
MATHEMATICAL MACHINES

Computing

• Most computing consists in actions that modify data:

◮ The data is textual

◮ The actions are discrete: well-defined and single-step.

Computing

• Most computing consists in actions that modify data:

◮ The data is textual

◮ The actions are discrete: well-defined and single-step.

• The data is textual because discrete data has textual representation.

(Though not all computing is discrete, eg Analog Computing is not.)

F23 2

Acceptors

• What do algorithms do?

Acceptors

• What do algorithms do?

• Two main options: acceptors and transducers.

• An acceptor is an algorithm that takes a textual input

(representing input data)

and upon termination may or may not issue accept as output.

Acceptors

• What do algorithms do?

• Two main options: acceptors and transducers.

• An acceptor is an algorithm that takes a textual input

(representing input data)

and upon termination may or may not issue accept as output.

• An acceptor that terminates for all input is a decider.

• When a decider terminate for an input without accepting

we say that it rejects the input.

• A decider is thus a solution for a decision problem.

F23 3

Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

• A transducer computes a partial-function

(i.e. univalent mapping).

Transducers

• A transducer is an algorithm that takes strings as input,

and upon termination yields a string as output.

• A transducer computes a partial-function

(i.e. univalent mapping).

• An acceptor can be viewed as a transducer

with accept as the only possible output;

and a decider as a total transducer with accept and reject

as the only possible outputs.

F23 4

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

• We start with the automaton,

an acceptor with no external memory that reads its input sequentially!

The simplest devices

• What is the simplest possible mathematical machine:

◮ Transducer, or acceptor?

◮ Fixed, or expandable external memory?

◮ Random-access, or sequential reading?

• We start with the automaton,

an acceptor with no external memory that reads its input sequentially!

• This model captures the behavior of

many familiar physical devices.

Let’s look at a couple of very simple ones.

F23 5

The electric switch

toggle

toggle

• The position of the switch is inverted

after an odd number of toggles,

and remains unchanged after an even number.

F23 6

The ceiling fan

• A ceiling fan with manual cord-controlled:

The speed is incremented (mod 2) with each pull.

0

1 2

pull

pull

pull

F23 7

The toll-turnstile

• The turnstile can be in one of two states: locked or unlocked.

• The action insert token

changes the state locked into unlocked.

• The action push and pass

changes the state unlocked into locked.

F23 8

States

• A core concept of mathematical machines is the state.

• E.g. a state of an elevator might consist of

its position, motion (up, down, rest), upcoming destinations, time idle, etc.

• States are often labeled, for convenience, but don’t have to be.

States

• A core concept of mathematical machines is the state.

• E.g. a state of an elevator might consist of

its position, motion (up, down, rest), upcoming destinations, time idle, etc.

• States are often labeled, for convenience, but don’t have to be.

• Given a practical problem, deciding what are the relevant “states”

often requires careful analysis.

• But once a mathematical model is distilled,

the states become an abstraction,

which we can represent graphically, e.g. by a circle.

F23 9

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

• A pair of states related by a transition-rule aaa is an action of aaa.

Transitions

• A transition-rule

is a mapping from states to states. We label each transition-rule by an

identifier.

• We focus for now on transitions that are functions,

i.e. univalent and total.

• A pair of states related by a transition-rule aaa is an action of aaa.

• For the toll-turnstile and the stopwatch

the transition-rules are determined by certain human actions.

F23 10

Textual form of transitions

• Since all finite discrete structures have simple textual codes,

we can assume that:

1. All input data is textual

2. Each transition is coded by a single reserved letter

3. The action of the transition labeled aaa

is the reading (i.e. consumption) of aaa,

much like the movement of a cursor.

bracadabraa

bracadabra

a

F23 11

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

• So a transition-system can be represented as a labeled di-graph:

The nodes are the states,

and the the actions are labeled edges.

A transition system

• A transition-system consists of a set of states

and transition-rules over them.

• So a transition-system can be represented as a labeled di-graph:

The nodes are the states,

and the the actions are labeled edges.

• When all transition-rules are functions,

there is exactly one edge for each state and action:
a

a

a

b

bb

X Y7

TT

F23 12

Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition “toggle” by the letter aaa ,

and label the states as 1 and 2:

1 2

a

a

Example: Detecting an odd number of actions

• Consider the switch.

We represent the transition “toggle” by the letter aaa ,

and label the states as 1 and 2:

1 2

a

a

• The device reads strings of aaa’s,

and with each letter read it switch state.

• Reading odd number of aaa ’s leads to the opposite state.

• The physical nature of the toggle action is no longer present,

and is indeed irrelevant.

F23 13

Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1

a

a

2

Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1

a

a

2

Where do the strings of length 1,3,... odd nnn lead?

Start state and accepting states

• We intend to start at a particular state,

so we single out one state as the initial (starting) state,

indicated graphically by an incoming arrow.

1 2

a

a

• The strings of odd length leads to state 2,

so to accept just those strings we’d set 2

as the unique accepting state.

• We do this graphically by doubling the contour of state 2.

• In general there can be several accepting states.

F23 14

Initial state can be accepting

• It is possible that the initial state is accepting.

• To accept the strings of even length

set 1 as the only accepting state:

1 2

a

a

F23 15

The device in action

• Device accepting odd length:

2

2

2

2

READING

aa

aaa

a

a

a

1

a

a

1

a

a

1

a

a

1
string accepted IFF has odd
aaa accepted

 #a

F23 16

The device in action

• Device accepting even length:

2

2

2

2

READING

aa

aaa

a

a

a

a

a

a

a

a

a

1

1

1

1
string accepted IFF has even
aaa not accepted

#a

F23 17

Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

◮ A non-empty finite set QQQ of objects called states .

◮ One state s ∈ Qs ∈ Qs ∈ Q singled out as initial-state (or initial-state).

◮ A set A ⊆ SA ⊆ SA ⊆ S of states singled out as accepting states .

Definition of automata

• An automaton, aka deterministic finite automaton (DFA)

consists of

◮ An alphabet ΣΣΣ .

◮ A non-empty finite set QQQ of objects called states .

◮ One state s ∈ Qs ∈ Qs ∈ Q singled out as initial-state (or initial-state).

◮ A set A ⊆ SA ⊆ SA ⊆ S of states singled out as accepting states .

◮ A transition function δ : Q × Σ → Qδ : Q × Σ → Qδ : Q × Σ → Q.

Given state q ∈ Qq ∈ Qq ∈ Q and input-symbol σσσ
δ(q, σ)δ(q, σ)δ(q, σ) is the new (target) state.

• We also write q σ→ pq σ→ pq σ→ p for δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p.

Note: ppp may be the same as qqq.

F23 18

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

• Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

Comments on the definition

• Formally, MMM above is a tuple (Σ, Q, s, A, δ)(Σ, Q, s, A, δ)(Σ, Q, s, A, δ) of its components.

• MMM is over the alphabet ΣΣΣ.

We don’t mention ΣΣΣ when irrelevant or clear.

• Automaton is of Greek origin:

auto = self, matos = move.

Plural: automata or automatons. Automata is never singular.

• Since automata play a central role,

they’ve acquired over time several alternative names, in particular deter-

ministic finite automaton (DFA).which we’ll frequently use.

F23 19

Some practical applications of automata

Textual applications

• Pattern matching, search engines

• Lexical analysis for compilation

• Data compression

• Automatic translation

Some practical applications of automata

Software systems

• Cyber-security

• System planning

• Information streaming

• Bio-informatics

Some practical applications of automata

Hardware systems

• Circuit design

• Robotics

Some practical applications of automata

Verification

• System modeling

• Verification of communication protocols

• Verification of embedded systems

• Model checking

F23 20

Example of a formal description

• Here’s an automaton MMM over Σ = {a,b}Σ = {a,b}Σ = {a,b} that accepts strings

with an odd number of aaa’s (and no others).

a

a

1 2

b b

Example of a formal description

• Here’s an automaton MMM over Σ = {a,b}Σ = {a,b}Σ = {a,b} that accepts strings

with an odd number of aaa’s (and no others).

a

a

1 2

b b

• Its formal definition: M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) where

⋆ Σ = {a,b}Σ = {a,b}Σ = {a,b}
⋆ Q = {1, 2}Q = {1, 2}Q = {1, 2}
⋆ s = 1s = 1s = 1

⋆ A = {2}A = {2}A = {2}

F23 21

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

• Computation terminates iff the end of the input string is reached.

Operational semantics: How automata function

• Intuitively, an automaton reads successive input symbols

starting with the initial state, and

updating the state according to the transition function δδδ.

• The steps of an automaton change just the state,

and the implicit move to the next input symbol.

• Since the transition mapping of an automaton is a function,

there is exactly one next-state for each symbol read.

• Computation terminates iff the end of the input string is reached.

• The essence of a DFA is in its being an online acceptor .

F23 22

Traces

• If w = σ1 · · · σnw = σ1 · · · σnw = σ1 · · · σn then we write q σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ p
to state that

q σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ p for some states r1, . . . , rn−1r1, . . . , rn−1r1, . . . , rn−1.

Traces

• If w = σ1 · · · σnw = σ1 · · · σnw = σ1 · · · σn then we write q σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ pq σ1 · · · σnσ1 · · · σnσ1 · · · σn−−−−−→ p
to state that

q σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ pq σ1σ1σ1−→ r1
σ2σ2σ2−→ r2 · · · rn−1

σnσnσn−→ p for some states r1, . . . , rn−1r1, . . . , rn−1r1, . . . , rn−1.

• The sequence of states q, r1, r2, · · · rn−1, pq, r1, r2, · · · rn−1, pq, r1, r2, · · · rn−1, p

is a state-trace of the automaton.

F23 23

Inductive definition of traces

• The ternary relation q w→ pq w→ pq w→ p can be defined inductively,

by recurrence on www :

◮ q εεε−→ qq εεε−→ qq εεε−→ q

◮ If δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p that is q σ uσ uσ u−−→ rq σ uσ uσ u−−→ rq σ uσ uσ u−−→ r,

and p uuu−→ rp uuu−→ rp uuu−→ r then p σ→ qp σ→ qp σ→ q.

Inductive definition of traces

• The ternary relation q w→ pq w→ pq w→ p can be defined inductively,

by recurrence on www :

◮ q εεε−→ qq εεε−→ qq εεε−→ q

◮ If δ(q, σ) = pδ(q, σ) = pδ(q, σ) = p that is q σ uσ uσ u−−→ rq σ uσ uσ u−−→ rq σ uσ uσ u−−→ r,

and p uuu−→ rp uuu−→ rp uuu−→ r then p σ→ qp σ→ qp σ→ q.

• This definition invokes no auxiliary data

that might be modified during execution.

• No mathematical machine we’ll encounter (except NFAs)

has such a definition:

They all are based on a notion of configuration,

which combines the machine’s states with modifiable data.

F23 24

Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

• The language recognized by MMM is

L(M)L(M)L(M) === {w ∈ Σ∗ | M{w ∈ Σ∗ | M{w ∈ Σ∗ | M accepts w }w }w }
=== {w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}

• We re-use here the notation L(· · ·)L(· · ·)L(· · ·) that we used for regular expressions.

Accepted strings, recognized languages

• For A ⊆ QA ⊆ QA ⊆ Q let’s write q w→ Aq w→ Aq w→ A

when q w→ pq w→ pq w→ p for some p ∈ Ap ∈ Ap ∈ A.

• MMM accepts www when s www−→ As www−→ As www−→ A.

• The language recognized by MMM is

L(M)L(M)L(M) === {w ∈ Σ∗ | M{w ∈ Σ∗ | M{w ∈ Σ∗ | M accepts w }w }w }
=== {w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}{w ∈ Σ∗ | s w→ A}

• We re-use here the notation L(· · ·)L(· · ·)L(· · ·) that we used for regular expressions.

• Two automata are equivalent if they recognize the same language.

F23 25

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

7. No auxiliary memory or devices.

Automata are strictly regimented

Only two are crucial: violating them changes computing’s nature:

1. Automata are acceptors: they produce no output.

2. The input must be lexical (strings over a fixed alphabet).

3. Scanning forward: no backtracking or repositioning.

4. Scanning at a single point (i.e. computation is on-line).

5. Exactly one move exists for each state and symbol.

6. Computation stops when the input’s end is reached.

7. No auxiliary memory or devices.

F23 26

Example: An automaton for Mod 3

2

3

1

b b

a

aa

b

• w ∈ {a,b}∗w ∈ {a,b}∗
w ∈ {a,b}∗

accepted iff #a(w) 6= 0 (mod 3)#a(w) 6= 0 (mod 3)#a(w) 6= 0 (mod 3)

F23 27

Example of an accepted string

1

b b

a

a

b

2

a

baab
3

• State 1 (initial). Nothing read yet.

F23 28

An accepted string

1

b b

a

a

b

2

a

baab
3

• Still state 1. Initial bbb read.

F23 29

An accepted string

1

b b

a

a

b

2

a

baab
3

• Read bababa, state 2.

F23 30

An accepted string

3

1

b b

a

a

b

2

a

baab

• Read baabaabaa, state 3.

F23 31

An accepted string

3

1

b b

a

a

b

2

a

baab

• Finished reading baabbaabbaab, state 3, accepted.

F23 32

A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• State 1 (initial). Nothing read yet.

F23 33

A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• Read aaa, State 2.

F23 34

A non-accepted string

3

1

b b

a

a

b

2

a

aaba

• Read aaaaaa, state 3.

F23 35

A non-accepted string

3

1

b b

a

a

b

2

a

aaba

• Read aabaabaab, state 3.

F23 36

A non-accepted string

1

b b

a

a

b

2

a

aaba
3

• Finished reading aabaaabaaaba, state 1, not accepted.

