L$.

• If
$$s \xrightarrow{w} q$$
 then $L_q = L/w$.
 $y \xrightarrow{w} y \xrightarrow{x_1} y \xrightarrow{x_2} y$
 $L_q = L/w$

 \star Each string leads from s to some state.

 \star All strings leading from *s* to a state *q* have the same residue.

The Myhill-Nerode Theorem

- Every residue L/w is L_q for q as above.
- And two different residues $L/w \neq L/x$ must correspond to two different states.
- So we have an injection that maps residues to states,
 I.e. the number of residues is bounded by the number of states.
- Theorem. (John Myhill and Anil Nerode (1958)) (simplified and rephrased): $\mathcal{L}(M)$ cannot have more residues than M has states.
- Consequence: A language with infinitely many residues cannot be recognized by any automaton!

Showing that a language fails recognition

- We saw that $L = \{w \in \{0, 1\}^* \mid \#_0(w) = \#_1(w)\}$ has infinitely many residues.
- Consequence: It cannot be recognized by any automaton!!!
- General method: show that L is not recognized by showing that there are infinitely many residues.
- We do not need to consider all residues,
 only some infinite selection, defined by a template
- We do not need to calculate the residues we choose, only show that each two of them are different.
- We show them different by exhibiting a string which is in one but not in the other.

Example: Unary addition

- Representing unary addition, using unary numerals and the symbols for addition and equality:
- $\bullet L = \{\mathbf{1}^k + \mathbf{1}^m = \mathbf{1}^{k+m} \mid k, m \ge 1\}$
- What residues would you select?

- $L/1^n + 1 =$ for each $n \ge 1$.
- Suppose $i \neq j$.

What string is in $L/1^i + 1 =$ but not in $L/1^j + 1 = ?$

Example: Residues for Mahimahi

• Consider $L = \{u \cdot u \mid u \in \{0, 1\}^*\}$. What residues L/w to take?

Example: Residues for Mahimahi

- Consider $L = \{u \cdot u \mid u \in \{0, 1\}^*\}$. What residues L/w to take?
- w with an end-mark would help with differentiating residues. Say $0^{n}1$?

Example: Residues for Mahimahi

- Consider $L = \{u \cdot u \mid u \in \{0, 1\}^*\}$. What residues L/w to take?
- w with an end-mark would help with differentiating residues. Say $0^{n}1$?
- Then $0^i \mathbf{1} \in L/0^i \mathbf{1}$,

but for j > i we have $0^i 1 \notin L/0^j 1$,

because it has two 1's in its first half and none in the second.

Example: Residues for Mahimahi

- Consider $L = \{u \cdot u \mid u \in \{0, 1\}^*\}$. What residues L/w to take?
- w with an end-mark would help with differentiating residues. Say $0^{n}1$?
- Then $0^i 1 \in L/0^i 1$, but for j > i we have $0^i 1 \notin L/0^j 1$, because it has two 1's in its first half and none in the second.
- Since each two of these residues are different,

L has infinitely many residues, and cannot be recognized by a DFA.

Example: Residues for perfect squares

• $L = \{\mathbf{1}^{n^2} \mid n \ge 0\}.$

• Consider the residues $L/1^{n^2}$ for each n > 0.

- The first perfect square following n^2 is $(n+1)^2 = n^2 + 2n + 1$.
- So the shortest non-null string of $L/1^{i^2}$ is 1^{2i+1} .
- It follows that $1^{2i+1} \in L/1^{i^2}$ but $1^{2i+1} \notin L/1^{j^2}$ for any j > i.
- Since every two of these residues are different,
 L has infinitely many residues,
 and cannot be recognized by any automaton.

Building automata directly from residues

- We showed that every recognized language has finitely many residues.
- The converse is also true:
- If $L \subseteq \Sigma^*$ has finitely many residues, then $L = \mathcal{L}(M)$ where:
 - \star The states of M are the residues.
 - \star The initial state is $L/\varepsilon = L$.
 - \star A state L/w is accepting iff it contains ε .
 - \star The transitions are given by $L/w \xrightarrow{\sigma} L/w\sigma$.
- We used the same idea to construct automata, except that here we assume that the residues are given to us.
- We write Res(L) for the automaton constructed from residues.

Recognized = finitely many residues

- A language L is recognized iff it has finitely many residues.
- The DFA constructed from *L*'s residues has the fewer states
- Given a DFA M recognizing L, and a state q,

Minimizing an automaton: Rationale

• Suppose M is a k-state DFA over Σ , recognizing L. For each accessible state q the language L_q is a residue of L. If M is the smallest automaton recognizing Lthen these residues are all different.

Minimizing an automaton: Rationale

• Suppose M is a k-state DFA over Σ , recognizing L. For each accessible state q the language L_q is a residue of L. If M is the smallest automaton recognizing Lthen these residues are all different.

• *M* might be constructed using residues as states and yet not be minimal, because the same residue might have been introduced twice for different property descriptions.

Minimizing an automaton: Rationale

• Suppose M is a k-state DFA over Σ , recognizing L. For each accessible state q the language L_q is a residue of L. If M is the smallest automaton recognizing Lthen these residues are all different.

• *M* might be constructed using residues as states and yet not be minimal, because the same residue might have been introduced twice for different property descriptions.

But when M is not minimal we can still obtain

a minimal automaton by identifying duplicates and unifying them.

