
COMPUTABILITY

F23 1

In this chapter we

• ... highlight Decision Problems

• ... outline a cycle of interpretations.

Writing 444 for “is computing no more than”:

An imperative language IPS 444 Turing acceptors

444 General grammars

444 IPS

• ... understand the notion of universal devices

• ... evidence that “computability” has been captured (Turing-

Church Thesis)

F23 2

DECISION PROBLEMS

Decision problems

• A decision problem or just problem for short,

is a request for an algorithm:

1. Instances: Finite discrete objects, representable textually..

2. Property: that the instances may satisfy or not.

• A solution is an algorithm deciding for each instance

whether it satisfies the property.

If such an algorithm exists the problem is decidable, otherwise

it is undecidable.

F23 4

Example: Composite numbers

• Instances: integers > 1> 1> 1.

• Property: “is composite”.

• A (poor) decision algorithm:

Given input]nnn check for successive numbers k 6
√
nk 6

√
nk 6

√
n

whether k | nk | nk | n (kkk divides nnn).

F23 5

Example: Integer Polynomials

• The Integer Polynomials problem has an important history,

and is also known as Hilbert’s Tenth Problem .

• Instances: Polynomials with integer coefficients.

• Property: Evaluates to zero for some integer input.

• Examples:

⋆ x2 + x− 2x2 + x− 2x2 + x− 2 has solution x = 1x = 1x = 1 (as well as −2−2−2).

⋆ x2 + x− 1x2 + x− 1x2 + x− 1 has no integer solution.

⋆ x2 + y2 − z2x2 + y2 − z2x2 + y2 − z2 has solution x = y = z = 0x = y = z = 0x = y = z = 0

as well as (3, 4, 5)(3, 4, 5)(3, 4, 5), (5, 12, 13)(5, 12, 13)(5, 12, 13) ... (the Pythagorean triplets).

• An equivalent formulation:

Given an equation that uses integers, + and ×××,

does it have an integer solution.

Problem about finite sets: Integer Partition

• Integer partition:

Given S ⊆ NS ⊆ NS ⊆ N is there a P ⊆ SP ⊆ SP ⊆ S adding up to half of ∑

S
∑

S
∑

S.

• That is:

⋆ Instances: Finite set SSS of positive integers

⋆ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that ∑

P = ∑(S − P)
∑

P = ∑(S − P)∑

P = ∑(S − P)

• Instances implicitly assumed to be given textually:

{2, 4, 5}{2, 4, 5}{2, 4, 5} given as 10#100#10110#100#10110#100#101.

• Examples: {2, 3, 4, 5}{2, 3, 4, 5}{2, 3, 4, 5}: yes.

{2, 3, 4, 6}{2, 3, 4, 6}{2, 3, 4, 6}: no (total is odd)

{2, 3, 4, 7}{2, 3, 4, 7}{2, 3, 4, 7}: no

F23 7

Exact Sum

• Exact Sum:

Given finite S ⊂ NS ⊂ NS ⊂ N and t > 0t > 0t > 0 (the “target”)

is there P ⊆ SP ⊆ SP ⊆ S such that ∑

P = t
∑

P = t
∑

P = t?

• That is,

⋆ Instances: Pairs 〈S, t〉〈S, t〉〈S, t〉 as above

⋆ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that ∑

P = t
∑

P = t
∑

P = t.

• Examples: {1, 2, 3, 5}, 6{1, 2, 3, 5}, 6{1, 2, 3, 5}, 6 : yes.

{1, 3, 7}, 5{1, 3, 7}, 5{1, 3, 7}, 5 : no.

F23 8

Decision problem about graphs: Connectivity

• A finite graph G = (V,E)G = (V,E)G = (V,E) is connected

if every pair of distinct vertices is linked by a path.

• Connectivity:

Given a finite undirected finite graph GGG, is it connected?

⋆ Instances: Finite undirected graph G = (V,E)G = (V,E)G = (V,E)

⋆ Property: GGG is connected

• Implicit assumption: graphs are given textually,

e.g. by an adjacency list or a matrix.