F23 37

A computation trace

• For our example above, the computation for the string baabbaabbaabbaabbaabbaabbaabbaabbaab is

1 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 31 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 31 bbb−→ 1 aaa−→ 2 aaa−→ 3 bbb−→ 3.

Abbreviated notation: 1 baabbaabbaab−−−→ 31 baabbaabbaab−−−→ 31 baabbaabbaab−−−→ 3

• The computation for the string aabaaabaaabaaabaaabaaabaaabaaabaaaba is

1 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 11 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 11 aaa−→ 2 aaa−→ 3 bbb−→ 3 aaa−→ 1.

Abbreviated notation: 1 aabaaabaaaba−−−→ 31 aabaaabaaaba−−−→ 31 aabaaabaaaba−−−→ 3

F23 38

Example: Addition mod 4

• The following automaton is over the alphabet {0, 1, 2, 3}{0, 1, 2, 3}{0, 1, 2, 3}
• It accept a string of digits iff they add up to 2 modulo 4.

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

F23 39

• Reading input 210322103221032 from initial state AAA:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

A 21032

F23 40

• Reads remaining string 103210321032:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

C 1032

F23 41

• Reads remaining string 032032032:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

D 032

F23 42

• Reads remainder 323232:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

D 32

F23 43

• Reads remainder 222:

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

C 2

F23 44

• Reads remainder εεε (empty string):

B

C

D

3

3
2

2
2

2

3

3

1

1

1

A

1

0

00

0

A ε

• Ends reading. AAA not an accept-state, 210322103221032 not accepted.

F23 45

Additional examples

a

b a,b

10

0 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 10 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 10 bbb−→ 0 aaa−→ 1 bbb−→ 1 bbb−→ 1 aaa−→ 1

0 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 00 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 00 bbb−→ 0 bbb−→ 0 bbb−→ 0 bbb−→ 0

What is the language recognized?

F23 46

Three letter example

c

a,b a,b,c

10

0 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 10 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 10 aaa−→ 0 bbb−→ O aaa−→ 0 ccc−→ 1 bbb−→ 1

0 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 10 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 10 ccc−→ 1 bbb−→ 1 aaa−→ 1 bbb−→ 1 aaa−→ 1

What are the language accepted?

F23 47

An automaton with a sink

10 b

a
b

X

a

a,b

0 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 10 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 10 aaa−→ 0 aaa−→ 0 bbb−→ 1 bbb−→ 1 bbb−→ 1

0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X0 bbb−→ 1 bbb−→ 1 aaa−→ X bbb−→ X aaa−→ X
Note: Every state has exactly one arrow for every σ ∈ Σσ ∈ Σσ ∈ Σ.

• A sink is a non-accepting state with

all outgoing transitions pointing to itself.

F23 48

Example

Here is a trivial automaton with a single state:

L

a,b

What strings are accepted?

F23 49

Example

O

b,c

a
L 0a

b,c

a

a,b,c

accepts the strings with exactly one aaa , and no other.

F23 50

Example

 b ε

O

a a b

b a,b
b a

aab ab

a,b

accepts the string aabaabaab and no other.

F23 51

AUTOMATA ARE REPETITIVE

F23 52

2

2

2

2

11

1 1

1 1 1 22 1

• Here’s an automaton that accepts a string w ∈ {1, 2}∗w ∈ {1, 2}∗w ∈ {1, 2}∗

iff the sum of the digits in www is 2 mod (4)2 mod (4)2 mod (4).

2

2

2

2

11

1 1

1 1 1 12 1

• This is its trace for input 111212111212111212.

The input has 6 symbols, so the trace lists 7 states.

2

2

2

2

11

1 1

1 1 1 12 1

• Looking at the first 5 of the 7, we must have a state repeating,

because there are only 4 states.

2

2

2

2

11

1 1

1 1 1 12 1

The same happens for the next stretch of 5 states (i.e. 4 input symbols)

2

2

2

2

11

1 1

1 1 1 12 1

And the next one.

No matter which window of 5 states we take there will be a state repeating!

2

2

2

2

11

1 1

1 1 1 12 1

We can short-circuit the steps from the yellow state to itself,

and the result will still be a legit trace, but for 112112112.

2

2

2

2

11

1 1

1 1 1 1 22

We can short-circuit the steps from the yellow state to itself,

and the result will still be a legit trace, but for 112112112.

F23 53

Shortcuts in traces

• We observed:

Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′→ pq u′→ pq u′→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

2

2

2

2

11

1 1

1 1 1 1 22

with |u| > k|u| > k|u| > k .

Shortcuts in traces

• We observed:

Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′→ pq u′→ pq u′→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

2

2

2

2

11

1 1

1 1 1 1 22

• Suppose we have

s
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ A

with |u| > k|u| > k|u| > k .

Shortcuts in traces

• We observed:

Let MMM be a kkk -state DFA.

If q u→ pq u→ pq u→ p and |u| > k|u| > k|u| > k then

q u′→ pq u′→ pq u′→ p where u′u′u′ is uuu with some

substring y 6= εy 6= εy 6= ε clipped off, i.e. removed.

2

2

2

2

11

1 1

1 1 1 1 22

• Suppose we have

s
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ As
w0→ p u→ q

w1→ A

with |u| > k|u| > k|u| > k .

Then

s
w0→ p u′→ q

w1→ As
w0→ p u′→ q

w1→ As
w0→ p u′→ q

w1→ A

F23 55

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• That is, if MMM accepts w0 · u · w1w0 · u · w1w0 · u · w1, where |u| > k|u| > k|u| > k ,

then there is a split u = x · y · zu = x · y · zu = x · y · z , with y 6= εy 6= εy 6= ε ,

such that w′ = w0 · x · z · w1w′ = w0 · x · z · w1w′ = w0 · x · z · w1 is also accepted.

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• That is, if MMM accepts w0 · u · w1w0 · u · w1w0 · u · w1, where |u| > k|u| > k|u| > k ,

then there is a split u = x · y · zu = x · y · zu = x · y · z , with y 6= εy 6= εy 6= ε ,

such that w′ = w0 · x · z · w1w′ = w0 · x · z · w1w′ = w0 · x · z · w1 is also accepted.

• We call uuu the critical substring,

the particular occurrence of substring yyy the clipped substring,

and w′w′w′ the reduced string.

The Clipping Theorem

• Theorem. If a kkk -state DFA accepts a string www ,

and uuu is a substring of www of length > k> k> k,

then uuu has a substring y 6= εy 6= εy 6= ε such that

www with yyy removed is also accepted.

• That is, if MMM accepts w0 · u · w1w0 · u · w1w0 · u · w1, where |u| > k|u| > k|u| > k ,

then there is a split u = x · y · zu = x · y · zu = x · y · z , with y 6= εy 6= εy 6= ε ,

such that w′ = w0 · x · z · w1w′ = w0 · x · z · w1w′ = w0 · x · z · w1 is also accepted.

• We call uuu the critical substring,

the particular occurrence of substring yyy the clipped substring,

and w′w′w′ the reduced string.

u
y

w

w0 w1zx

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

1. ℓ ∈ [30..100]ℓ ∈ [30..100]ℓ ∈ [30..100]

2. ℓ ∈ [10..25]ℓ ∈ [10..25]ℓ ∈ [10..25]

3. ℓ ∈ [0..9]ℓ ∈ [0..9]ℓ ∈ [0..9]

4. Can’t tell, could be anything.

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

• Theorem. If a kkk-state automaton MMM accepts some string, then it accepts a

string of length < k< k< k.

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

• Theorem. If a kkk-state automaton MMM accepts some string, then it accepts a

string of length < k< k< k.

• Proof: Let www be a shortest string accepted by MMM .

If |w| > k|w| > k|w| > k then we invoke the Clipping Theorem,

with www itself for uuu,

and obtain a w′ ∈ Lw′ ∈ Lw′ ∈ L shorter than www.

This contradicts the assumed minimality of |w||w||w|.

An application: the shortest string accepted

• If MMM is a 10 state automaton that accepts some string. What is the length

ℓℓℓ of the shortest string accepted?

• Theorem. If a kkk-state automaton MMM accepts some string, then it accepts a

string of length < k< k< k.

• Proof: Let www be a shortest string accepted by MMM .

If |w| > k|w| > k|w| > k then we invoke the Clipping Theorem,

with www itself for uuu,

and obtain a w′ ∈ Lw′ ∈ Lw′ ∈ L shorter than www.

This contradicts the assumed minimality of |w||w||w|.
• Example: What is the shortest string accepted by

2

2

2

2

11

1 1

The dual question

• I want a DFA that accepts exactly the strings of length > 100> 100> 100.

• What’s the smallest number ℓℓℓ of states I need?

1. ℓ ∈ [1..9]ℓ ∈ [1..9]ℓ ∈ [1..9]

2. ℓ ∈ [10..99]ℓ ∈ [10..99]ℓ ∈ [10..99]

3. ℓ ∈ [100..999]ℓ ∈ [100..999]ℓ ∈ [100..999]

4. Can’t tell, could be anything.

The dual question

• I want a DFA that accepts exactly the strings of length > 100> 100> 100.

• What’s the smallest number ℓℓℓ of states I need?

1. ℓ ∈ [1..9]ℓ ∈ [1..9]ℓ ∈ [1..9]

2. ℓ ∈ [10..99]ℓ ∈ [10..99]ℓ ∈ [10..99]

3. ℓ ∈ [100..999]ℓ ∈ [100..999]ℓ ∈ [100..999]

4. Can’t tell, could be anything.

• Answer: 101:

A DFA with 100 states will accept some string of length < 100< 100< 100.

F23 59

On not being an insect

• How do you tell that the critter on your desk

is not an insect?

On not being an insect

• How do you tell that the critter on your desk

is not an insect?

• Check that it violates some property of insects,

e.g. it has eight rather than six legs.

• How do you tell that a given language LLL
is not recognized by any automaton?

• Refer to a property that all recognized languages have,

but LLL does not.

On not being an insect

• How do you tell that the critter on your desk

is not an insect?

• Check that it violates some property of insects,

e.g. it has eight rather than six legs.

• How do you tell that a given language LLL
is not recognized by any automaton?

• Refer to a property that all recognized languages have,

but LLL does not.

F23 60

The Clipping Property

• The Clipping Theorem says that

Every language LLL recognized by a DFA has the following Clipping Property:

⋆ There is a kkk (the number of states in an acceptor for LLL),

⋆ so that for every w ∈ Lw ∈ Lw ∈ L

⋆ if uuu is a substring of www of length > k> k> k ,

⋆ then it has a “clippable” substring y 6= εy 6= εy 6= ε:

removing yyy from www yields a string in LLL .

The Clipping Property

• The Clipping Theorem says that

Every language LLL recognized by a DFA has the following Clipping Property:

⋆ There is a kkk (the number of states in an acceptor for LLL),

⋆ so that for every w ∈ Lw ∈ Lw ∈ L

⋆ if uuu is a substring of www of length > k> k> k ,

⋆ then it has a “clippable” substring y 6= εy 6= εy 6= ε:

removing yyy from www yields a string in LLL .

• A language fails Clipping when

⋆ for any k > 0k > 0k > 0

⋆ we can choose some w ∈ Lw ∈ Lw ∈ L
and a substring uuu of www of length > k> k> k ,

⋆ so that any clipping within uuu yields a w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

The Clipping Property

• The Clipping Theorem says that

Every language LLL recognized by a DFA has the following Clipping Property:

⋆ There is a kkk (the number of states in an acceptor for LLL),

⋆ so that for every w ∈ Lw ∈ Lw ∈ L

⋆ if uuu is a substring of www of length > k> k> k ,

⋆ then it has a “clippable” substring y 6= εy 6= εy 6= ε:

removing yyy from www yields a string in LLL .

• A language fails Clipping when

⋆ for any k > 0k > 0k > 0

⋆ we can choose some w ∈ Lw ∈ Lw ∈ L
and a substring uuu of www of length > k> k> k ,

⋆ so that any clipping within uuu yields a w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• If LLL fails Clipping then it is not recognized.

Example: an-bn

• Let L = {an
b

n | n > 0}L = {an
b

n | n > 0}L = {an
b

n | n > 0}
• LLL fails clipping:

1. Let k > 0k > 0k > 0

2. Choose w = a
k
b

kw = a
k
b

kw = a
k
b

k and u = a
ku = a
ku = a
k.

We have w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipping in uuu yields from www
a w′w′w′ of the form a

p
b

k
a

p
b

k
a

p
b

k with p < kp < kp < k.

So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• Consequence: LLL fails the Clipping Property and cannot be recognized.

F23 62

Example: Unary addition

• Consider the strings representing addition in unary:

A = {1p +++ 1q === 1p+q | p, q > 0}A = {1p +++ 1q === 1p+q | p, q > 0}A = {1p +++ 1q === 1p+q | p, q > 0}.

• AAA fails the Clipping Property:

1. Let k > 0k > 0k > 0.

2. Choose w = 1k +++ 1 === 1k+1w = 1k +++ 1 === 1k+1w = 1k +++ 1 === 1k+1

and uuu the substring 1k+11k+11k+1.

w ∈ Aw ∈ Aw ∈ A and |u| > k|u| > k|u| > k.

3. Any clipping in uuu yields from www a string

w′ = 1ℓ +++ 1 = 1k+1w′ = 1ℓ +++ 1 = 1k+1w′ = 1ℓ +++ 1 = 1k+1 with ℓ < kℓ < kℓ < k.

w′ 6∈ Aw′ 6∈ Aw′ 6∈ A .

• AAA fails Clipping, and so cannot be recognized.