Minimizing an automaton: Separating residues

- Say that a string x separates q from q'if x is in one of L_q and $L_{q'}$ but not in the other. That is, x is a witness for $L_q \neq L_{q'}$.
- Write q D q' if there is such an x, i.e. L_q and $L_{q'}$ are different.
- Write $q D_n q'$ if q is separated from q' by some string of length $\leq n$.

Minimizing an automaton: Separating residues

- Say that a string x separates q from q'if x is in one of L_q and $L_{q'}$ but not in the other. That is, x is a witness for $L_q \neq L_{q'}$.
- Write q D q' if there is such an x, i.e. L_q and $L_{q'}$ are different.
- Write $q D_n q'$ if q is separated from q' by some string of length $\leq n$.
 - ▶ Note: $D_{n+1} \supseteq D_n$.
 - Let's show that if $D_{n+1} = D_n$ then $D_{n+2} = D_{n+1}$

• Suppose $q D_{n+2}q'$, i.e. some σx of length n+2 separates between q and q'.

Let $q \xrightarrow{\sigma} p$ and $q' \xrightarrow{\sigma} p'$.

Then x separates between p and p', so $pdm_{n+1}p'$.

• But we assume $D_{n+1} = D_n$, so $p D_n p'$, and therefore q Dn + 1q'.

• Suppose $q D_{n+2}q'$, i.e. some σx of length n+2 separates between q and q'.

Let $q \xrightarrow{\sigma} p$ and $q' \xrightarrow{\sigma} p'$.

- But we assume $D_{n+1} = D_n$, so $p D_n p'$, and therefore q Dn + 1q'.
- By induction, if $D_{n+1} = D_n$ then $D_i = D_n$ for all $i \ge n$, and so $D_n = D$.

• Suppose $q D_{n+2}q'$, i.e. some σx of length n+2 separates between q and q'.

Let $q \xrightarrow{\sigma} p$ and $q' \xrightarrow{\sigma} p'$.

- But we assume $D_{n+1} = D_n$, so $p D_n p'$, and therefore q Dn + 1q'.
- By induction, if $D_{n+1} = D_n$ then $D_i = D_n$ for all $i \ge n$, and so $D_n = D$.
- Conclusion: For some n $D_0 \subset D_1 \subset D_2 \subset \cdots \subset D_n = D_{n+1} = D_n$ where $n \leq$ the number of pairs of distinct states. i.e. $\ell = k(k-1)/2$.

• Suppose $q D_{n+2}q'$, i.e. some σx of length n+2 separates between q and q'.

Let $q \xrightarrow{\sigma} p$ and $q' \xrightarrow{\sigma} p'$.

- But we assume $D_{n+1} = D_n$, so $p D_n p'$, and therefore q Dn + 1q'.
- By induction, if $D_{n+1} = D_n$ then $D_i = D_n$ for all $i \ge n$, and so $D_n = D$.
- Conclusion: For some n $D_0 \subset D_1 \subset D_2 \subset \cdots \subset D_n = D_{n+1} = D_n$ where $n \leq$ the number of pairs of distinct states. i.e. $\ell = k(k-1)/2$.
- The stable D_n is the relation $L_q \neq L'_q$ between states.

• Suppose $q D_{n+2}q'$, i.e. some σx of length n+2 separates between q and q'.

Let $q \xrightarrow{\sigma} p$ and $q' \xrightarrow{\sigma} p'$.

- But we assume $D_{n+1} = D_n$, so $p D_n p'$, and therefore q Dn + 1q'.
- By induction, if $D_{n+1} = D_n$ then $D_i = D_n$ for all $i \ge n$, and so $D_n = D$.
- Conclusion: For some n $D_0 \subset D_1 \subset D_2 \subset \cdots \subset D_n = D_{n+1} = D_n$ where $n \leq$ the number of pairs of distinct states. i.e. $\ell = k(k-1)/2$.
- The stable D_n is the relation $L_q \neq L'_q$ between states.
- Conclusion: If q Dq' then q, q' are separated by a string of length $\leq k(k-1)/2$.

F23

Minimization algorithm for DFAs

Outline of a *minimization algorithm*: Given a k-state DFA M recognizing L:

1. For each pair q, q' determine if $L_q = L'_q$ by checking all strings of length k(k-1)/2.

Minimization algorithm for DFAs

Outline of a *minimization algorithm*: Given a k-state DFA M recognizing L:

- 1. For each pair q, q' determine if $L_q = L'_q$ by checking all strings of length k(k-1)/2.
- 2. Obtain the minimal DFA recognizing L by unifying equivalent states.

MODIFYING & COMBINING AUTOMATA

• A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).

- A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).
- A partial-automaton M terminates execution when it cannot proceed: no applicable transition (due to partiality) or no next-letter to move to.

It *accepts* w if its state-trace for w ends with an accepting state.

- A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).
- A partial-automaton M terminates execution when it cannot proceed: no applicable transition (due to partiality) or no next-letter to move to.

It *accepts* w if its state-trace for w ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba} :

- A *partial-automaton* is an automaton whose transition mapping is a *partial* function (recall that a total-function is also a partial-function).
- A partial-automaton M terminates execution when it cannot proceed: no applicable transition (due to partiality) or no next-letter to move to.

It *accepts* w if its state-trace for w ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba} :

• Some people use "automaton" for our "partial-automaton" and "total-automaton" for our "automaton."

From partial- to total-automaton

• Theorem. Every partial-automaton M can be converted into a total-automaton \overline{M} equivalent to M, i.e. recognizing the same language.

Do you seee how?