• A (poor) decision algorithm: Exhaustive search (“brute force”):

for each pair of vertices, try all possible paths.

• There are very efficient decision algorithms for CONNECTIVITY.

F23 9

Graph problems: Clique

• A clique in a graph G = (V,E)G = (V,E)G = (V,E) is a set C ⊆ VC ⊆ VC ⊆ V ,

s.t. every distinct u, v ∈ Cu, v ∈ Cu, v ∈ C are on an edge.

• The Clique problem:

Given a finite undirected graph GGG and a target t > 0t > 0t > 0,

is there a clique in GGG with > t> t> t vertices.

• Exhaustive search (“brute force”) solution:

Try all subsets of size ttt.

F23 10

Equation Solvability: Strings

• String expressions (over some fixed alphabet ΣΣΣ)

generated from variables and fixed strings in Σ∗Σ∗Σ∗ .

• A solution of t = ψt = ψt = ψ is a binding

of string to the variables in the equation, which makes the

equation true.

• Example: x ∗ 01 ∗ y = y ∗ 10 ∗ xx ∗ 01 ∗ y = y ∗ 10 ∗ xx ∗ 01 ∗ y = y ∗ 10 ∗ x
has as solution x = 11, y = 1x = 11, y = 1x = 11, y = 1

Given an equation between string-expressions

does it have a solution?

F23 11

Equation Solvability: Polynomials

– Monomials are products ax1 · · ·xkax1 · · ·xkax1 · · ·xk .

A Polynomial is a sum of monomials.

– Polynomial integer solvability Problem:

Given a polynomial P (x1, . . . , xk)P (x1, . . . , xk)P (x1, . . . , xk) with integer coefficients,

does the equation P (x1, . . . , xk) = 0P (x1, . . . , xk) = 0P (x1, . . . , xk) = 0 have an integer solution?

The German mathematician David Hilbert presented in 1900

a list of 20 open questions.

Finding an algorithm deciding polynomial solvability was the

tenth,

In the 1970’s Martin Davis, Yuri Matiyasevich, Hilary Putnam

and Julia Robinson showed that this problem is undecidable.

F23 12

TEXTUAL DECISION PROBLEMS

Every language is a decision problem

• Every L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is a decision problem:

⋆ Instances: w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

⋆ Property: w ∈ Lw ∈ Lw ∈ L

F23 14

Every decision problem is a language

• The instances of a decision problem are finite and discrete,

so they are codable as text. Examples:

• Natural numbers (e.g. the primes numbers):

decimal coding: 2, 3, 5, 7, 112, 3, 5, 7, 112, 3, 5, 7, 11

binary coding: 10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011, . . .

unary coding: II, III, IIIII, IIIIIII, IIIIIIIIIIIII, III, IIIII, IIIIIII, IIIIIIIIIIIII, III, IIIII, IIIIIII, IIIIIIIIIII

• Finite sets of natural numbers: {2, 3, 5}{2, 3, 5}{2, 3, 5} coded by 10#11#10110#11#10110#11#101

• Matrices:

2 3

5 7

2 3

5 7

2 3

5 7

coded by 10#11##101#11110#11##101#11110#11##101#111.

• Directed graphs: Code the adjacency matrix.

• Turing machines.

• Once we set a coding we write a#a#a# for the code of aaa.

F23 15

What about the instances?

• If we code a problem’s instances as Σ-strings,

what about Σ-strings that do not represent instances?

• E.g. for PRIME, strings w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ that are not binary numer-

als?

⋆ Version 1:

Does binary numeral www denote a prime ?

Here non-numerals are not instances.

⋆ Version 2:

Does string w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ denote a prime ?

Here non-numerals are instances, for which the answer is

no.

• We disregard this distinction,

because for all actual problems it is easy to tell

whether or not a string represents an instance of the problem.

F23 18

EQUIVALENCE OF COMPUTATION MODELS

AN IMPERATIVE PROGRAMMING LANGUAGE

High-level programming

• Most algorithms are successfully cast in

high-level programming languages that support

direct representation of relevant data and operations.