F23 63

Example: Perfect squares in unary

• Consider L = {1n2 | n > 0}L = {1n2 | n > 0}L = {1n2 | n > 0}.

• LLL fails the Clipping Property:

1. Let k > 0k > 0k > 0.

2. Choose w = 1k2
w = 1k2
w = 1k2

and u = 1ku = 1ku = 1k.

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. For any clipped yyy we have 1 6 |y| 6 |u| = k1 6 |y| 6 |u| = k1 6 |y| 6 |u| = k ,

so for the reduced string w′ = 1ℓw′ = 1ℓw′ = 1ℓ where k2 − k 6 ℓ < k2k2 − k 6 ℓ < k2k2 − k 6 ℓ < k2.

w′ 6∈ Lw′ 6∈ Lw′ 6∈ L because ℓℓℓ cannot be a square: the largest square preceding

k2k2k2 is (k−1)2 = k2 − 2k + 1(k−1)2 = k2 − 2k + 1(k−1)2 = k2 − 2k + 1 which is < k2 − k 6 ℓ< k2 − k 6 ℓ< k2 − k 6 ℓ.

• So LLL fails Clipping, and cannot be recognized.

F23 64

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}
• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}
• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}
• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipped yyy in uuu yields from www
a reduced string w′ = 01ℓ01kw′ = 01ℓ01kw′ = 01ℓ01k

where ℓ < kℓ < kℓ < k.

Such w′w′w′ cannot be of the form xxxxxx,

because its first half starts with 000

while its second half starts with 111.

Example: The mahimahi language

• Consider L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}L = {x · x | x ∈ {0, 1}∗}
• Idea: Take w = x · xw = x · xw = x · x with xxx that starts with a marker.

1. Let k > 0k > 0k > 0.

2. Choose w = 01k01kw = 01k01kw = 01k01k and u =u =u = left substring 1k1k1k in www .

w ∈ Lw ∈ Lw ∈ L and |u| > k|u| > k|u| > k.

3. Any clipped yyy in uuu yields from www
a reduced string w′ = 01ℓ01kw′ = 01ℓ01kw′ = 01ℓ01k

where ℓ < kℓ < kℓ < k.

Such w′w′w′ cannot be of the form xxxxxx,

because its first half starts with 000

while its second half starts with 111.

• LLL fails the Clipping Property, and cannot be recognized.

F23 65

Pumping up rather than clipping

q0 = qm
x

y

z
qjqi

qjq0
x

qi q = qj i

y y

qm
z

qj

... 731 times ...
q0

x
qi q = qj i

yy

q = qj i

y y

qj qm
z

F23 66

Pumping instances

• Let w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
and

yyy a particular substring of www : w = x · y · zw = x · y · zw = x · y · z.

• The nnn-th pumping instance of w = x · y · zw = x · y · zw = x · y · z
over (the exhibited occurrence of) yyy
is defined to be x · yn · zx · yn · zx · yn · z.

F23 67

The Pumping Theorem

• Let MMM be a kkk-state DFA over ΣΣΣ, L = L(M)L = L(M)L = L(M).

• As for Clipping, choose w ∈ Lw ∈ Lw ∈ L and a substring uuu of www of length > k> k> k.

• CONCLUDE: uuu has a non-empty substring yyy
such that all pumping instances of www over yyy are in LLL.

• Recall: The nnn-th pumping instance of www over

(a particular occurrence of) yyy
is the result of replacing yyy by ynynyn.

F23 68

Failing Pumping

A language fails Pumping when:

1. For any k > 0k > 0k > 0

2. there are w ∈ Lw ∈ Lw ∈ L
and substring uuu of www of length > k> k> k

3. so that for every yyy within uuu
there is a pumping instance www over yyy which is not in LLL.

F23 69

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }
• Suppose LLL is recognized by a kkk-state DFA MMM .

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }
• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }
• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

• The (p+1)(p+1)(p+1)-st pumping instance of www over yyy
has length |w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1),
which is not prime.

Example: The Primes

• L = {1p | p is prime }L = {1p | p is prime }L = {1p | p is prime }
• Suppose LLL is recognized by a kkk-state DFA MMM .

• Take a prime p > kp > kp > k and w = 1p ∈ Lw = 1p ∈ Lw = 1p ∈ L.

• There is a pumping segment yyy in www of length ℓ 6= 0ℓ 6= 0ℓ 6= 0.

• The (p+1)(p+1)(p+1)-st pumping instance of www over yyy
has length |w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1)|w| − ℓ + (p + 1)ℓ = p + pℓ = p(ℓ + 1),
which is not prime.

• Contradiction. MMM cannot exist.

F23 70

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

• By the Pumping Theorem uuu has a substring y = b
ℓy = b
ℓy = b
ℓ where ℓ > 0ℓ > 0ℓ > 0 such

that b
k+nℓ

a
k ∈ Lb

k+nℓ
a

k ∈ Lb
k+nℓ

a
k ∈ L for all n > 0n > 0n > 0. In particular, for n = 1n = 1n = 1 we have

w′ = b
k+ℓ

a
k ∈ Lw′ = b

k+ℓ
a

k ∈ Lw′ = b
k+ℓ

a
k ∈ L .

Example: Necessary use of Pumping

• Show that the language

L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }L = {w · an | w ∈ {a,b}∗, #a(w) = n }
is not recognized.

• Suppose LLL were recognized by a kkk-state DFA.

Let w = b
k
a

kw = b
k
a

kw = b
k
a

k, which is in LLL,

and take u = b
ku = b
ku = b
k , the prefix of www.

• By the Pumping Theorem uuu has a substring y = b
ℓy = b
ℓy = b
ℓ where ℓ > 0ℓ > 0ℓ > 0 such

that b
k+nℓ

a
k ∈ Lb

k+nℓ
a

k ∈ Lb
k+nℓ

a
k ∈ L for all n > 0n > 0n > 0. In particular, for n = 1n = 1n = 1 we have

w′ = b
k+ℓ

a
k ∈ Lw′ = b

k+ℓ
a

k ∈ Lw′ = b
k+ℓ

a
k ∈ L .

But this is impossible, because the second half of w′w′w′

must have bbb ’s.

• Thus no DFA recognizing LLL exists.

F23 71

Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

• At least as many as the longest string-length in LLL.

Minimum states for finite language recognition

• Any finite language LLL is recognized by an automaton!

• But how many states are needed?

• At least as many as the longest string-length in LLL.

• Proof: If MMM with kkk states recognizes a string longer than kkk,

then Pumping applies, and LLL is infinite!

F23 72

CONSTRUCTING AUTOMATA

F23 73

• We give a method that, given a language LLL ,

attempts to construct a DFA MMM recognizing LLL .

• If and when the process teminates, we obtain such an MMM .

• We start with a couple of non-trivial examples,

before articulating the method and giving more examples.

F23 74

Example: aaa’s precede bbb’s

a

b

b

a*bb* b*

a

a,bO/

• Construct an automaton recognizing L(a∗
bb

∗)L(a∗
bb

∗)L(a∗
bb

∗). That is,

accepting strings of aaa ’s followed by one or more bbb ’s,

and only those.

• The initial state is the declaration of this goal.

• What will be an updated goal after reading an aaa?

Reading an aaa

a

b

b

a*bb* b*

a

a,bO/

• The goal is unchanged!.

• But what happens if we read a bbb?

Reading a bbb

a

b

b

a*bb* b*

a

a,bO/

• A new goal: from now on only bbb ’s, any number.

• What if we read a bbb now?

Reading another bbb

a

b

b

a*bb* b*

a

a,bO/

• No change.

• And what if, instead, we read an aaa ?

Reading an aaa instead

O/

a

b

b

a*bb* b*

a

a,b

• This is a non-accept, now and forever. I.e. a sink .

• And which are the accepting states?

What are the accepting states

O/

a

b

b

b*

a

a,b

a*bb*

• Accept if current goal is satisfied when

nothing left to read,

i.e. when the current string is εεε.

• This completes the construction.

F23 75

Example: Ending as it starts

Reading the first letter

w σσ0
1

2

3

*

4

ε
a

b

0

4

3

b

ab

a

b

b

a

a
w a

w b

ε

w a

w bε

• Construct an automaton accepting strings σwσσwσσwσ,

i.e. with last letter identical to the first, and no others.

• The initial state is the declaration of this goal.

• What will be the updated goals after reading the first letter?

Example: Ending as it starts

Reading the first letter:

w σσ

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a
w a

w b

• Either this is the last letter, or else it repeats at the end.

• What if we now read this letter again?

Example: Ending as it starts

Sought letter repeated:

w σσ

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a
w a

w b

ε

• The goal does not change.

• And what about the opposite letter now?

Example: Ending as it starts

Reading opposite letter:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• The option of not reading further has been blocked.

Example: Ending as it starts

Opposite letter repeating:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• But if the sought letter is read now,

the previous goal is restored.

• And if we keep reading the wrong letter?

Example: Ending as it starts

Return to sought letter:

w σσ

w a

w b

w a

w b

0
1

2

3

*

4

ε

εa

b

0

2 4

31

b

ab

a

b

b

a

a

• No change of goal.

• What are the accepting states?

Example: Ending as it starts

The accepting states:

w σσ

w a

w b

w a

w b

a

b

0

2 4

31

b

ab

a

b

b

a

a

0
1

2

3

*

4

ε

ε

• Accept if current goal is satisfied when nothing left to read.

• This completes the construction.

F23 76

Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

• Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for LLL is

“accept the strings in LLL and no others”!

Goal oriented automaton construction

• When you head to an unfamiliar destination,

would you prefer the GPS map to display the road already covered,

or rather the road ahead?

• Programming is a goal oriented process.

The relevant mission is to achieve a goal.

The initial task of an acceptor for LLL is

“accept the strings in LLL and no others”!

• The tasks are adjusted as the input string is read.

Each task is of the form

the string ahead leads into a string in LLL

F23 77

Identifying accepting tasks

• The development above updates states (conditions)

as required when symbols σσσ are read.

• A string x = σux = σux = σu satisfying the current condition (=state) leads to AAA
iff uuu started at the next condition leads to AAA.

• So the accepting conditions are the ones that are satisfied

when reading ends, i.e. when the string-ahead is εεε.

F23 78

Example: Repeated last symbol

σσw
a

b

a b0

0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

ε a σσw

a σσw

state dictionary

Example: Repeated last symbol

σσw

σσwaa

b

a b0

1 0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

ε a σσw

Example: Repeated last symbol

σσw

σσwa

ε a σσw

a

b

a b0

1 0
1

3
b

a

b

a

b

a

4
4

3

2 b σσw

ε b w σσ

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

Example: Repeated last symbol

4

3
σσw

σσwb

σσwa

ε a σσw

ε b σσw

a

b

a b0

1

2

0
1

2

3
b

a

b

a

b

a

4

F23 79

Example: Recognizing odd length

#a odd

b

a

a
b

#a even

◮ Initial task: accept strings with an odd number of aaa’s

Example: Recognizing odd length

#a odd

b

a

a
b

#a even

◮ Reading a bbb does not change the task

Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Reading an aaa revises the task to:

accept strings with an even number of aaa’s

Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Same reasoning for the “even” task

Example: Recognizing odd length

#a odd #a even

b

a

a
b

◮ Accept description fulfilled by εεε.

F23 80

Example: aba∗aba∗aba∗

a*
a

L ba*

a

b

O

a

a,b

b b

Accepts the strings of the form aba
n

aba
n

aba
n with n > 0n > 0n > 0,

and no others.

Example: aba∗aba∗aba∗

a*
a

L ba*

a

b

O

a

a,b

b b

Accepts the strings of the form aba
n

aba
n

aba
n with n > 0n > 0n > 0,

and no others.

• Note the sink at the bottom of the diagram.

F23 81

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

a*
b

a

/

◮ Initial task: accept strings of aaa’s

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

a*
b

a

/

◮ Reading an aaa does not change the task

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

/a*
b

a a,b

◮ Reading a bbb revises the task to

not accepting anything. A sink.

A trivial example: Just aaa ’s

Construct an automaton recognizing L(a⋆)L(a⋆)L(a⋆)
as a sub-language of {a,b}∗{a,b}∗{a,b}∗

/

a,b

a*

a

b

◮ No escape from the sink

F23 82

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }

a # a # a
i j k

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

a
k

k = 0
/a # a

j k

j = k
/

a # a # a
i j k

i + j = k
/

a
k

a # a
j k

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }

a # a # a
i j k

a # a # a
i j k

i + j = k/

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

a
k

k = 0
/a # a

j k

j = k
/

a # a
j k a

k

Reading aaa’s toggles between equlity and inequality of parities.

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }

a # a # a
i j k

a # a # a
i j k

a # a
j k

i + j = k/

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

a
k

k = 0
/a # a

j k

j = k
/

a
k

Reading the separator ### means i = 0i = 0i = 0.

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }

a # a # a
i j k

a # a # a
i j k

a # a
j k

a # a
j k

a
k

a
k

j = k k = 0i + j = k/ / /

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

/

The same arguments are repeated

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }

a # a # a
i j k

a # a # a
i j k

a # a
j k

a # a
j k

a
k

a
k

/

j = k k = 0i + j = k/ / /

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

Encountering an extra separator leads to a sink

Example: Addition mod 2

Automaton over {a, #}{a, #}{a, #} recognizing

{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }{ai #a
j #a

k | i + j = k (mod 2) }

a # a # a
i j k

a # a # a
i j k

a # a
j k

a # a
j k

a
k

a
k

/

j = k k = 0i + j = k/ / /

i + j = k
#

#

a a a a a a

#

a,#

k = 0j = k

The single one accepting state is the one satisfied by εεε.

F23 83

Summary of the method, again

• The initial acceptance-condition is the language to be recognized.