From partial- to total-automaton

• Theorem. Every partial-automaton M can be converted into a total-automaton \overline{M} equivalent to M, i.e. recognizing the same language.

Do you seee how?

• Just add a sink to M :

From partial- to total-automaton

• Theorem. Every partial-automaton M can be converted into a total-automaton \overline{M} equivalent to M, i.e. recognizing the same language.

Do you seee how?

• Just add a sink to M:

• That is, \overline{M} is obtained by adding to Ma sink state K, with all missing transitions of Mas well as outgoing transition from K, pointing to K.

Example: Equiping strings with start signal

- $M = (\Sigma, Q, s, A, \delta)$ is a partial-automaton recognizing L. Convert M to M' recognizing $a \cdot L$.
 - (a can be construed as a start-signal.

Example: Equiping strings with start signal

• $M = (\Sigma, Q, s, A, \delta)$ is a partial-automaton recognizing L. Convert M to M' recognizing $a \cdot L$. (a can be construed as a start-signal. Fix some $t \notin Q$ and let M' be M augmented with t as the new start state, and the transition $q \xrightarrow{a} s$)

Example: Equiping strings with end signal

• Let $\Box \notin \Sigma$. Convert *M* to *M''* recognizing $L \cdot \Box$.

Example: Equiping strings with end signal

Let □ ∉ Σ.
Convert *M* to *M*" recognizing *L* · □.
Let *M*" be *M* with *z* the accepting state, augmented with the transitions *a* → *z* for each *a* ∈ *A*.

Example: Equiping strings with end signal

Let □ ∉ Σ.
Convert *M* to *M*" recognizing *L* · □.
Let *M*" be *M* with *z* the accepting state, augmented with the transitions *a* → *z* for each *a* ∈ *A*.
This construction won't work if □ ∈ Σ, why?

• Theorem. If $L \subseteq \Sigma^*$ is recognized then so is $\overline{L} = \Sigma^* - L$.

• Theorem. If $L \subseteq \Sigma^*$ is recognized then so is $\overline{L} = \Sigma^* - L$.

The proof is another example of manipulating automata: An automaton recognizing L is converted into one for \overline{L} .

• Theorem. If $L \subseteq \Sigma^*$ is recognized then so is $\overline{L} = \Sigma^* - L$.

The proof is another example of manipulating automata: An automaton recognizing L is converted into one for \overline{L} .

• Given DFA M, how do you get a DFA Mthat accepts when M rejects, and rejects when M accepts?

• Theorem. If $L \subseteq \Sigma^*$ is recognized then so is $\overline{L} = \Sigma^* - L$.

The proof is another example of manipulating automata: An automaton recognizing L is converted into one for \overline{L} .

• We simply intechange accepting and non-accepting states.

• Theorem. If $L \subseteq \Sigma^*$ is recognized then so is $\overline{L} = \Sigma^* - L$.

The proof is another example of manipulating automata: An automaton recognizing L is converted into one for \overline{L} .

• We simply intechange accepting and non-accepting states. For example, the automaton recognizing $\{w\sigma\sigma \mid w \in \Sigma^*, \sigma \in \Sigma\}$

which accepts the strings of length < 2 and the strings ending with two different letters.

Application: Additional languages recognized

- Suppose M recognizes $\{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w) \mod 2\}$.
- Then swapping states in M yields an automaton recognizing

 $\{w \in \{a,b\}^* \mid \#_a(w) \neq \#_b(w) \mod 2\}$

Application: Showing a language not-recognized

• Show that $L = \{w \in \{a, b\}^* \mid \#_a(w) \neq \#_b(w)\}$ is not recognized.

Application: Showing a language not-recognized

- Show that $L = \{w \in \{a, b\}^* \mid \#_a(w) \neq \#_b(w)\}$ is not recognized.
- Clipping doesn't work!

Application: Showing a language not-recognized

- Show that $L = \{w \in \{a, b\}^* \mid \#_a(w) \neq \#_b(w)\}$ is not recognized.
- Clipping doesn't work!
- Use Clipping to show that the complement $ar{L}=\{w\in\{{\tt a},{\tt b}\}^*~|~\#_a(w)=\#_b(w)\}$ i

is not recognized.

• Conclude: L is not recognized, or else \overline{L} would be.

Combining two automata

Let $\Sigma = \{a, b\}$.

• Suppose M_3 recognizes $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3)\}$

Combining two automata

Let $\Sigma = \{a, b\}$.

• Suppose M_3 recognizes $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3)\}$

and

• M_2 recognizes $L_2 = \{ w \in \Sigma^* \mid \#_b(w) = 0 \mod (2) \}$.

 $\#_b w = 0 \mod 2$

Combining two automata

Let $\Sigma = \{a, b\}$.

• Suppose M_3 recognizes $L_3 = \{w \in \Sigma^* \mid \#_a(w) = 0 \mod (3)\}$

and

• M_2 recognizes $L_2 = \{ w \in \Sigma^* \mid \#_b(w) = 0 \mod (2) \}$.

Parallel programming is tricky, but here we have a special form of parallelism: the two processors may work in tandem, because they read the same input one symbol at a time.

Two automata collaborating

F23

Conjuctive pairing

• Accepting when both accept:

Disjunctive pairing

• Accepting when at least one automaton accepts:

• Given automata $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q', s', A', \delta')$ consider a *coupling*:

- Given automata $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q', s', A', \delta')$ consider a *coupling*:
 - States are pairs $\langle q, q' \rangle$ where $q \in Q$ and $q' \in Q'$. I.e. the set of states is $Q \times Q'$.
 - The initial state is $\langle s, s' \rangle$.