• We define a simple high-level imperative language,

epitomizing such languages.

F23 21

Imperative programs

• Broad programming paradigms:

imperative and declarative

• Imperative constructs provide access to the computer’s store,

so can be construed as powerful machines.

Certain algorithms call for imperative constructs.

• Declarative constructs (functional, relational)

– abstract away from store/implementation

– tend to be less efficient

– but easier to code, understand, verify

• Most modern higher-level programming languages combine

both types of constructs.

F23 22

Denoting strings by terms

• We define an imperative programming language IPS.

over a single data-type: Σ∗Σ∗Σ∗ for some fixed alphabet ΣΣΣ.

• We assume an unbounded supply of reserved identifiers

we call variables.

• What they are is not important.

For example we might use v0, v1, v00,v01 ...v0, v1, v00,v01 ...v0, v1, v00,v01 ...,

that is a vvv followed by a string of booleans.

• We use x, y, z, ...x, y, z, ...x, y, z, ... (with scripts and marks) as

discourse parameters for variables.

• The set of Terms (over ΣΣΣ) is generated inductively:

⋆ Basis: Variables, eee (denoting ε), each symbol in Σ.

⋆ Operations: If ttt and qqq are terms

then so are t ∗ qt ∗ qt ∗ q, hd(t)hd(t)hd(t) and tl(t)tl(t)tl(t).

• Intent: ∗∗∗ denotes concatenation: ab ∗ ac = abacab ∗ ac = abacab ∗ ac = abac .

hd(abc) = ahd(abc) = ahd(abc) = a , tl(abc) = bctl(abc) = bctl(abc) = bc,

hd(ε) = tl(ε) = εhd(ε) = tl(ε) = εhd(ε) = tl(ε) = ε

• A term is closed if it has no variables.

• Concatenation is associative,

so parens are not needed for multiple concatenations.

• Strings are syntactic sugar: 011011011 stands for 0 ∗ 1 ∗ 10 ∗ 1 ∗ 10 ∗ 1 ∗ 1.

F23 24

Assignments

• An assignment is a phrase x := tx := tx := t (xxx a variable, ttt a term)

• Examples:

x := x ∗ ax := x ∗ ax := x ∗ a
y := tl(x)y := tl(x)y := tl(x)

z := tl(tl(x))z := tl(tl(x))z := tl(tl(x))

x := x ∗ xx := x ∗ xx := x ∗ x
y := tl(y) ∗ hd(y)y := tl(y) ∗ hd(y)y := tl(y) ∗ hd(y)

x := hd(tl(x)) ∗ hd(x) ∗ tl(tl(x))x := hd(tl(x)) ∗ hd(x) ∗ tl(tl(x))x := hd(tl(x)) ∗ hd(x) ∗ tl(tl(x))

• Non-examples:

tl(x)tl(x)tl(x) := a ∗ tl(x):= a ∗ tl(x):= a ∗ tl(x)

a ∗ xa ∗ xa ∗ x := a ∗ tl(x):= a ∗ tl(x):= a ∗ tl(x)

• The reserved identifier skip stands for an assignment x := xx := xx := x.

F23 25

Composition

• Compound programs are built up using

composition, branching, and iteration.

• Composition: If PPP and QQQ are programs, then so is P ;QP ;QP ;Q.

• Intended execution: execute PPP , then execute QQQ.

• Composition is associative, so no parens are needed:

P1 ; P2 ; · · · ; PnP1 ; P2 ; · · · ; PnP1 ; P2 ; · · · ; Pn

• Example: Swap values of x, yx, yx, y :

z := x; x := y; y := zz := x; x := y; y := zz := x; x := y; y := z

F23 26

Branching

• An equation is a phrase t = qt = qt = q (t, qt, qt, q terms).

• A guard is a boolean combination of equations.

• Example: x 6= e or y = x ∗ hd(z)x 6= e or y = x ∗ hd(z)x 6= e or y = x ∗ hd(z)
• If GGG is a guard and P,QP,QP,Q are programs,

then if (G) {P}{Q}if (G) {P}{Q}if (G) {P}{Q} is a program.