• Given a new acceptance-condition we calculate for each σ ∈ Σσ ∈ Σσ ∈ Σ
how reading σσσ leads to a new acceptance-condition.

That is, a string w = σuw = σuw = σu satisfies the current acceptance condition iff

uuu satisfies the acceptance-condition after σσσ is read.

• An acceptance-condition is an accepting state iff it is satisfied by εεε.

F23 84

Example: Two consecutive aaa’s

Construct an automaton recognizing L(Σ∗ · aa · Σ∗)L(Σ∗ · aa · Σ∗)L(Σ∗ · aa · Σ∗)

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

Reading bbb leaves the task unchanged:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

But reading aaa opens two future options:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

From these two options reading bbb kills the first:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

But reading an aaa settles acceptance:

2 consecutive a’s
2 consec a’s
or starts w/ a

a

b

b

a

a,b

accept!

Example: Two consecutive aaa’s

No further reading alterns that conclusion:

accept!
2 consec a’s
or starts w/ a

a

b

b

a

a,b

2 consecutive a’s

F23 85

Example 7: a∗
b

∗
c

∗
a

∗
b

∗
c

∗
a

∗
b

∗
c

∗

0/

a*b*c* b*c* c*

a

b c

c
a b

c

a,b

• Label states as we wish, with optional “dictionary.”

a
a,b

b c

c
a b

c

2 31

0

F23 86

Example 8: Ends with two identical

a

b

a

b

a b

a,b

0

0
1

3

a
*σσ

*

2 b *σσ
*σσ

*σσa

b

a

b

a b

a,b

0

1 0
1

3

a
*σσ

*

2 b *σσ

*σσb
*σσa

b

a

b

a b

a,b

0

1

2

0
1

2

3

a
*σσ

*

*σσb
*σσa

b

a

b

a b

a,b

0

1

2

0
1

2

3

a
*σσ

*

*σσb
*σσa

b

a

b

a b

a,b

0

1

2

0
1

2

3

a
*σσ

*

*σσb
*σσa

b

a

b

a b

a,b

0

1

2

3

0
1

2

3

a
*σσ

*

F23 88

Example: Initial aaa or the string baabaabaa

Σ∗

{aa}

{a}

/

b

a

b

a a

σ
b

σ

o

L

{ε}

F23 89

Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

• This table does not look like a string.

But all such tables have height 3 we can consider each column as a “symbol” in the alphabet

Σ = {0, 1}3Σ = {0, 1}3Σ = {0, 1}3
, that is

Σ3 = {

0

0

0

,

0

0

1

,

0

1

0

,

0

1

1

,

1

0

0

,

1

0

1

,

1

1

0

,

1

1

1

}Σ3 = {

0

0

0

,

0

0

1

,

0

1

0

,

0

1

1

,

1

0

0

,

1

0

1

,

1

1

0

,

1

1

1

}Σ3 = {

0

0

0

,

0

0

1

,

0

1

0

,

0

1

1

,

1

0

0

,

1

0

1

,

1

1

0

,

1

1

1

}

Example: Symbolic binary addition

• The following example illustrates the use of compound data

as “symbols” of an alphabet.

• Consider a long addition in binary, such as
0 0 1 1 0

+ 0 1 1 0 1

1 0 0 1 1

• This table does not look like a string.

But all such tables have height 3 we can consider each column as a “symbol” in the alphabet

Σ = {0, 1}3Σ = {0, 1}3Σ = {0, 1}3
, that is

Σ3 = {

0

0

0

,

0

0

1

,

0

1

0

,

0

1

1

,

1

0

0

,

1

0

1

,

1

1

0

,

1

1

1

}Σ3 = {

0

0

0

,

0

0

1

,

0

1

0

,

0

1

1

,

1

0

0

,

1

0

1

,

1

1

0

,

1

1

1

}Σ3 = {

0

0

0

,

0

0

1

,

0

1

0

,

0

1

1

,

1

0

0

,

1

0

1

,

1

1

0

,

1

1

1

}

• The long addition above can be consrued as the string

0

0

1

0

1

0

1

1

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

1

0

1

0

1

1

An automaton recognizing symbolic binary addition

• Is there an automaton over Σ3Σ3Σ3
that recognizes

the correct symbolic binary additions?

• That is, can we construct an automaton MMM that accepts strings like

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

0

but not strings like

0

1

1

1

1

1

1

1

0

1

0

0

0

1

1

1

1

1

1

1

0

1

0

0

0

1

1

1

1

1

1

1

0

1

0

0

F23 91

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

Start state is the goal that the table adds-up:

remaining columns add up

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

Start state is the goal that the table adds-up:

remaining columns add up

The main other state is remaining columns yield carry-over

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

There is one column switching from add-up to carry-over

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

There is one column switching from add-up to carry-over

and one column switching back from carry-over to add-up

An automaton recognizing symbolic binary addition

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

1 0 1
1 1 0
1, 0, 0

0 1 0
0 0 1
0, 1, 1

0
1

0

1
1
0

Three columns leave the add-up goal unchanged

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

Three columns leave the add-up goal unchanged

and three leaave carry-over unchaged

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

σ

SINK

add up carry over

1 1 0 1
1, 0, 0, 0

1 1 1 0 0 0 0 1
0 0 1 0
0, 1, 1, 1

Four columns lead from add-up to a sink

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 0 0 1
0 0 1 0
0, 1, 1, 1

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

1 1 1 0
1 1 0 1
1, 0, 0, 0

σ

SINK

add up carry over

Four columns lead from add-up to a sink

and four from carry-over to that sink

An automaton recognizing symbolic binary addition

0
1

0

1
1
0

0 0 0 1
0 0 1 0
0, 1, 1, 1

0 1 0
0 0 1
0, 1, 1

1 0 1
1 1 0
1, 0, 0

1 1 1 0
1 1 0 1
1, 0, 0, 0

σ

SINK

add up carry over

Finally, sink is a sink.

F23 92

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• The numerals divisible by 2 are those that end with 000.

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

We have that 4k =3 14k =3 14k =3 1 , by induction on k.

◮ 40 = 140 = 140 = 1

◮ If 4k = 3x + 14k = 3x + 14k = 3x + 1 then 4k+1 = 4(3x + 1) = 13x + 1.4k+1 = 4(3x + 1) = 13x + 1.4k+1 = 4(3x + 1) = 13x + 1.

Example: Binary numerals divisible by 3

• Consider every string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ to be a binary numerals.

• The numeric value [w]2[w]2[w]2 of a string w = dkdk−1 · · · d0w = dkdk−1 · · · d0w = dkdk−1 · · · d0

is
∑

i 2i∑

i 2i∑

i 2i.

• Problem: Construct a DFA over {0, 1}∗{0, 1}∗{0, 1}∗ that

accepts the numerals divisble by 3.

• Preliminary: What is the value mod(3) of the digits,

i.e. what is 2k2k2k mod(3).

We have that 4k =3 14k =3 14k =3 1 , by induction on k.

So 22k = 3x + 122k = 3x + 122k = 3x + 1 for some xxx , and 22k+1 = 2(3x + 1) = 6x + 222k+1 = 2(3x + 1) = 6x + 222k+1 = 2(3x + 1) = 6x + 2 .

∴ 2n =3 12n =3 12n =3 1 for even nnn , and =3 2=3 2=3 2 for odd nnn .

F23 93

Example: Binary numerals divisible by 3

• For any input www the expectation depends on the parity of |w||w||w| , the goals are

therefore of the form

Either |w||w||w| is even and [w] =3 x[w] =3 x[w] =3 x or |w||w||w| is odd and [w] =3 y[w] =3 y[w] =3 y

Let’s abbreviate this as (x, y)(x, y)(x, y) .

Example: Binary numerals divisible by 3

• For any input www the expectation depends on the parity of |w||w||w| , the goals are

therefore of the form

Either |w||w||w| is even and [w] =3 x[w] =3 x[w] =3 x or |w||w||w| is odd and [w] =3 y[w] =3 y[w] =3 y

Let’s abbreviate this as (x, y)(x, y)(x, y) .

• From the observation above it follows that (x, y) 1→ (y+2, x+1)(x, y) 1→ (y+2, x+1)(x, y) 1→ (y+2, x+1), and

(x, y) 0→ (y, x).(x, y) 0→ (y, x).(x, y) 0→ (y, x).

F23 94

• This yields the following DFA:

0

0

1

1

(0,0)

0 1

(1,2)(2,1)

1

1

0

0

0

1

Condensed:

|w| odd, [w]=2|w| odd, [w]=0

|w| even, [w]=0

or

|w| even, [w]=2

|w| odd, [w]=1

|w| even, [w]=1

or or

F23 95

RESIDUES AND THEIR APPLICATIONS

F23 96

More examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since invent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

• Take L = {ab}L = {ab}L = {ab}, a singleton language.

We have L/ε = {ab}L/ε = {ab}L/ε = {ab}, L/a = {b}L/a = {b}L/a = {b} , and L/ab = εL/ab = εL/ab = ε.

For any other string www , L/w = ∅L/w = ∅L/w = ∅.

• For any language LLL we have L/ε = LL/ε = LL/ε = L:

w ∈ Lw ∈ Lw ∈ L iff ε ∈ L/wε ∈ L/wε ∈ L/w.

F23 97

More examples yet

• L = {0, 00, 010}L = {0, 00, 010}L = {0, 00, 010}
L/εL/εL/ε = L

L/0L/0L/0 = {ε, 0, 10}{ε, 0, 10}{ε, 0, 10}
L/00L/00L/00 = {ε}{ε}{ε}
L/01L/01L/01 = {0}{0}{0}

L/010L/010L/010 = {ε}{ε}{ε}
L/wL/wL/w = ∅∅∅for any otherwww

L/00 = L/010L/00 = L/010L/00 = L/010, so there are five (different) residues.

F23 98

An example with language union

• L = {aw | w ∈ Σ∗} ∪ {baa}L = {aw | w ∈ Σ∗} ∪ {baa}L = {aw | w ∈ Σ∗} ∪ {baa}.

L/εL/εL/ε = LLL

L/wL/wL/w = Σ∗Σ∗Σ∗ if www starts with aaa

L/bL/bL/b = {aa}{aa}{aa}
L/baL/baL/ba = {a}{a}{a}

L/baaL/baaL/baa = {ε}{ε}{ε}
L/wL/wL/w = ∅∅∅ for any other www

There are 6 residues.

LLL and Σ∗Σ∗Σ∗
are infinite languages, the others are finite.

F23 99

A single-letter language

• Σ = {0, 1}Σ = {0, 1}Σ = {0, 1} , L = {0}∗L = {0}∗L = {0}∗.

• If w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
contains 111 then L/w = ∅L/w = ∅L/w = ∅.

Otherwise L/w = LL/w = LL/w = L.

There are two residues.

F23 100

A language based on occurrence count

• L = {w ∈ {0, 1} | #0(w) is even }L = {w ∈ {0, 1} | #0(w) is even }L = {w ∈ {0, 1} | #0(w) is even }.

If #0(w)#0(w)#0(w) is even then L/wL/wL/w is LLL,

otherwise L/w = {w | #0(w)L/w = {w | #0(w)L/w = {w | #0(w) is odd }}}

F23 101

Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

• Denote the set of all such xxx ’s by LqLqLq.

In particular, Ls = LLs = LLs = L .
x

x

w
x

1

2

0

q

a

a’

Lq

Each state determines a language

• Consider a DFA MMM recognizing LLL and a state qqq in it.

Some string xxx may lead from qqq to acceptance.

x

x

w
x

1

2

0

q

a

Lq

• Denote the set of all such xxx ’s by LqLqLq.

In particular, Ls = LLs = LLs = L .
x

x

w
x

1

2

0

q

a

a’

Lq

• Note: We focus on the future of qqq , not its past!

(The past would be the set of strings leading to qqq)

States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

• xxx completes www to a string in LLL :
x

x

w
x

1

2

0

qs

a

a’

Lq

States and residues

• Now suppose that s w→ qs w→ qs w→ q.

A string w · xw · xw · x is accepted by MMM iff x ∈ Lqx ∈ Lqx ∈ Lq.

• xxx completes www to a string in LLL :
x

x

w
x

1

2

0

qs

a

a’

Lq
• LqLqLq is L/w =L/w =L/w = the residue of LLL over www:

x

x

w
x

1

2

0

qs

a

a’

L w

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

• Proof. If s u→ qs u→ qs u→ q and s v→ qs v→ qs v→ q then L/u = L/vL/u = L/vL/u = L/v .

A property of recognized languages

• Theorem. (Myhill-Nerode) A language recognized by a kkk-state DFA has

6 k6 k6 k residues.

• Proof. If s u→ qs u→ qs u→ q and s v→ qs v→ qs v→ q then L/u = L/vL/u = L/vL/u = L/v .

• Consequently:

Theorem.

A language with infinitely many residues is not recognized.

F23 104

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

• If i 6= ji 6= ji 6= j then 0i ∈ L/1i0i ∈ L/1i0i ∈ L/1i but 6∈ L/1j6∈ L/1j6∈ L/1j

so the two residues are different .

Languages with infinitely many residues

• Let L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}.

• Consider the residues of LLL the form L/1n (n > 0)L/1n (n > 0)L/1n (n > 0).

• For each nnn we have

L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n}L/1n = {x | #0(x) = #1(x) + n} ,

since to compensate for an initial substring of nnn 111’s

the rest of the string should have nnn extra 000’s.

• If i 6= ji 6= ji 6= j then 0i ∈ L/1i0i ∈ L/1i0i ∈ L/1i but 6∈ L/1j6∈ L/1j6∈ L/1j

so the two residues are different .