- Given automata $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q', s', A', \delta')$ consider a *coupling*:
 - States are pairs $\langle q, q' \rangle$ where $q \in Q$ and $q' \in Q'$. I.e. the set of states is $Q \times Q'$.
 - The initial state is $\langle s, s' \rangle$.
 - ► The transitions are $\langle q, q' \rangle \xrightarrow{\sigma} \langle p, p' \rangle$ where $q \xrightarrow{\sigma} p$ in M and $q' \xrightarrow{\sigma} p'$ in M'.

- Given automata $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q', s', A', \delta')$ consider a *coupling*:
 - States are pairs $\langle q, q' \rangle$ where $q \in Q$ and $q' \in Q'$. I.e. the set of states is $Q \times Q'$.
 - The initial state is $\langle s, s' \rangle$.
 - ► The transitions are $\langle q, q' \rangle \xrightarrow{\sigma} \langle p, p' \rangle$ where $q \xrightarrow{\sigma} p$ in M and $q' \xrightarrow{\sigma} p'$ in M'.
 - In a **conjunctive product** the set of accepting states is $A \times A'$ (both automata accept).

- Given automata $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q', s', A', \delta')$ consider a *coupling*:
 - States are pairs $\langle q, q' \rangle$ where $q \in Q$ and $q' \in Q'$. I.e. the set of states is $Q \times Q'$.
 - The initial state is $\langle s, s' \rangle$.
 - ► The transitions are $\langle q, q' \rangle \xrightarrow{\sigma} \langle p, p' \rangle$ where $q \xrightarrow{\sigma} p$ in M and $q' \xrightarrow{\sigma} p'$ in M'.
 - In a **conjunctive product** the set of accepting states is $A \times A'$ (both automata accept).
 - In a **disjunctive product** the set of accepting states is $(A \times Q') \cup (Q \times A')$ (at least one automaton accepts).

Some applications

• $L = \{ a wz \mid w \in \Sigma^* \}$

Some applications

- $\bullet \, L = \{ \text{ a} \, w \text{z} \ \mid \ w \in \Sigma^* \, \}$
- $\{a^pb^q \mid p \text{ is odd }\}.$

Some applications

- $\bullet L = \{ a wz \mid w \in \Sigma^* \}$
- $\{a^pb^q \mid p \text{ is odd }\}.$
- An automaton over {a,b,c} recognizing the string that miss at least one letter.

Nondeterministic Automata

Capturing operationally language concatenation

- We verified that combining recognized languages by union, intersection, and difference, yields recognized languages.
- What about concatenation? If Suppose we have two automata M_0 and M_1 . Construct automaton M such that

$$\mathcal{L}(M) = \mathcal{L}(M_0) \cdot \mathcal{L}(M_1)$$

F23

Trying to make this work

• Problem: Can't coalesce a and σ_1 :

They might have conflicting transitions rules:

And computation might proceed back and forth between M_0 and M_1 .

Spontaneous transitions

- How about allowing spontaneous transitions between states,
 - $q \xrightarrow{p}$ without any symbol read.
- To streamline notation we can think of such transitions triggered by $\varepsilon: q \xrightarrow{\epsilon} p$.

• We call these *epsilon-transitions*, in analogy to our previous notation: $q \xrightarrow{w} p$ for a combined transition from state q to pobtained by reading the string w. F23

Nondeterminism

• ε-transitions yield "ambiguous" computation: multiple transitions for a state+symbol may be created:

- We consider relaxing the requirements that each transition rule is a function (univalent and total) and triggered by reading a letter.
- This relaxation does not correspond to normal hardware behavior, but:

- We consider relaxing the requirements that each transition rule is a function (univalent and total) and triggered by reading a letter.
- This relaxation does not correspond to normal hardware behavior, but:
 - 1. The notion is important in other computation models;

- We consider relaxing the requirements that each transition rule is a function (univalent and total) and triggered by reading a letter.
- This relaxation does not correspond to normal hardware behavior, but:
 - 1. The notion is important in other computation models;
 - 2. It can be simulated by ε -transitions, which do model natural phenomena; and

- We consider relaxing the requirements that each transition rule is a function (univalent and total) and triggered by reading a letter.
- This relaxation does not correspond to normal hardware behavior, but:
 - 1. The notion is important in other computation models;
 - 2. It can be simulated by ε -transitions, which do model natural phenomena; and
 - 3. It is algorithmically natural, as we shall now see.

AUTOMATA AS ON-LINE ALGORITHMS

Automata as on-line algorithms

- Automata can be viewed as efficient real time algorithms, which move pointers (or "tokens") around.
- An automaton to recognize the presence of ababb:

• It is visualized by moving a token for the state position.

<u>a</u>bababba

a <u>b</u> a b a b b a

a b <u>a</u> b a b b a

a b a <u>b</u> a b b a

a b a b <u>a</u> b b a

a b a b a <u>b</u> b a

a b a b a b <u>b</u> a

a b a b a b <u>b</u> a

a b a b a b b <u>a</u>

abababba _

An alternative, with token rules relaxed.

An alternative, with token rules relaxed.

An alternative, with token rules relaxed.

• Next states marked are 1,2 and 4. Etc.