• Example:

if (x 6= e) {x := tl(x)} {x := y}if (x 6= e) {x := tl(x)} {x := y}if (x 6= e) {x := tl(x)} {x := y}

• Using a no-op program skipskipskip we define a no-branching condi-

tional:

if (x = y) {y := z}if (x = y) {y := z}if (x = y) {y := z}

abbreviates if (x = y) {y := z} {skip}if (x = y) {y := z} {skip}if (x = y) {y := z} {skip}

F23 28

Iteration

• If GGG is a guard, and PPP a program, then do (G) {P}do (G) {P}do (G) {P} is a

program.

• Example:
y := e;y := e;y := e;

do (x 6= e)(x 6= e)(x 6= e)

{ y := y ∗ hd(x) ∗ hd(x);{ y := y ∗ hd(x) ∗ hd(x);{ y := y ∗ hd(x) ∗ hd(x);

x := tl(x)x := tl(x)x := tl(x)

}}}

F23 29

Input and output

• We use reserved variables ininin and outoutout.

For several inputs use in0, in1, ...in0, in1, ...in0, in1,

• Convention: all variables are initially assigned ε,

except for input variables, which are initialized to the inputs.

• Upon termination, the output is the value of the variable outoutout.

F23 30

Example: Collect aaa’s

• Task: Place in outoutout the aaa’s in the input.

• Suggestion: Place input value in a “working variable”.

That way the input remains available for later reference.

x := in;x := in;x := in;

do (x 6= e)do (x 6= e)do (x 6= e)

if (hd(x) = a)if (hd(x) = a)if (hd(x) = a)

{ y := a ∗ y }{ y := a ∗ y }{ y := a ∗ y }
{ skip }{ skip }{ skip }
}}}

x := tl(x)x := tl(x)x := tl(x)

}}}
out := yout := yout := y

F23 31

Example: Flip

• Task: Output the flip of a string of booleans.

x := in;x := in;x := in;

do (x 6= e)(x 6= e)(x 6= e)

{{{ if (hd(x) = e)(hd(x) = e)(hd(x) = e)

{y := y ∗ 1}{y := y ∗ 1}{y := y ∗ 1}
{y := y ∗ 0}{y := y ∗ 0}{y := y ∗ 0}

}}}
out := yout := yout := y

F23 33

Example: Reverse

x := in;x := in;x := in;

do (x 6= e)do (x 6= e)do (x 6= e)

{ if (x 6= e){ if (x 6= e){ if (x 6= e)

{y := hd(x) ∗ y}{y := hd(x) ∗ y}{y := hd(x) ∗ y}
{x := tl(x)}{x := tl(x)}{x := tl(x)}
}}}

out := yout := yout := y

F23 34

Example: Merge

x := in0; y := in1;x := in0; y := in1;x := in0; y := in1;

do (x 6= e or y 6= e)do (x 6= e or y 6= e)do (x 6= e or y 6= e)

{z := z ∗ hd(x); z = z ∗ hd(y);{z := z ∗ hd(x); z = z ∗ hd(y);{z := z ∗ hd(x); z = z ∗ hd(y);

x := tl(x); y := tl(y)x := tl(x); y := tl(y)x := tl(x); y := tl(y)

}}}
out := zout := zout := z

F23 35

Stores

• Program execution proceeds in step-by-step calculation,

each step is changing the memory.

• The “memory” is a binding of values (strings) to identifiers (vari-

ables).

This form of memory is called environment or store.

• Writing VarVarVar for the set of variables,

a store is a function V : Var → Σ∗V : Var → Σ∗V : Var → Σ∗ (VVV for “value”.)

F23 36

A term valuation function
.

• VVV can be extended to apply to all terms.

We overload the symbol VVV .

⋆ V (x)V (x)V (x) (xxx a variable) is defined

by the given function VVV .

⋆ V (e)V (e)V (e) is the empty string.