∴∴∴ LLL is not recognized, since it has infinitely many residues.

F23 105

States and residues

• We developed automata by thinking of residues as states.

• Let MMM be an automaton over ΣΣΣ .

For a state qqq of MMM define

Lq =df {x ∈ Σ∗ | q x→ A }Lq =df {x ∈ Σ∗ | q x→ A }Lq =df {x ∈ Σ∗ | q x→ A }
• In particular, for the start state Ls = LLs = LLs = L.

• If s w→ qs w→ qs w→ q then Lq = L/wLq = L/wLq = L/w.

Lq

s q

w x1

x2

= L / w

⋆ Each string leads from sss to some state.

⋆ All strings leading from sss to a state qqq have the same residue.

F23 106

The Myhill-Nerode Theorem

Lq

s q

w x1

x2

= L / w

• Every residue L/wL/wL/w is LqLqLq for qqq as above.

• And two different residues L/w 6= L/xL/w 6= L/xL/w 6= L/x must correspond

to two different states.

• So we have an injection that maps residues to states,

I.e. the number of residues is bounded by the number of states.

• Theorem. (John Myhill and Anil Nerode (1958)) (simplified and rephrased):

L(M)L(M)L(M) cannot have more residues than MMM has states.

• Consequence: A language with infinitely many residues

cannot be recognized by any automaton!

Showing that a language fails recognition

• We saw that L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)}L = {w ∈ {0, 1}∗ | #0(w) = #1(w)} has infinitely many

residues.

• Consequence: It cannot be recognized by any automaton!!!

• General method: show that LLL is not recognized

by showing that there are infinitely many residues.

• We do not need to consider all residues,

only some infinite selection, defined by a template

• We do not need to calculate the residues we choose,

only show that each two of them are different .

• We show them different by exhibiting a string which is in one

but not in the other.

F23 108

Example: Unary addition

• Representing unary addition, using unary numerals

and the symbols for addition and equality:

• L = {1k + 1m = 1k+m | k, m > 1}L = {1k + 1m = 1k+m | k, m > 1}L = {1k + 1m = 1k+m | k, m > 1}
• What residues would you select?

F23 109

• L/ 1n + 1 =L/ 1n + 1 =L/ 1n + 1 = for each n > 1n > 1n > 1.

• Suppose i 6= ji 6= ji 6= j.

What string is in L/ 1i + 1 =L/ 1i + 1 =L/ 1i + 1 = but not in L/ 1j + 1 =L/ 1j + 1 =L/ 1j + 1 = ?

F23 110

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

• Then 0i1 ∈ L/0i10i1 ∈ L/0i10i1 ∈ L/0i1,

but for j > ij > ij > i we have 0i1 6∈ L/0j10i1 6∈ L/0j10i1 6∈ L/0j1 ,

because it has two 111’s in its first half and none in the second.

Example: Residues for Mahimahi

• Consider L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }L = {u · u | u ∈ {0, 1}∗ }.

What residues L/wL/wL/w to take?

• www with an end-mark would help with differentiating residues.

Say 0n10n10n1?

• Then 0i1 ∈ L/0i10i1 ∈ L/0i10i1 ∈ L/0i1,

but for j > ij > ij > i we have 0i1 6∈ L/0j10i1 6∈ L/0j10i1 6∈ L/0j1 ,

because it has two 111’s in its first half and none in the second.

• Since each two of these residues are different,

LLL has infinitely many residues,

and cannot be recognized by a DFA.

F23 111

Example: Residues for perfect squares

• L = {1n2 | n > 0}L = {1n2 | n > 0}L = {1n2 | n > 0}.

• Consider the residues L/1n2
L/1n2
L/1n2

for each n > 0n > 0n > 0.

• The first perfect square following n2n2n2 is (n+1)2 = n2 + 2n + 1(n+1)2 = n2 + 2n + 1(n+1)2 = n2 + 2n + 1.

• So the shortest non-null string of L/1i2L/1i2L/1i2 is 12i+112i+112i+1.

• It follows that 12i+1 ∈ L/1i212i+1 ∈ L/1i212i+1 ∈ L/1i2

but 12i+1 6∈ L/1j2
12i+1 6∈ L/1j2
12i+1 6∈ L/1j2

for any j > ij > ij > i.

• Since every two of these residues are different,

LLL has infinitely many residues,

and cannot be recognized by any automaton.

F23 112

Building automata directly from residues

• We showed that every recognized language has finitely many residues.

• The converse is also true:

• If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
has finitely many residues, then L = L(M)L = L(M)L = L(M) where:

⋆ The states of MMM are the residues.

⋆ The initial state is L/ε = LL/ε = LL/ε = L .

⋆ A state L/wL/wL/w is accepting iff it contains εεε.

⋆ The transitions are given by L/w σ→ L/wσL/w σ→ L/wσL/w σ→ L/wσ .

• We used the same idea to construct automata, except that here

we assume that the residues are given to us.

• We write Res(L)Res(L)Res(L) for the automaton constructed from residues.

F23 113

Recognized = finitely many residues

• A language LLL is recognized iff it has finitely many residues.

• The DFA constructed from LLL’s residues

has the fewer states

• Given a DFA MMM recognizing LLL , and a state qqq,

F23 114

Minimizing an automaton: Rationale

• Suppose MMM is a kkk-state DFA over ΣΣΣ , recognizing LLL.

For each accessible state qqq the language LqLqLq is a residue of LLL. If MMM is

the smallest automaton recognizing LLL
then these residues are all different.

Minimizing an automaton: Rationale

• Suppose MMM is a kkk-state DFA over ΣΣΣ , recognizing LLL.

For each accessible state qqq the language LqLqLq is a residue of LLL. If MMM is

the smallest automaton recognizing LLL
then these residues are all different.

• MMM might be constructed using residues as states

and yet not be minimal, because the same residue might have been

introduced twice for different property descriptions.

Minimizing an automaton: Rationale

• Suppose MMM is a kkk-state DFA over ΣΣΣ , recognizing LLL.

For each accessible state qqq the language LqLqLq is a residue of LLL. If MMM is

the smallest automaton recognizing LLL
then these residues are all different.

• MMM might be constructed using residues as states

and yet not be minimal, because the same residue might have been

introduced twice for different property descriptions.

But when MMM is not minimal we can still obtain

a minimal automaton by identifying duplicates and unifying them.

F23 115

Minimizing an automaton: Separating residues

• Say that a string xxx separates qqq from q′q′q′

if xxx is in one of LqLqLq and Lq′Lq′Lq′ but not in the other.

That is, xxx is a witness for Lq 6= Lq′Lq 6= Lq′Lq 6= Lq′ .

• Write q D q′q D q′q D q′ if there is such an xxx ,

i.e. LqLqLq and Lq′Lq′Lq′ are different.

• Write q Dn q′q Dn q′q Dn q′ if qqq is separated from q′q′q′

by some string of length 6 n6 n6 n.

Minimizing an automaton: Separating residues

• Say that a string xxx separates qqq from q′q′q′

if xxx is in one of LqLqLq and Lq′Lq′Lq′ but not in the other.

That is, xxx is a witness for Lq 6= Lq′Lq 6= Lq′Lq 6= Lq′ .

• Write q D q′q D q′q D q′ if there is such an xxx ,

i.e. LqLqLq and Lq′Lq′Lq′ are different.

• Write q Dn q′q Dn q′q Dn q′ if qqq is separated from q′q′q′

by some string of length 6 n6 n6 n.

◮ Note: Dn+1 ⊇ DnDn+1 ⊇ DnDn+1 ⊇ Dn .

◮ Let’s show that if Dn+1 = DnDn+1 = DnDn+1 = Dn then Dn+2 = Dn+1Dn+2 = Dn+1Dn+2 = Dn+1

F23 116

Minimizing an automaton: Bounding the separator

• Suppose q Dn+2q
′q Dn+2q
′q Dn+2q
′ , i.e. some σxσxσx of length n+2n+2n+2 separates between qqq

and q′q′q′ .

Let q σ→ pq σ→ pq σ→ p and q′ σ→ p′q′ σ→ p′q′ σ→ p′.
Then xxx separates between ppp and p′p′p′ , so pdmn+1p

′pdmn+1p
′pdmn+1p
′.

• But we assume Dn+1 = DnDn+1 = DnDn+1 = Dn , so p Dnp′p Dnp′p Dnp′,
and therefore q Dn + 1q′q Dn + 1q′q Dn + 1q′.

Minimizing an automaton: Bounding the separator

• Suppose q Dn+2q
′q Dn+2q
′q Dn+2q
′ , i.e. some σxσxσx of length n+2n+2n+2 separates between qqq

and q′q′q′ .

Let q σ→ pq σ→ pq σ→ p and q′ σ→ p′q′ σ→ p′q′ σ→ p′.
Then xxx separates between ppp and p′p′p′ , so pdmn+1p

′pdmn+1p
′pdmn+1p
′.

• But we assume Dn+1 = DnDn+1 = DnDn+1 = Dn , so p Dnp′p Dnp′p Dnp′,
and therefore q Dn + 1q′q Dn + 1q′q Dn + 1q′.

• By induction, if Dn+1 = DnDn+1 = DnDn+1 = Dn then Di = DnDi = DnDi = Dn for all i > ni > ni > n, and so

Dn = DDn = DDn = D.

Minimizing an automaton: Bounding the separator

• Suppose q Dn+2q
′q Dn+2q
′q Dn+2q
′ , i.e. some σxσxσx of length n+2n+2n+2 separates between qqq

and q′q′q′ .

Let q σ→ pq σ→ pq σ→ p and q′ σ→ p′q′ σ→ p′q′ σ→ p′.
Then xxx separates between ppp and p′p′p′ , so pdmn+1p

′pdmn+1p
′pdmn+1p
′.

• But we assume Dn+1 = DnDn+1 = DnDn+1 = Dn , so p Dnp′p Dnp′p Dnp′,
and therefore q Dn + 1q′q Dn + 1q′q Dn + 1q′.

• By induction, if Dn+1 = DnDn+1 = DnDn+1 = Dn then Di = DnDi = DnDi = Dn for all i > ni > ni > n, and so

Dn = DDn = DDn = D.

• Conclusion: For some nnn D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2

where n 6n 6n 6 the number of pairs of distinct states.

i.e. ℓ = k(k − 1)/2ℓ = k(k − 1)/2ℓ = k(k − 1)/2.

Minimizing an automaton: Bounding the separator

• Suppose q Dn+2q
′q Dn+2q
′q Dn+2q
′ , i.e. some σxσxσx of length n+2n+2n+2 separates between qqq

and q′q′q′ .

Let q σ→ pq σ→ pq σ→ p and q′ σ→ p′q′ σ→ p′q′ σ→ p′.
Then xxx separates between ppp and p′p′p′ , so pdmn+1p

′pdmn+1p
′pdmn+1p
′.

• But we assume Dn+1 = DnDn+1 = DnDn+1 = Dn , so p Dnp′p Dnp′p Dnp′,
and therefore q Dn + 1q′q Dn + 1q′q Dn + 1q′.

• By induction, if Dn+1 = DnDn+1 = DnDn+1 = Dn then Di = DnDi = DnDi = Dn for all i > ni > ni > n, and so

Dn = DDn = DDn = D.

• Conclusion: For some nnn D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2

where n 6n 6n 6 the number of pairs of distinct states.

i.e. ℓ = k(k − 1)/2ℓ = k(k − 1)/2ℓ = k(k − 1)/2.

• The stable DnDnDn is the relation Lq 6= L′
qLq 6= L′
qLq 6= L′
q between states.

Minimizing an automaton: Bounding the separator

• Suppose q Dn+2q
′q Dn+2q
′q Dn+2q
′ , i.e. some σxσxσx of length n+2n+2n+2 separates between qqq

and q′q′q′ .

Let q σ→ pq σ→ pq σ→ p and q′ σ→ p′q′ σ→ p′q′ σ→ p′.
Then xxx separates between ppp and p′p′p′ , so pdmn+1p

′pdmn+1p
′pdmn+1p
′.

• But we assume Dn+1 = DnDn+1 = DnDn+1 = Dn , so p Dnp′p Dnp′p Dnp′,
and therefore q Dn + 1q′q Dn + 1q′q Dn + 1q′.

• By induction, if Dn+1 = DnDn+1 = DnDn+1 = Dn then Di = DnDi = DnDi = Dn for all i > ni > ni > n, and so

Dn = DDn = DDn = D.

• Conclusion: For some nnn D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn = Dn+1 = Dn+2

where n 6n 6n 6 the number of pairs of distinct states.

i.e. ℓ = k(k − 1)/2ℓ = k(k − 1)/2ℓ = k(k − 1)/2.

• The stable DnDnDn is the relation Lq 6= L′
qLq 6= L′
qLq 6= L′
q between states.

• Conclusion: If q Dq′q Dq′q Dq′ then q, q′q, q′q, q′ are separated

by a string of length 6 k(k − 1)/26 k(k − 1)/26 k(k − 1)/2.

F23 117

Minimization algorithm for DFAs

Outline of a minimization algorithm:

Given a kkk -state DFA MMM recognizing LLL :

1. For each pair q, q′q, q′q, q′ determine if Lq = L′
qLq = L′
qLq = L′
q by

checking all strings of length k(k − 1)/2k(k − 1)/2k(k − 1)/2.

Minimization algorithm for DFAs

Outline of a minimization algorithm:

Given a kkk -state DFA MMM recognizing LLL :

1. For each pair q, q′q, q′q, q′ determine if Lq = L′
qLq = L′
qLq = L′
q by

checking all strings of length k(k − 1)/2k(k − 1)/2k(k − 1)/2.