Non-deterministic automata

A non-deterministic automaton over Σ :

- Finite (non-empty) set Q of states
- Start state s and accepting states $A \subseteq Q$
- Transition mapping: $\delta: (Q \times \Sigma_{\epsilon}) \Rightarrow Q$
- Here $\Sigma_{\epsilon} = \Sigma \cup \{\varepsilon\}$
- Still using the notation $q \xrightarrow{\sigma} p$ for $\langle q, \sigma, p \rangle \in \delta$
- But $q \stackrel{\epsilon}{\rightarrow} p$ is also an option.

Computation state-traces

• If $w = \sigma_1 \cdot \sigma_2 \cdots \sigma_n$ where $\sigma_i \in \Sigma_{\varepsilon}$, and $q \xrightarrow{\sigma_1} r_1 \xrightarrow{\sigma_2} r_2 \cdots r_{n-1} \xrightarrow{\sigma_n} p$ then $q \xrightarrow{w} p$.

Computation state-traces

• If $w = \sigma_1 \cdot \sigma_2 \cdots \sigma_n$ where $\sigma_i \in \Sigma_{\varepsilon}$, and $q \xrightarrow{\sigma_1} r_1 \xrightarrow{\sigma_2} r_2 \cdots r_{n-1} \xrightarrow{\sigma_n} p$ then $q \xrightarrow{w} p$.

• The sequence of states

 $q r_1 r_2 \cdots r_{n-1} p$

as above is a **state-trace** of the NFA for input w.

Generative definition of $q \xrightarrow{w} p$

- **Base.** $q \stackrel{\epsilon}{\rightarrow} q$ for all $q \in Q$.
- Step. If $q \stackrel{\sigma}{\to} p$ by the NFA's transition, and $p \stackrel{w}{\Longrightarrow} r$ has been generated already (where $\sigma \in \Sigma_{\epsilon}$) then $q \stackrel{\sigma \cdot w}{\Longrightarrow} r$.

Acceptance by an NFA

• M accepts a string $w \in \Sigma^*$ if $s \xrightarrow{w} A$.

Acceptance by an NFA

- *M* accepts a string $w \in \Sigma^*$ if $s \xrightarrow{w} A$.
- This dfn is like for DFAs, but now
 - 1. A string w is accepted if there is **some** state-trace for $s \xrightarrow{w} A$.
 - 2. A "lucky trace" may include ε -transitions.

Acceptance by an NFA

- *M* accepts a string $w \in \Sigma^*$ if $s \xrightarrow{w} A$.
- This dfn is like for DFAs, but now
 - 1. A string w is accepted if there is **some** state-trace for $s \xrightarrow{w} A$.
 - 2. A "lucky trace" may include ε -transitions.
- The *language recognized* by M is the set of accepted strings.

Example: $\mathcal{L}(a^*b^*c^*)$

 $a^*b^*a^*b^* \quad \bigcup b^*a^*b^*a^*$

>abb

a>bb

ab>b

So the number of states is *reduced* with each step.

DFA-RECOGNIZED = NFA-RECOGNIZED

DFA-RECOGNIZED = NFA-RECOGNIZED

• DFA-RECOGNZD \implies NFA-RECOGNZD:

TRIVIAL: Every DFA is an NFA

• NFA-RECOGNZD \implies DFA-RECOGNZD...

Converting NFAs to equivalent DFAs

• Mark as "on" the states reachable before reading any input:

• This setup is the "start state" of our deterministic automaton.

• On rreading **a** the NFA can be in one of possible states:

• Proceed to explore the set of reachable states of N :

- Complete the transition for the final setup.
- The setups are the states of the new, deterministic, automaton.
- A setup is *accepting* if it contains an accepting state of N:

The resulting DFA

• Each state of the DFA obtained is a setup of N 's states:

• We have constructed from an NFA N an equivalent DFA M.

Another example

Another example

Another example

An exponential explosion

- If N has n states, then the DfA obtained may have up to 2^n states.
- Is that really necessary? Could we have a more efficient construction?
- No! Consider the language of strings over {a,b,c} that miss at least one letter.
- The smallest DFA recognizing it is

• But here is a 4-state NFA recognizing it:

- For "missed-som" language over the Latin alphabet the smalles recognizing automaton has $2^{26} > 67$ million states!
- But here is a 27 state NFA recognizing it:

	Descriptive		Operational
Narrow	STRICT-REG		DFA
Broad	REGULAR	\Rightarrow	NFA

Reminder: Generating the regular languages

- 1. Every finite language is regular.
- 2. If L, K are regular, then so are their union, intersection, complement, concatenation, star, and plus.
 - We show that all regular languages are recognized by NFAs (and therefore by DFAs).
- The proof is by induction on the generative dfn of the regular languages.

Finite languages are recognized

• For example $\{01, 10, 111\}$ is recognized by

• We know that it suffices to take the finite languages with 0 or 1 elements, each a string of size 0 or 1.

By this construction, what would be the NFA recognizing $\{0\}$? $\{\varepsilon\}$? \emptyset ?

Complement of recognized is recognized

- We have seen:
 - A language recognized by an NFA is recognized by a DFA M, so its complement is recognized by the DFA \overline{M} obtained by replacing in M acceptance and non-acceptance.
- Note: This idea doesn't work for NFAs:

NFA N accepts a and so does \overline{N} .

The \cup and \cap of recognized is recognized

• We already showed this for DFAs.

The \cup and \cap of recognized is recognized

- We already showed this for DFAs.
- An alternative approach for union:

Given $L_0 = \mathcal{L}(M_0)$ and $L_1 = \mathcal{L}(M_1)$, here's an NFA M that recognizes $L_0 \cup L_1$

- Once we have closure under union and complement, we obtain closure under intersection:
- 3-If L and K are both recognized, then so are \overline{L} and \overline{K} , and therefore $\overline{L} \cup \overline{K}$, as well as its complement which is $= L \cap K$.