⋆ V (σ)V (σ)V (σ) is the letter σσσ

⋆ V (t ∗ q)V (t ∗ q)V (t ∗ q) is V (t) · V (q)V (t) · V (q)V (t) · V (q)

⋆ V (hd(t))V (hd(t))V (hd(t)) is the first symbol of V (t)V (t)V (t) (but εεε if V (t) = εV (t) = εV (t) = ε)

⋆ V (tl(t))V (tl(t))V (tl(t)) is the tail of V (t)V (t)V (t) (but εεε if V (t) = εV (t) = εV (t) = ε)

F23 37

Program’s meaning: transforming stores

• A program is a piece of text.

Its meaning, also called semantics,

is a mapping from “input” stores to “final” stores,

that is a mapping from an initial store, with

V (in) =V (in) =V (in) = the input, and V (x) = εV (x) = εV (x) = ε for other variables xxx,

to a final store (with outoutout containing the output).

• That is, the meaning of a program PPP is a partial-function

[[P]] : Stores ⇀ Stores[[P]] : Stores ⇀ Stores[[P]] : Stores ⇀ Stores

where Stores is the set of stores.

F23 38

Semantic brackets

• The double-brackets are called semantic brackets,

and are a common notation of all sorts of semantic mappings,

assigning a meaning to syntactic phrases.

• So [[P]](V)[[P]](V)[[P]](V) is PPP ’s output-store for the input-store VVV .

Alternative notation: V ⇒P V
′V ⇒P V
′V ⇒P V
′, (where V ′V ′V ′ is the output-store).

• Note: [[P]][[P]][[P]] is a partial function:

when PPP on input-store VVV does not terminate,

there is no output-store.

F23 39

Program meaning: Assignments

• Programs PPP are generated inductively.

[[P]][[P]][[P]] is defined by a corresponding recurrence.

• Assignments: If PPP is x := tx := tx := t then V ⇒P V ′V ⇒P V ′V ⇒P V ′

where V ′V ′V ′ is VVV except that V ′(x) = V (t)V ′(x) = V (t)V ′(x) = V (t).

• V ⇒skip VV ⇒skip VV ⇒skip V

F23 40

Semantics of composition

• V ⇒P ;Q V
′V ⇒P ;Q V
′V ⇒P ;Q V
′ iff there is a store W such that V ⇒P W ⇒Q V

′V ⇒P W ⇒Q V
′V ⇒P W ⇒Q V
′ .

• That is: [[P ;Q]] = [[P]] ◦ [[Q]][[P ;Q]] = [[P]] ◦ [[Q]][[P ;Q]] = [[P]] ◦ [[Q]] .

The semantic of program composition is relational composition.

F23 41

Semantics of branching

• Guards are either true or false in a store.

• Example: tl(x) = y ∗ hd(x)tl(x) = y ∗ hd(x)tl(x) = y ∗ hd(x) is true in VVV

iff V (x) = V (y ∗ hd(x))V (x) = V (y ∗ hd(x))V (x) = V (y ∗ hd(x))

• If RRR is if (G) {P}{Q}if (G) {P}{Q}if (G) {P}{Q} then

V ⇒R V ′V ⇒R V ′V ⇒R V ′ iff

GGG is true in VVV and V ⇒P V
′V ⇒P V
′V ⇒P V
′

or

GGG is false in VVV and V ⇒Q V
′V ⇒Q V
′V ⇒Q V
′ .

F23 42

Semantics of iteration

• If RRR is do (G) {P}do (G) {P}do (G) {P} then

V ⇒R V ′V ⇒R V ′V ⇒R V ′ iff there are stores V0...VkV0...VkV0...Vk such that

V = V0 ⇒P V1 ⇒P · · · ⇒P Vk = V ′V = V0 ⇒P V1 ⇒P · · · ⇒P Vk = V ′V = V0 ⇒P V1 ⇒P · · · ⇒P Vk = V ′

and GGG is true in each Vi (i < k)Vi (i < k)Vi (i < k) and false in VkVkVk.