2. Obtain the minimal DFA recognizing LLL
by unifying equivalent states.

F23 119

MODIFYING & COMBINING AUTOMATA

F23 120

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

• A partial-automaton MMM terminates execution

when it cannot proceed: no applicable transition (due to partiality)

or no next-letter to move to.

It accepts www if its state-trace for www ends with an accepting state.

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

• A partial-automaton MMM terminates execution

when it cannot proceed: no applicable transition (due to partiality)

or no next-letter to move to.

It accepts www if its state-trace for www ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba}{ab, ba}{ab, ba} :

3

a

b

0

1

2

a

b

Partial-automata

• A partial-automaton is an automaton whose transition mapping

is a partial function (recall that a total-function is also a partial-function).

• A partial-automaton MMM terminates execution

when it cannot proceed: no applicable transition (due to partiality)

or no next-letter to move to.

It accepts www if its state-trace for www ends with an accepting state.

• Example: A partial automaton recognizing {ab, ba}{ab, ba}{ab, ba} :

3

a

b

0

1

2

a

b

• Some people use “automaton” for our “partial-automaton”

and “total-automaton” for our “automaton.”

From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

• Just add a sink to MMM :

convert 3

a

b

0

1

2

a

b

to 0

b a

ba a

b

a,b

a,b
3

1

K

2

From partial- to total-automaton

• Theorem. Every partial-automaton MMM can be converted

into a total-automaton M̄̄M̄M equivalent to MMM , i.e. recognizing the same

language.

Do you seee how?

• Just add a sink to MMM :

convert 3

a

b

0

1

2

a

b

to 0

b a

ba a

b

a,b

a,b
3

1

K

2

• That is, M̄̄M̄M is obtained by adding to MMM
a sink state KKK , with all missing transitions of MMM
as well as outgoing transition from KKK , pointing to KKK .

Example: Equiping strings with start signal

• M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) is a partial-automaton recognizing LLL .

Convert MMM to M ′M ′M ′ recognizing a · La · La · L.

(aaa can be construed as a start-signal.

Example: Equiping strings with start signal

• M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) is a partial-automaton recognizing LLL .

Convert MMM to M ′M ′M ′ recognizing a · La · La · L.

(aaa can be construed as a start-signal.

Fix some t 6∈ Qt 6∈ Qt 6∈ Q and let M ′M ′M ′ be

MMM augmented with ttt as the new start state,

and the transition q a→ s)q a→ s)q a→ s)

F23 123

Example: Equiping strings with end signal

• Let ✷ 6∈ Σ✷ 6∈ Σ✷ 6∈ Σ .

Convert MMM to M ′′M ′′M ′′ recognizing L · ✷L · ✷L · ✷.

Example: Equiping strings with end signal

• Let ✷ 6∈ Σ✷ 6∈ Σ✷ 6∈ Σ .

Convert MMM to M ′′M ′′M ′′ recognizing L · ✷L · ✷L · ✷.

Let M ′′M ′′M ′′ be MMM with zzz the accepting state,

augmented with the transitions a ✷→ za ✷→ za ✷→ z for each a ∈ Aa ∈ Aa ∈ A.

Example: Equiping strings with end signal

• Let ✷ 6∈ Σ✷ 6∈ Σ✷ 6∈ Σ .

Convert MMM to M ′′M ′′M ′′ recognizing L · ✷L · ✷L · ✷.

Let M ′′M ′′M ′′ be MMM with zzz the accepting state,

augmented with the transitions a ✷→ za ✷→ za ✷→ z for each a ∈ Aa ∈ Aa ∈ A.

This construction won’t work if ✷ ∈ Σ✷ ∈ Σ✷ ∈ Σ, why?

F23 124

The complement of a recognized language

• Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
is recognized then so is L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L.

The complement of a recognized language

• Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
is recognized then so is L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L.

The proof is another example of manipulating automata:

An automaton recognizing LLL is converted into one for L̄̄L̄L .

The complement of a recognized language

• Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
is recognized then so is L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L.

The proof is another example of manipulating automata:

An automaton recognizing LLL is converted into one for L̄̄L̄L .

• Given DFA MMM , how do you get a DFA M̄̄M̄M
that accepts when MMM rejects, and rejects when MMM accepts?

The complement of a recognized language

• Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
is recognized then so is L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L.

The proof is another example of manipulating automata:

An automaton recognizing LLL is converted into one for L̄̄L̄L .

• We simply intechange accepting and non-accepting states.

The complement of a recognized language

• Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
is recognized then so is L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L.

The proof is another example of manipulating automata:

An automaton recognizing LLL is converted into one for L̄̄L̄L .

• We simply intechange accepting and non-accepting states.

For example, the automaton recognizing {wσσ | w ∈ Σ∗, σ ∈ Σ }{wσσ | w ∈ Σ∗, σ ∈ Σ }{wσσ | w ∈ Σ∗, σ ∈ Σ }

4

3a

b

a b0

1

2
b

a

b

a

b

a

is converted to
0

1

2

a

b

a b

b

a

b

a

b

a

4

3

which accepts the strings of length < 2< 2< 2 and the strings

ending with two different letters.

F23 125

Application: Additional languages recognized

• Suppose MMM recognizes {w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.{w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.{w ∈ {a,b}∗ | #a(w) = #b(w) mod 2}.

• Then swapping states in MMM yields an automaton recognizing

{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}{w ∈ {a,b}∗ | #a(w) 6= #b(w) mod 2}

F23 126

Application: Showing a language not-recognized

• Show that L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

Application: Showing a language not-recognized

• Show that L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

• Clipping doesn’t work!

Application: Showing a language not-recognized

• Show that L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)}L = {w ∈ {a,b}∗ | #a(w) 6= #b(w)} is not recognized.

• Clipping doesn’t work!

• Use Clipping to show that the complement

L̄ = {w ∈ {a,b}∗ | #a(w) = #b(w)}L̄ = {w ∈ {a,b}∗ | #a(w) = #b(w)}L̄ = {w ∈ {a,b}∗ | #a(w) = #b(w)} is not recognized.

• Conclude: LLL is not recognized, or else L̄̄L̄L would be.

F23 127

Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

and

• M2M2M2 recognizes L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) } .

b# w = 0 mod 2
b

b

aa

0 1

Combining two automata

Let Σ = {a,b}Σ = {a,b}Σ = {a,b}.

• Suppose M3M3M3 recognizes L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }L3 = {w ∈ Σ∗ | #a(w) = 0 mod (3) }

a a

a

ZX Y

and

• M2M2M2 recognizes L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) }L2 = {w ∈ Σ∗ | #b(w) = 0 mod (2) } .

b# w = 0 mod 2
b

b

aa

0 1

Parallel programming is tricky, but here we have

a special form of parallelism: the two processors may work in tandem,

because they read the same input one symbol at a time.

Two automata collaborating

0
a

b b

1 2

b

a

a

b

b

aa

10

b b b b b b

a0

0

a

0

1

aa

a

a

1

0

2

0

2

1

1

1

F23 129

Conjuctive pairing

• Accepting when both accept:

b b b b b b

b

b

aa

10X Y Z

both accept

aX

0

a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a

Disjunctive pairing

• Accepting when at least one automaton accepts:

b b b b b b

X

0

a a

X

1

aa

a

a

Y

0

Z

0

Z

1

Y

1

a

b b b

a

a

X Y Z

b

b

aa

10

at least one accepts

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.
I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.
I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

◮ The transitions are 〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉 where

q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.
I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

◮ The transitions are 〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉 where

q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

– In a conjunctive product the set of

accepting states is A × A′A × A′A × A′ (both automata accept).

Formal definition of automata product

• Given automata M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) and M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)M ′ = (Σ, Q′, s′, A′, δ′)
consider a coupling:

◮ States are pairs 〈q, q′〉〈q, q′〉〈q, q′〉 where q ∈ Qq ∈ Qq ∈ Q and q′ ∈ Q′q′ ∈ Q′q′ ∈ Q′.
I.e. the set of states is Q × Q′Q × Q′Q × Q′.

◮ The initial state is 〈s, s′〉〈s, s′〉〈s, s′〉.

◮ The transitions are 〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉〈q, q′〉 σ→ 〈p, p′〉 where

q σ→ pq σ→ pq σ→ p in MMM and q′ σ→ p′q′ σ→ p′q′ σ→ p′ in M ′M ′M ′.

– In a conjunctive product the set of

accepting states is A × A′A × A′A × A′ (both automata accept).

– In a disjunctive product the set of

accepting states is (A × Q′) ∪ (Q × A′)(A × Q′) ∪ (Q × A′)(A × Q′) ∪ (Q × A′) (at least one automaton

accepts).

F23 132

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }
• {ap

b
q | p{ap
b

q | p{ap
b

q | p is odd }}}.

Some applications

• L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }L = { awz | w ∈ Σ∗ }
• {ap

b
q | p{ap
b

q | p{ap
b

q | p is odd }}}.

• An automaton over {a,b,c}{a,b,c}{a,b,c} recognizingthe string that miss at least one

letter.

F23 133

Nondeterministic Automata

F23 134

Capturing operationally language concatenation

• We verified that combining recognized languages

by union, intersection, and difference,

yields recognized languages.

• What about concatenation?

li Suppose we have two automata M0M0M0 and M1M1M1.

Construct automaton MMM such that

L(M) = L(M0) · L(M1)

M0 M1

s1s0

M

a

F23 135

Trying to make this work

M0 M1

s0

M

a s1

• Problem: Can’t coalesce aaa and σ1σ1σ1 :

They might have conflicting transitions rules:

a

s
b

b

And computation might proceed back and forth between M0M0M0 and M1M1M1 .

Spontaneous transitions

• How about allowing spontaneous transitions between states,

q
p→q
p→q
p→ without any symbol read.

• To streamline notation we can think of such transitions triggered by εεε: q ǫ→ pq ǫ→ pq ǫ→ p.

M0 M1

s0

M

a s1ε

• We call these epsilon-transitions , in analogy to our previous notation:

q w→ pq w→ pq w→ p for a combined transition from state qqq to ppp
obtained by reading the string www.

F23 138

Nondeterminism

• εεε-transitions yield “ambiguous” computation:

multiple transitions for a state+symbol may be created:

a
2

a

1

ε

F23 140

Admitting non-determinism

• We consider relaxing the requirements that each transition rule

is a function (univalent and total) and triggered by reading a letter.

• This relaxation does not correspond to normal hardware behavior, but:

Admitting non-determinism

• We consider relaxing the requirements that each transition rule

is a function (univalent and total) and triggered by reading a letter.

• This relaxation does not correspond to normal hardware behavior, but:

1. The notion is important in other computation models;

Admitting non-determinism

• We consider relaxing the requirements that each transition rule

is a function (univalent and total) and triggered by reading a letter.

• This relaxation does not correspond to normal hardware behavior, but:

1. The notion is important in other computation models;

2. It can be simulated by ε-transitions,

which do model natural phenomena; and

Admitting non-determinism

• We consider relaxing the requirements that each transition rule

is a function (univalent and total) and triggered by reading a letter.

• This relaxation does not correspond to normal hardware behavior, but:

1. The notion is important in other computation models;

2. It can be simulated by ε-transitions,

which do model natural phenomena; and

3. It is algorithmically natural, as we shall now see.

F23 141

AUTOMATA AS ON-LINE ALGORITHMS

Automata as on-line algorithms

• Automata can be viewed as efficient real time algorithms,

which move pointers (or “tokens”) around.

• An automaton to recognize the presence of ababb:

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

• It is visualized by moving a token for the state position.

F23 143

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

 a b a b a b b a

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

1
a

2 3 4 65

a

b

b a,b

b
a b b

a a

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

1
a

2 4 65

a

b

b a,b

b
a b b

a a

3

 a b a b a b b a

F23 144

An alternative, with token rules relaxed.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

An alternative, with token rules relaxed.

1
a

2 4 65b 3
a b b

a,b a,b

 a b a b a b b a

• Next states marked are 1,2 and 4. Etc.

F23 145

Non-deterministic automata

A non-deterministic automaton over Σ:

• Finite (non-empty) set Q of states

• Start state s and accepting states A ⊆ Q

• Transition mapping: δ : (Q × Σǫ) ⇒ Qδ : (Q × Σǫ) ⇒ Qδ : (Q × Σǫ) ⇒ Q

• Here Σǫ = Σ ∪ {ε}Σǫ = Σ ∪ {ε}Σǫ = Σ ∪ {ε}
• Still using the notation q σ→ pq σ→ pq σ→ p for 〈q, σ, p〉 ∈ δ〈q, σ, p〉 ∈ δ〈q, σ, p〉 ∈ δ

• But q ǫ→ pq ǫ→ pq ǫ→ p is also an option.

F23 146

Computation state-traces

• If w = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σn where σi ∈ Σεσi ∈ Σεσi ∈ Σε,

and q
σ1→ r1

σ2→ r2 · · · rn−1
σn→ pq

σ1→ r1
σ2→ r2 · · · rn−1

σn→ pq
σ1→ r1

σ2→ r2 · · · rn−1
σn→ p

then q w=⇒pq w=⇒pq w=⇒p.

Computation state-traces

• If w = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σnw = σ1 · σ2 · · · · σn where σi ∈ Σεσi ∈ Σεσi ∈ Σε,

and q
σ1→ r1

σ2→ r2 · · · rn−1
σn→ pq

σ1→ r1
σ2→ r2 · · · rn−1

σn→ pq
σ1→ r1

σ2→ r2 · · · rn−1
σn→ p

then q w=⇒pq w=⇒pq w=⇒p.

• The sequence of states

q r1 r2 · · · rn−1 pq r1 r2 · · · rn−1 pq r1 r2 · · · rn−1 p

as above is a state-trace of the NFA for input www.