- Once we have closure under union and complement, we obtain closure under intersection:
- We have $\overline{L \cap K} = \overline{L} \cup \overline{K}$, so by complementing both sides we get $L \cap K = \overline{L} \cup \overline{K}$
- 3-If L and K are both recognized, then so are \overline{L} and \overline{K} , and therefore $\overline{L} \cup \overline{K}$, as well as its complement which is $= L \cap K$.

- Once we have closure under union and complement, we obtain closure under intersection:
- We have $\overline{L \cap K} = \overline{L} \cup \overline{K}$, so by complementing both sides we get $L \cap K = \overline{L} \cup \overline{K}$
- 3-If L and K are both recognized, then so are \overline{L} and \overline{K} , and therefore $\overline{L} \cup \overline{K}$, as well as its complement which is $= L \cap K$.

Concatenation of recognized is recognized

• Given $L_0 = \mathcal{L}(M_0)$ and $L_1 = \mathcal{L}(M_1)$,

here's an NFA M that recognizes their concatenagion:

Plus and star of recognized are recognized

• Given $L = \mathcal{L}(M)$ here's an NFA M^+ recognizing L^+ :

• Since $L^* = L^+ \cup \{\varepsilon\}$ we conclude that L^* is also recognized.

Graphs with reg-exps as labels

 \star Starting with the given NFA,

Collapse labels: eg, replace $q \stackrel{a,b,\epsilon}{\to} p$ by $q \stackrel{a\cup b\cup \epsilon}{\to} p$

 \star Create a new start state s_0

with an ε -transition to the original start state of N.

* Create a new state a_0 as the only accepting state, and create an ε -transition from each accepting state of N to a_0 .

A working example

 $\mathcal{L}(N) = \mathcal{L}(\mathbf{b}^* \cdot \mathbf{a} \cdot (\mathbf{b} \cup (\mathbf{a} \cdot \mathbf{b}^* \cdot \mathbf{a}) \cdot (\mathbf{b})^* \cdot (\mathbf{a}))^*)$

Another example

Yet another example

Summary

- The collection of DFA-recognized languages is closed under set operations (complement and product constructions)
- A language is NFA-recognized IFF it is DFA-recognized (Powerset construction)
- The collection of recognized languages is closed under all set/language operations.
- Therefore every regular language is recognized.
- Every recognized language is regular (state-elimination construction)

Two-way DFAs

Additional deterministic read-only algorithms

- Consider the language *L* over [a z] of words that include all letters. No English word is in *L*, but probably every book.
- *L* is a regular language: it is the intersection of the 26 languages $\{w \mid w \text{ has } \sigma\}$ for $\sigma = a, b...$
- The smallest DFA that recognizes L has $> 2^{26} > 67,000,000$ states.
- The smallest NFA recognizing L has 27 states.
- Is there a *deterministic* <u>algorithm</u> that does it with a manageable number of states?

A deterministic algorithm for the all-letters problem

- Algorithm: Scan for each digit separately, and repeat.
- This cannot be done if we only read forward! The cursor would have to be scrolled back (or repositioned).
- SO let's imagine a device that behaves just like an automaton, but can move the cursor both ways.

Some challenges

- Symbol read determines not only next state, but also next move: forward or backward.
- To detect the ends of the input string it must have end-markers, say > (the *gate*) on the left, and ⊔ (the *blank*) on the right.
- Termination is not by reading through, but needs to be declared by a final accept state. (We need not guarantee termination.)

Two-way automata

- A **two-way automaton (2DFA)** over an alphabet Σ :
 - Finite set of states Q
 - $s \in Q$, the *initial state*
 - $a \in S$, the accepting state
 - Transition partial-function: $\delta: Q \times \Gamma \rightarrow Q \times Act$ where $\Gamma = \Sigma \cup \{>, \sqcup\}$ and $Act = \{+, -\}$.

• Write $q \stackrel{\sigma(\alpha)}{\rightarrow} p$ for $\delta(q,\sigma) = \langle p, \alpha \rangle$

Two-way automata

- $\delta: Q \times \Gamma \rightarrow Q \times Act$ where $\Gamma = \Sigma \cup \{>, \sqcup\}$ and $Act = \{+, -\}$.
- Write $q \stackrel{\sigma(lpha)}{
 ightarrow} p$ for $\delta(q,\sigma) = \langle p, lpha
 angle$

The intent:

- Γ end-markers > (gate) and \sqcup (blank) added to Σ
- Example: Input 001201 appears as >001201 ⊔
- The **actions** + and stand for "step forward" and "step back."

Example: The strings using all of a,b,c

 With 26 in place of 3 we'd have 53 states, as opposed to > 67,000,000 states in the smallest DFA!

Operation of 2DFAs: configurations

- For DFAs we could generate the relation $p \xrightarrow{w} q$ inductively, as a function of w.
- This is no longer the case for 2DFAs: here we *must* account for the cursor position and keep record of the entire input for future use.
- A *cursored-string* over Σ is a Σ -string with one underlined symbol-position.
- A configuration (cfg) is a pair (q, \check{w}) where
 - $\star \boldsymbol{q}$ is a state, and
 - $\star \check{\boldsymbol{w}}$ is a cursored-string,

That is, (state, cursored-string).

- Example: (q, >0101<u>1</u>00⊔)
- The *initial cfg for input w* is the cfg $(s, \geq w \sqcup)$.

F23

The YIELD relation

• The **Yield** relation \Rightarrow (or \Rightarrow_M when it matters which M) is obtained by: ٠ * If $q \stackrel{\gamma(+)}{\rightarrow} p$ then $(q, u\gamma\tau v) \Rightarrow (p, u\gamma\tau v)$ * If $q \stackrel{\gamma(-)}{\rightarrow} p$ then $(q, u\tau\gamma v) \Rightarrow (p, u\tau\gamma v)$ * Nothing else • If the given cfg is (q, 011010), and $q \stackrel{0(+)}{\rightarrow} p$, then the transition above does not apply. The same holds when invoking a transition $q \stackrel{0(-)}{\rightarrow} p$ (*q*, <u>0</u>11010). for a configuration with a cursor at the head of the string, such as

Traces, acceptance, recognition

- A cfg $c = (q, u\gamma v)$ is **terminal** if no transition applies (no yield). It is a **accepting** its state is accepting state **a**.
- A *trace* of M for input w is a sequence of

 $c_0 \Rightarrow c_1 \Rightarrow \cdots$

where c_0 is initial for w, and either

- 1. the sequence is infinite; or
- 2. the sequence is finite, and its last cfg is terminal.
- The trace is *accepting* if it is finite and its last cfg is accepting.
- *M* accepts $w \in \Sigma^*$

if it its trace for input w is accepting.

• The language recognized by M is $\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$ F23

Example

Accepting trace for trace of M above for w = bcab:

 $(1, \geq bcab \sqcup)$ $\Rightarrow (2, \geq \underline{b}cab \sqcup)$ $\Rightarrow (2, \geq b\underline{c}ab \sqcup)$ $\Rightarrow (2, \geq b\underline{c}ab \sqcup)$ $\Rightarrow (2, \geq bc\underline{a}b \sqcup)$ $\Rightarrow (2, \geq bc\underline{a}b \sqcup)$ $\Rightarrow (6, \geq \underline{b}cab \sqcup)$ $\Rightarrow (6, \geq b\underline{c}ab \sqcup)$ $\Rightarrow (6, \geq b\underline{c}ab \sqcup)$ $\Rightarrow (6, \geq b\underline{c}ab \sqcup)$ $\Rightarrow (1, \geq b\underline{c}ab \sqcup)$

F23

$(1, \geq bcab \sqcup)$

$(2, \geq \underline{b}cab \sqcup)$

$(2, >b\underline{c}ab\sqcup)$

$(2, >bc\underline{a}b\sqcup)$

(3, >bcabu)

$(3, \geq \underline{b}cab \sqcup)$

$(3, \geq bcab \sqcup)$

$(4, \geq \underline{b}cab \sqcup)$

$(5, \geq bcab \sqcup)$

$(6, \geq \underline{b}cab \sqcup)$

$(6, >b\underline{c}ab\sqcup)$

$(7, \geq \underline{b}cab \sqcup)$

Two-way automata recognize just regular languages!

- Yet another characterization of regular languages!
- Adding nondeterminism to 2DFA still recognizes just regular languages!
- We still avoid extensible memory, so this is not a big surprise.

Proof outline

- DFA recognize languages with finitely many residues L/w.
- For each w a finite amount of info suffices to decide $x \in L/w$.
- For DFA the info is the state q reached: $s \xrightarrow{w} q$.
- For 2DFA the scan might cross out of w and into x. back in, and then out again into x.
- This is the info needed about *w*:
 If the reading cross back into *w* in a state
- The extra info:

the pairs (*in*, *out*) of states s.t. crossing back into *w* in state *i*n leads to crossing back out in state *o*ut.

Language recognized is regular!

- Say that $\langle p_0, p_1 \rangle$ is a *back-crossing pair*.
- L/w is determined by q reached by reading w, plus the set of back-crossing pairs for w: if w, w' reach the same state, and have the same crossing pairs, then L/w = L/w'.

• For M with k states there are k^2 potential back-crossing pairs,

and so 2^{k^2} possible descriptions of the situation at the border.

• Finitely many residues, albeit a lot, but still recognizing a regular language!

REGULARITY

• Big equivalence of language properties, relating definitional to structural as well as computational properties.

• Big equivalence of language properties, relating definitional to structural as well as computational properties.

Regular \iff Strictly-Regular

- \iff DFA-recognized
- \iff 2DFA-recognized
- \iff NFA-recognized
- \iff has finitely many residues
- Another important characterization of regular languages is related to our automata-construction method.

- Big equivalence of language properties, relating definitional to structural as well as computational properties.
 - Regular \iff Strictly-Regular
 - \iff DFA-recognized
 - \iff 2DFA-recognized
 - \iff NFA-recognized
 - \iff has finitely many residues
- Another important characterization of regular languages is related to our automata-construction method.
- One disappointment: It's all about languages and acceptors. What about functions and transducers?

- Big equivalence of language properties, relating definitional to structural as well as computational properties.
 - Regular \iff Strictly-Regular
 - \iff DFA-recognized
 - \iff 2DFA-recognized
 - \iff NFA-recognized
 - \iff has finitely many residues
- Another important characterization of regular languages is related to our automata-construction method.
- One disappointment: It's all about languages and acceptors. What about functions and transducers?

FINITE STATE TRANSDUCERS

- In a 2DFA the transition mapping indicates a choice of action: step forward or backward.
 - In a deterministic *finite-state transducer (DFT)* the choice of action is an output string to be appended to an output device.