F23 147

Generative definition of q w=⇒pq w=⇒pq w=⇒p

• Base. q ǫ→ qq ǫ→ qq ǫ→ q for all q ∈ Q.q ∈ Q.q ∈ Q.

• Step. If q σ→ pq σ→ pq σ→ p by the NFA’s transition,

and p w=⇒rp w=⇒rp w=⇒r has been generated already (where σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ) then q σ·w=⇒rq σ·w=⇒rq σ·w=⇒r.

F23 148

Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

• This dfn is like for DFAs, but now

1. A string www is accepted if there is some state-trace for s w=⇒As w=⇒As w=⇒A .

2. A “lucky trace” may include ε-transitions.

Acceptance by an NFA

• MMM accepts a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
if s w=⇒As w=⇒As w=⇒A.

• This dfn is like for DFAs, but now

1. A string www is accepted if there is some state-trace for s w=⇒As w=⇒As w=⇒A .

2. A “lucky trace” may include ε-transitions.

• The language recognized by MMM
is the set of accepted strings.

F23 149

Example: L(a∗
b

∗
c

∗)L(a∗
b

∗
c

∗)L(a∗
b

∗
c

∗)

a b

ε

c

ε

F23 150

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε

ε ε ε

ε ε ε

a a

a a

b b

b b

a b a b b a b a* * * * * * * *U

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

>abb

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

a>bb

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

ab>b

Recognizing L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)L(a∗
b

∗
a

∗
b

∗ ∪ b
∗
a

∗
b

∗
a

∗)

ε

ε
ε ε ε

ε ε ε

a a

a a

b b

b b

abb>

So the number of states is reduced with each step.

F23 151

DFA-RECOGNIZED = NFA-RECOGNIZED

DFA-RECOGNIZED = NFA-RECOGNIZED

• DFA-RECOGNZD =⇒=⇒=⇒ NFA-RECOGNZD:

TRIVIAL: Every DFA is an NFA

• NFA-RECOGNZD =⇒=⇒=⇒ DFA-RECOGNZD...

F23 152

Converting NFAs to equivalent DFAs

• Given an NFA NNN :

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

F23 153

• Mark as “on” the states reachable before reading any input:

b
b

aa

b
ε

ε

ε

1 3 5

42

ε

• This setup is the “start state” of our deterministic automaton.

F23 154

• On rreading aaa the NFA can be in one of possible states:

So

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε
a

• Proceed to explore the set of reachable states of NNN :

So

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

So

b

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

a

So

b

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

S3
S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

a,b

a

a

So

b

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

S3
S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

a,b

a

a

b

S4

b
b

aa

b

ε

ε

ε

1 3 5

42

ε

a

• Complete the transition for the final setup.

• The setups are the states of the new, deterministic, automaton.

• A setup is accepting if it contains an accepting state of NNN :

So

b

b

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

S3
S2

S1

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

b
b

aa

b

ε

ε

ε

1 3 5

42

ε
b

b

aa

b

ε

ε

ε

1 3 5

42

ε

a,b

a

a

F23 161

The resulting DFA

• Each state of the DFA obtained is a setup of NNN ’s states:

b

O/

bb

1,2,3,4

1,2,3,4,5

a

4,5

a,b

a

3,4,5
a

a,b

F23 162

• We have constructed from an NFA NNN an equivalent DFA MMM .

F23 163

Another example

4

3

2

1

b

a b

b

b

a
ε

ε

Another example

4

3

2

1

b

a b

b

b

a
ε

ε

Another example

 1,3 O/ 2

a,b

a,b
a a

a

b b

b

1,2,3,41,3,4

F23 164

An exponential explosion

• If NNN has nnn states, then the DfA obtained

may have up to 2n2n2n states.

• Is that really necessary?

Could we have a more efficient construction?

• No! Consider the language of strings over {a,b,c}{a,b,c}{a,b,c} that miss at least one

letter.

• The smallest DFA recognizing it is

O/

−b,−c −c,−a −a,−b

−a −b

a b c

b a

a b c

−c

a
b

a

cc

b,c
c,aa,b

0,−a,−b,−c

F23 166

• But here is a 4-state NFA recognizing it:

−c

0

−a

−bε

ε

ε
b,c

a,c

a,b

• For “missed-som” language over the Latin alphabet

the smalles recognizing automaton has 226 > 67 million states!

• But here is a 27 state NFA recognizing it:

σ = / a

σ = / b

σ = / z

ε

ε

ε

F23 168

Next ...

Descriptive Operational

Narrow STRICT-REG DFA

===

Broad REGULAR =⇒=⇒=⇒ NFA

Reminder: Generating the regular languages

1. Every finite language is regular.

2. If L, KL, KL, K are regular, then so are their union, intersection, complement, con-

catenation, star, and plus.

• We show that all regular languages are recognized by NFAs (and therefore

by DFAs).

• The proof is by induction on the generative dfn of the regular languages.

F23 170

Finite languages are recognized

• For example {01, 10, 111} is recognized by

ε

ε

0 1

1 0

1 1 1

ε

• We know that it suffices to take the finite languages with 0 or 1 elements,

each a string of size 0 or 1.

By this construction, what would be the NFA recognizing

{0}{0}{0}? {ε}{ε}{ε}? ∅∅∅?

F23 171

Complement of recognized is recognized

• We have seen:

A language recognized by an NFA is recognized by a DFA MMM ,

so its complement is recognized by the DFA M̄̄M̄M
obtained by replacing in MMM acceptance and non-acceptance.

• Note: This idea doesn’t work for NFAs:

N:

a

a

N:

a

a

NFA NNN accepts aaa and so does N̄̄N̄N .

F23 172

The ∪∪∪ and ∩∩∩ of recognized is recognized

• We already showed this for DFAs.

The ∪∪∪ and ∩∩∩ of recognized is recognized

• We already showed this for DFAs.

• An alternative approach for union:

Given L0 = L(M0)L0 = L(M0)L0 = L(M0) and L1 = L(M1)L1 = L(M1)L1 = L(M1) ,

here’s an NFA MMM that recognizes L0 ∪ L1L0 ∪ L1L0 ∪ L1

s0

s1

ε

ε

M

M

0

1

M
s

F23 173

• Once we have closure under union and complement,

we obtain closure under intersection:

• 3-If LLL and KKK are both recognized,

then so are L̄̄L̄L and K̄̄K̄K ,

and therefore L̄ ∪ K̄L̄ ∪ K̄L̄ ∪ K̄ , as well as its complement which is = L ∩ K= L ∩ K= L ∩ K .

• Once we have closure under union and complement,

we obtain closure under intersection:

• We have L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄ ,

so by complementing both sides we get L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄

• 3-If LLL and KKK are both recognized,

then so are L̄̄L̄L and K̄̄K̄K ,

and therefore L̄ ∪ K̄L̄ ∪ K̄L̄ ∪ K̄ , as well as its complement which is = L ∩ K= L ∩ K= L ∩ K .

• Once we have closure under union and complement,

we obtain closure under intersection:

• We have L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄ ,

so by complementing both sides we get L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄L ∩ K = L̄ ∪ K̄

• 3-If LLL and KKK are both recognized,

then so are L̄̄L̄L and K̄̄K̄K ,

and therefore L̄ ∪ K̄L̄ ∪ K̄L̄ ∪ K̄ , as well as its complement which is = L ∩ K= L ∩ K= L ∩ K .

F23 174

Concatenation of recognized is recognized

• Given L0 = L(M0)L0 = L(M0)L0 = L(M0) and L1 = L(M1)L1 = L(M1)L1 = L(M1) ,

here’s an NFA MMM that recognizes their concatenagion:

M1M0

s0

M

s1

ε

ε

F23 175

Plus and star of recognized are recognized

• Given L = L(M)L = L(M)L = L(M) here’s an NFA M+M+M+ recognizing L+L+L+:

ε

ε

s M0

M+

• Since L∗ = L+ ∪ {ε}L∗ = L+ ∪ {ε}L∗ = L+ ∪ {ε} we conclude that L∗L∗L∗ is also recognized.

F23 176

Graphs with reg-exps as labels

⋆ Starting with the given NFA,

Collapse labels: eg, replace q
a,b,ǫ→ pq
a,b,ǫ→ pq
a,b,ǫ→ p by q a∪b∪ǫ→ pq a∪b∪ǫ→ pq a∪b∪ǫ→ p

⋆ Create a new start state s0s0s0

with an ε-transition to the original start state of NNN .

⋆ Create a new state a0a0a0 as the only accepting state,

and create an εεε-transition from each accepting state of NNN to a0a0a0.

F23 177

A working example

Text

a1 2

3

b

b b

a
a

F23 178

10

b

ε
2 5a

3

b

b

a
a

ε

F23 179

0

b

a

b

1

ab*a

3

b

a

a

ε ε
2 5

F23 180

0 ε
2 5

b

a

b U (ab*a)(b)*(a)

1

ab*a

ε

b*a

F23 181

0 2

b U (ab*a)(b)*(a)

5
ε

b*a

b*a (b U (ab*a)(b)*(a))*

L(N) = L(b∗ ·a·(b ∪ (a·b∗ ·a)·(b)∗ ·(a))∗)

F23 182

Another example

a a

b

b

1 2

30
a*b (a U ba*b)*

30

a U ba*b

εa*b
2

0 31

a a

b
ε ε

2

b

F23 184

Yet another example

a

b

c

b

c

2

1S

3

a

ε

ε

ε

A

F23 185

a

b

c

b

c

2

1S

3

a

ε

ε

ε

A

b*a

cb*a

F23 186

b

b

2

S

3

a

ε

ε

A

b*a

cb*a

c U ba*cb*a

 U ba*

F23 187

b

2

S A

b*a

c U ba*cb*a

(c U ba*cb*a)*b*a ε(U ba*)

ε U ba*

F23 188

AS
(c U ba*cb*a)*b*a ε(U ba*)

F23 189

Summary

• The collection of DFA-recognized languages is closed

under set operations (complement and product constructions)

• A language is NFA-recognized IFF it is DFA-recognized (Powerset construc-

tion)

• The collection of recognized languages is closed

under all set/language operations.

• Therefore every regular language is recognized.

• Every recognized language is regular (state-elimination construction)

F23 190

Two-way DFAs

F23 191

Additional deterministic read-only algorithms

• Consider the language LLL over [a − z]

of words that include all letters.

No English word is in LLL, but probably every book.

• LLL is a regular language: it is the intersection

of the 26 languages {w | w{w | w{w | w has σ}σ}σ} for σ = a,b...σ = a,b...σ = a,b....

• The smallest DFA that recognizes LLL
has > 226 > 67, 000, 000> 226 > 67, 000, 000> 226 > 67, 000, 000 states.

• The smallest NFA recognizing LLL has 27 states.

• Is there a deterministic algorithm

that does it with a manageable number of states?

F23 192

A deterministic algorithm for the all-letters problem

• Algorithm: Scan for each digit separately, and repeat.

• This cannot be done if we only read forward!

The cursor would have to be scrolled back (or repositioned).

• SO let’s imagine a device that behaves just like an automaton,

but can move the cursor both ways.

F23 193

Some challenges

• Symbol read determines not only next state,

but also next move: forward or backward.

• To detect the ends of the input string it must have end-markers,

say >>> (the gate) on the left,

and ⊔⊔⊔ (the blank) on the right.

• Termination is not by reading through,

but needs to be declared by a final accept state.

(We need not guarantee termination.)

F23 194

Two-way automata

A two-way automaton (2DFA) over an alphabet Σ:

• Finite set of states QQQ

• s ∈ Qs ∈ Qs ∈ Q, the initial state

• a ∈ Sa ∈ Sa ∈ S, the accepting state

• Transition partial-function: δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• Write q
σ(α)→ pq
σ(α)→ pq
σ(α)→ p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉

F23 195

Two-way automata

• δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• Write q
σ(α)→ pq
σ(α)→ pq
σ(α)→ p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉

The intent:

• ΓΓΓ end-markers >>> (gate) and ⊔⊔⊔ (blank) added to ΣΣΣ

• Example: Input 001201001201001201 appears as >001201⊔>001201⊔>001201⊔

• The actions +++ and −−− stand for “step forward” and “step back.”

F23 196

Example: The strings using all of a,b,c

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

• With 26 in place of 3 we’d have 53 states,

as opposed to > 67, 000, 000> 67, 000, 000> 67, 000, 000 states in the smallest DFA!

F23 197

Operation of 2DFAs: configurations

• For DFAs we could generate the relation p w→ qp w→ qp w→ q
inductively, as a function of www.

• This is no longer the case for 2DFAs:

here we must account for the cursor position

and keep record of the entire input for future use.

• A cursored-string over ΣΣΣ is a Σ−Σ−Σ−string with one underlined symbol-

position.

• A configuration (cfg) is a pair (q, w̌)(q, w̌)(q, w̌) where

⋆ qqq is a state, and

⋆ w̌̌w̌w is a cursored-string,

That is, (((state, cursored-string))).

• Example: (q, >0101100⊔)(q, >0101100⊔)(q, >0101100⊔)

• The initial cfg for input www is the cfg (s, >w ⊔)(s, >w ⊔)(s, >w ⊔).

F23 198

The YIELD relation

• The Yield relation ⇒⇒⇒
(or ⇒M⇒M⇒M when it matters which MMM) is obtained by:

•

⋆ If q
γ (+)→ pq
γ (+)→ pq
γ (+)→ p

then (q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)

⋆ If q
γ (−)→ pq
γ (−)→ pq
γ (−)→ p

then (q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)

⋆ Nothing else

• If the given cfg is (q, 011010)(q, 011010)(q, 011010),

and q
0(+)→ pq
0(+)→ pq
0(+)→ p, then the transition above does not apply.