- In a 2DFA the transition mapping indicates a choice of action: step forward or backward.
 - In a deterministic *finite-state transducer (DFT)* the choice of action is an output string to be appended to an output device.
- •
- Examples.
 - Double zeros: Input alphabet: 0,1.
 The DFS outputs 00 for 0 and 1 for 1.

- In a 2DFA the transition mapping indicates a choice of action: step forward or backward.
 - In a deterministic *finite-state transducer (DFT)* the choice of action is an output string to be appended to an output device.
- ___
- Examples.
 - Double zeros: Input alphabet: 0,1.
 The DFS outputs 00 for 0 and 1 for 1.
 - Input alphabet: English words
 - Output: phonetic text.
 - DFS outputs for each word its pronunciation.

- In a 2DFA the transition mapping indicates a choice of action: step forward or backward.
 - In a deterministic *finite-state transducer (DFT)* the choice of action is an output string to be appended to an output device.
- •
- Examples.
 - Double zeros: Input alphabet: 0,1.
 The DFS outputs 00 for 0 and 1 for 1.
 - Input alphabet: English words
 - Output: phonetic text.

DFS outputs for each word its pronunciation.

Input alphabet: Latin.
 Output: Blanks replaced by ASCII < newline >.

Formal definition of DFTs

• A deterministic finite-state transducer (DFT) consists of

• Two alphabets Σ and Γ (possibly the same);

Formal definition of DFTs

- A deterministic finite-state transducer (DFT) consists of
 - Two alphabets Σ and Γ (possibly the same);
 - ► A finite non-empty set Q of states;
 - An *initial* (or *"start"*) state $s \in Q$;

Formal definition of DFTs

- A deterministic finite-state transducer (DFT) consists of
 - Two alphabets Σ and Γ (possibly the same);
 - ► A finite non-empty set Q of states;
 - An *initial* (or *"start"*) state $s \in Q$;
 - A partial-function $\delta: Q \times \Sigma \rightharpoonup \Gamma^* \times Q$.

Double zeros: The input is a binary string.
 Output: 00 for each 0 read and 1 for 1.

▶ Delete zeros: The input is a binary string.
 Output: *ε* for each 0 read and 1 for 1.

▶ Delete duplicate letters: The input is binary.
 Output: Remove duplicates, e.g. 001110 → 010.

Computing over streams

• A Given a set S a stream over Σ (or Σ -stream) is function $f: \mathbb{N} \to S$, i.e. an infinite sequence a_0, a_1, \ldots where $a_i \in S$. (Alternative names: ω -strings, ω -words.)

Computing over streams

- A Given a set S a stream over Σ (or Σ -stream) is function $f : \mathbb{N} \to S$, i.e. an infinite sequence a_0, a_1, \ldots where $a_i \in S$. (Alternative names: ω -strings, ω -words.)
- Example, every real number $a \in [0..1]$ has a decimal expansion as a stream $.a_0a_1a_2...$ over the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Computing over streams

- A Given a set S a stream over Σ (or Σ -stream) is function $f: \mathbb{N} \to S$, i.e. an infinite sequence a_0, a_1, \ldots where $a_i \in S$. (Alternative names: ω -strings, ω -words.)
- Example, every real number $a \in [0..1]$ has a decimal expansion as a stream $.a_0a_1a_2...$ over the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 - E.g. 1 is .9999..., $\sqrt{2}/2$ is .70710678118... and $\pi/10$ is .3141592653...

- Running DFT's on streams is obvious, since termination plays no direct role in their running. But what about DFA's?
 - How is an input stream to be "accepted"?

- Running DFT's on streams is obvious, since termination plays no direct role in their running. But what about DFA's? How is an input stream to be *"accepted"*?
- How about considering input stream α to be "accepted" by M if the execution of M on α has an accepting state?

- Running DFT's on streams is obvious, since termination plays no direct role in their running. But what about DFA's? How is an input stream to be *"accepted"*?
- How about considering input stream α to be "accepted" by M if the execution of M on α has an accepting state?
- Bad idea: It goes counter to the accepance of strings!

- Running DFT's on streams is obvious, since termination plays no direct role in their running. But what about DFA's? How is an input stream to be *"accepted"*?
- What about M being in an accepting state from a certain step and on?

- Running DFT's on streams is obvious, since termination plays no direct role in their running. But what about DFA's? How is an input stream to be *"accepted"*?
- What about M being in an accepting state from a certain step and on?
- Also bad:

Acceptance is then determined by a prefix of the input.

- Running DFT's on streams is obvious, since termination plays no direct role in their running. But what about DFA's? How is an input stream to be *"accepted"*?
- The right idea (Büchi, 1962):
 - Accept an input if its state-trace is in a "good" state infinitely many times.

Here's a DFA.

Here's a DFA.

► What language does it recognize?

Here's a DFA.

- What language does it recognize?
- $((a \cup b) \cdot b^* \cdot a)^*$.

Here's a DFA.

- What language does it recognize?
- $((a \cup b) \cdot b^* \cdot a)^*$.

What streams are accepted?

Here's a DFA.

- What language does it recognize?
- $((a \cup b) \cdot b^* \cdot a)^*$.

What streams are accepted?

With infinitely many a's.

What streams are accepted?

- What streams are accepted?
- ► Where every **a** is followed by some **b**.

► What stream are accepted?

- What stream are accepted?
- ► With finitely many a's.