The same holds when invoking a transition q
0(−)→ pq
0(−)→ pq
0(−)→ p

for a configuration with a cursor at the head of the string, such as (q, 011010)(q, 011010)(q, 011010).

F23 199

Traces, acceptance, recognition

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no transition applies (no yield).

It is a accepting its state is accepting state aaa.

• A trace of MMM for input www
is a sequence of

c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·
where c0c0c0 is initial for www, and either

1. the sequence is infinite; or

2. the sequence is finite, and its last cfg is terminal.

• The trace is accepting if it is finite

and its last cfg is accepting.

• MMM accepts w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

if it its trace for input www is accepting.

• The language recognized by MMM is

L(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | M accepts w }w }w }

F23 200

Example

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

Accepting trace for trace of MMM above for w = bcabw = bcabw = bcab:

(1, >bcab⊔)(1, >bcab⊔)(1, >bcab⊔)

⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)

⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)

⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)⇒ (2, >bcab⊔)

⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)

⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)

⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)⇒ (3, >bcab⊔)

⇒ (4, >bcab⊔)⇒ (4, >bcab⊔)⇒ (4, >bcab⊔)

⇒ (5, >bcab⊔)⇒ (5, >bcab⊔)⇒ (5, >bcab⊔)

⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)

⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)⇒ (6, >bcab⊔)

⇒ (7, >bcab⊔)⇒ (7, >bcab⊔)⇒ (7, >bcab⊔)

F23 202

(1, >bcab⊔)(1, >bcab⊔)(1, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 204

(2, >bcab⊔)(2, >bcab⊔)(2, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 205

(2, >bcab⊔)(2, >bcab⊔)(2, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 206

(2, >bcab⊔)(2, >bcab⊔)(2, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 207

(3, >bcab⊔)(3, >bcab⊔)(3, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 208

(3, >bcab⊔)(3, >bcab⊔)(3, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 209

(3, >bcab⊔)(3, >bcab⊔)(3, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 210

(4, >bcab⊔)(4, >bcab⊔)(4, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 211

(5, >bcab⊔)(5, >bcab⊔)(5, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 212

(6, >bcab⊔)(6, >bcab⊔)(6, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 213

(6, >bcab⊔)(6, >bcab⊔)(6, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 214

(7, >bcab⊔)(7, >bcab⊔)(7, >bcab⊔)

> (+) a (−)

a,c (+)

b,c (+) a,b,c (−)

b (−)

a,b,c (−)
> (+)

> (+)

a,b (+)

c (−)

1 2 3

4 5

6 7

F23 215

Two-way automata recognize just
regular languages!

• Yet another characterization of regular languages!

• Adding nondeterminism to 2DFA still recognizes just regular languages!

• We still avoid extensible memory, so this is not a big surprise.

F23 216

Proof outline

• DFA recognize languages with finitely many residues L/wL/wL/w.

• For each www a finite amount of info suffices to decide x ∈ L/wx ∈ L/wx ∈ L/w.

• For DFA the info is the state qqq reached: s w→ qs w→ qs w→ q .

• For 2DFA the scan might cross out of www and into xxx .

back in, and then out again into xxx.

• This is the info needed about www:

If the reading cross back into www in a state

• The extra info:

the pairs (in, out)(in, out)(in, out) of states

s.t. crossing back into w in state in

leads to crossing back out in state out.

u

p1

p0

xσ

w

s

position read

time

F23 218

Language recognized is regular!

• Say that 〈p0, p1〉〈p0, p1〉〈p0, p1〉 is a back-crossing pair.

• L/wL/wL/w is determined by qqq reached by reading www,

plus the set of back-crossing pairs for www:

if w, w′w, w′w, w′ reach the same state,

and have the same crossing pairs, then L/w = L/w′L/w = L/w′L/w = L/w′.

s

p0

p1

p2

s

a
time time

p0

p1

p2

a

q

p3

position read position read

q

p3

in xx in

w x w’ x

L/w L/w’IFF

• For MMM with kkk states

there are k2k2k2 potential back-crossing pairs,

and so 2k2
2k2
2k2

possible descriptions of the situation at the border.

• Finitely many residues, albeit a lot, but still

recognizing a regular language!

F23 221

REGULARITY

F23 222

The many facets of regularity

• Big equivalence of language properties,

relating definitional to structural as well as

computational properties.

The many facets of regularity

• Big equivalence of language properties,

relating definitional to structural as well as

computational properties.

Regular ⇐⇒ Strictly-Regular

⇐⇒ DFA-recognized

⇐⇒ 2DFA-recognized

⇐⇒ NFA-recognized

⇐⇒ has finitely many residues

• Another important characterization of regular languages

is related to our automata-construction method.

The many facets of regularity

• Big equivalence of language properties,

relating definitional to structural as well as

computational properties.

Regular ⇐⇒ Strictly-Regular

⇐⇒ DFA-recognized

⇐⇒ 2DFA-recognized

⇐⇒ NFA-recognized

⇐⇒ has finitely many residues

• Another important characterization of regular languages

is related to our automata-construction method.

• One disappointment: It’s all about languages and acceptors.

What about functions and transducers?

The many facets of regularity

• Big equivalence of language properties,

relating definitional to structural as well as

computational properties.

Regular ⇐⇒ Strictly-Regular

⇐⇒ DFA-recognized

⇐⇒ 2DFA-recognized

⇐⇒ NFA-recognized

⇐⇒ has finitely many residues

• Another important characterization of regular languages

is related to our automata-construction method.

• One disappointment: It’s all about languages and acceptors.

What about functions and transducers?

F23 223

FINITE STATE TRANSDUCERS

F23 224

Finite-state transducers

• In a 2DFA the transition mapping indicates

a choice of action: step forward or backward.

In a deterministic finite-state transducer (DFT) the choice

of action is an output string to be appended to an output device.

•

Finite-state transducers

• In a 2DFA the transition mapping indicates

a choice of action: step forward or backward.

In a deterministic finite-state transducer (DFT) the choice

of action is an output string to be appended to an output device.

•

• Examples.

◮ Double zeros: Input alphabet: 0,1.

The DFS outputs 000000 for 000 and 111 for 111 .

Finite-state transducers

• In a 2DFA the transition mapping indicates

a choice of action: step forward or backward.

In a deterministic finite-state transducer (DFT) the choice

of action is an output string to be appended to an output device.

•

• Examples.

◮ Double zeros: Input alphabet: 0,1.

The DFS outputs 000000 for 000 and 111 for 111 .

◮ Input alphabet: English words

Output: phonetic text.

DFS outputs for each word its pronunciation.

Finite-state transducers

• In a 2DFA the transition mapping indicates

a choice of action: step forward or backward.

In a deterministic finite-state transducer (DFT) the choice

of action is an output string to be appended to an output device.

•

• Examples.

◮ Double zeros: Input alphabet: 0,1.

The DFS outputs 000000 for 000 and 111 for 111 .

◮ Input alphabet: English words

Output: phonetic text.

DFS outputs for each word its pronunciation.

◮ Input alphabet: Latin.

Output: Blanks replaced by ASCII < newline >.

F23 225

Formal definition of DFTs

• A deterministic finite-state transducer (DFT) consists of

◮ Two alphabets ΣΣΣ and ΓΓΓ (possibly the same);

Formal definition of DFTs

• A deterministic finite-state transducer (DFT) consists of

◮ Two alphabets ΣΣΣ and ΓΓΓ (possibly the same);

◮ A finite non-empty set QQQ of states;

◮ An initial (or “start”) state s ∈ Qs ∈ Qs ∈ Q;

Formal definition of DFTs

• A deterministic finite-state transducer (DFT) consists of

◮ Two alphabets ΣΣΣ and ΓΓΓ (possibly the same);

◮ A finite non-empty set QQQ of states;

◮ An initial (or “start”) state s ∈ Qs ∈ Qs ∈ Q;

◮ A partial-function δ : Q × Σ ⇀ Γ∗ × Qδ : Q × Σ ⇀ Γ∗ × Qδ : Q × Σ ⇀ Γ∗ × Q .

F23 226

Examples

◮ Double zeros: The input is a binary string.

Output: 000000 for each 000 read and 111 for 111 .

0 : 00,
1 :1

Examples

◮ Delete zeros: The input is a binary string.

Output: εεε for each 000 read and 111 for 111 .

0 :
1 :1

ε,

Examples

◮ Delete duplicate letters: The input is binary.

Output: Remove duplicates, e.g. 001110 7→ 010001110 7→ 010001110 7→ 010.

1 : ε

0 : ε
1 : 1

0 :0

1 : 1

0 :0

F23 227

Computing over streams

• A Given a set SSS a stream over ΣΣΣ (or Σ-stream) is function f : N → Sf : N → Sf : N → S ,

i.e. an infinite sequence a0, a1, . . .a0, a1, . . .a0, a1, . . . where ai ∈ Sai ∈ Sai ∈ S.

(Alternative names: ωωω -strings, ωωω -words.)

Computing over streams

• A Given a set SSS a stream over ΣΣΣ (or Σ-stream) is function f : N → Sf : N → Sf : N → S ,

i.e. an infinite sequence a0, a1, . . .a0, a1, . . .a0, a1, . . . where ai ∈ Sai ∈ Sai ∈ S.

(Alternative names: ωωω -strings, ωωω -words.)

• Example, every real number a ∈ [0..1]a ∈ [0..1]a ∈ [0..1] has a decimal expansion as a stream

.a0a1a2a0a1a2a0a1a2 . . . over the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 90, 1, 2, 3, 4, 5, 6, 7, 8, 90, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Computing over streams

• A Given a set SSS a stream over ΣΣΣ (or Σ-stream) is function f : N → Sf : N → Sf : N → S ,

i.e. an infinite sequence a0, a1, . . .a0, a1, . . .a0, a1, . . . where ai ∈ Sai ∈ Sai ∈ S.

(Alternative names: ωωω -strings, ωωω -words.)

• Example, every real number a ∈ [0..1]a ∈ [0..1]a ∈ [0..1] has a decimal expansion as a stream

.a0a1a2a0a1a2a0a1a2 . . . over the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 90, 1, 2, 3, 4, 5, 6, 7, 8, 90, 1, 2, 3, 4, 5, 6, 7, 8, 9.

E.g. 111 is .999999999999 . . .,
√

2/2
√

2/2
√

2/2 is .707106781187071067811870710678118 . . . and π/10π/10π/10 is .3141592653 · · · ..3141592653 · · · ..3141592653 · · · .

F23 228

Running DFA’s on streams: Büchi acceptors

• Running DFT’s on streams is obvious,

since termination plays no direct role in their running.

But what about DFA’s?

How is an input stream to be “accepted”?

Running DFA’s on streams: Büchi acceptors

• Running DFT’s on streams is obvious,

since termination plays no direct role in their running.

But what about DFA’s?

How is an input stream to be “accepted”?

• How about considering input stream ααα
to be “accepted” by MMM if the execution of MMM on ααα
has an accepting state?

Running DFA’s on streams: Büchi acceptors

• Running DFT’s on streams is obvious,

since termination plays no direct role in their running.

But what about DFA’s?

How is an input stream to be “accepted”?

• How about considering input stream ααα
to be “accepted” by MMM if the execution of MMM on ααα
has an accepting state?

• Bad idea: It goes counter to the accepance of strings!

Running DFA’s on streams: Büchi acceptors

• Running DFT’s on streams is obvious,

since termination plays no direct role in their running.

But what about DFA’s?

How is an input stream to be “accepted”?

• What about MMM being in an accepting state from a

certain step and on?

Running DFA’s on streams: Büchi acceptors

• Running DFT’s on streams is obvious,

since termination plays no direct role in their running.

But what about DFA’s?

How is an input stream to be “accepted”?

• What about MMM being in an accepting state from a

certain step and on?

• Also bad:

Acceptance is then determined by a prefix of the input.

Running DFA’s on streams: Büchi acceptors

• Running DFT’s on streams is obvious,

since termination plays no direct role in their running.

But what about DFA’s?

How is an input stream to be “accepted”?

• The right idea (Büchi, 1962):

Accept an input if its state-trace is in a “good” state

infinitely many times.

F23 229

Example 1

Here’s a DFA.

1 2

a

a,b b

Example 1

Here’s a DFA.

1 2

a

a,b b

◮ What language does it recognize?

Example 1

Here’s a DFA.

1 2

a

a,b b

◮ What language does it recognize?

◮ ((a ∪ b) · b∗ · a)∗((a ∪ b) · b∗ · a)∗((a ∪ b) · b∗ · a)∗.

Example 1

Here’s a DFA.

1 2

a

a,b b

◮ What language does it recognize?

◮ ((a ∪ b) · b∗ · a)∗((a ∪ b) · b∗ · a)∗((a ∪ b) · b∗ · a)∗.

What streams are accepted?

Example 1

Here’s a DFA.

1 2

a

a,b b

◮ What language does it recognize?

◮ ((a ∪ b) · b∗ · a)∗((a ∪ b) · b∗ · a)∗((a ∪ b) · b∗ · a)∗.

What streams are accepted?

With infinitely many aaa’s.

F23 230

Example 2

1 2

bb

a a

Example 2

1 2

bb

a a

◮ What streams are accepted?

Example 2

1 2

bb

a a

◮ What streams are accepted?

◮ Where every aaa is followed by some bbb .

F23 231

Example 3

1 2

a,b

b

b

Example 3

1 2

a,b

b

b

◮ What stream are accepted?

Example 3

1 2

a,b

b

b

◮ What stream are accepted?

◮ With finitely many aaa’s.

F23 232