VVV ⇒P⇒P⇒P V1V1V1 ⇒P⇒P⇒P · · ·· · ·· · · ⇒P⇒P⇒P ViViVi ⇒P⇒P⇒P · · ·· · ·· · · ⇒P⇒P⇒P Vk−1Vk−1Vk−1 ⇒P⇒P⇒P V ′V ′V ′

↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑
GGG GGG GGG GGG GGG

true true true true false

F23 43

Representing stores

Store x1x1x1 x2x2x2 · · ·· · ·· · · xnxnxn
↓↓↓ ↓↓↓ ↓↓↓
w1w1w1 w2w2w2 · · ·· · ·· · · wnwnwn

represented by string $ w1 $ w2 $ · · · $ wn $$ w1 $ w2 $ · · · $ wn $$ w1 $ w2 $ · · · $ wn $

• By induction on programs:

for each program PPP obtain Turing transducer MPMPMP

that computes ⇒P⇒P⇒P .

F23 44

From imperative programs

to Turing transducers

F23 45

Converting programs with output to Turing transducers

• We convert programs PPP to equivalent Turing machines TPTPTP .

• TPTPTP is equivalent to PPP in the sense that:

[u1, u2, · · · un] =⇒P [v1, v2, · · · vn][u1, u2, · · · un] =⇒P [v1, v2, · · · vn][u1, u2, · · · un] =⇒P [v1, v2, · · · vn]

converts to

> $ u1 $ u2 $ · · · $ un $ =⇒TP > $ v1 $ v2 $ · · · $ vn $> $ u1 $ u2 $ · · · $ un $ =⇒TP > $ v1 $ v2 $ · · · $ vn $> $ u1 $ u2 $ · · · $ un $ =⇒TP > $ v1 $ v2 $ · · · $ vn $

F23 46

• So TPTPTP computes a coded version of [[P]][[P]][[P]].

• Set in, outin, outin, out variables as x1, x2x1, x2x1, x2.

The final Turing transducer interpreting PPP :

1. Converts its input www to PPP ’s initial store for www :

> $ w $ $ · · · $ $> $ w $ $ · · · $ $> $ w $ $ · · · $ $ (www as the value of x1x1x1, other variables set

to εεε.)

2. Computes [[P]][[P]][[P]] over representations of the store.

3. Converts the final store $u1, $, u2 $ · · · $un $$u1, $, u2 $ · · · $un $$u1, $, u2 $ · · · $un $ to PPP ’s output

>u2 ⊔...> u2 ⊔...> u2 ⊔....

F23 47

UNIVERSAL INTERPRETERS

F23 48

Interpreting Turing transducers by programs

• Showed how to convert programs to equivalent Turing transduc-

ers.

• Reverse should be trivial: interpreting the feeble by the mighty.

• It’ll still be useful!

F23 49

Cfg

〈q, u σ v〉〈q, u σ v〉〈q, u σ v〉
represented by

Store

statestatestate leftleftleft cursorcursorcursor rightrightright

↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓
qqq uRuRuR σσσ vvv

• Note the reversal of leftleftleft ,

so that the head be the last symbol of its value.

Cfg

〈A, >0111 0 01⊔ ⊔〉〈A, >0111 0 01⊔ ⊔〉〈A, >0111 0 01⊔ ⊔〉
represented by

Store

statestatestate leftleftleft cursorcursorcursor rightrightright

↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓
AAA 1110>1110>1110> 000 01⊔ ⊔01⊔ ⊔01⊔ ⊔

F23 50

Interpreting overwrite action

• Machine action: A
0 (1)→ BA
0 (1)→ BA
0 (1)→ B

• Program action:

if (state = A(state = A(state = A and cursor = 0cursor = 0cursor = 0)

{state := B; cursor := 1}{state := B; cursor := 1}{state := B; cursor := 1}

F23 51

Interpreting left move

• Machine action: A 0 (−)0 (−)0 (−)−−→ BA 0 (−)0 (−)0 (−)−−→ BA 0 (−)0 (−)0 (−)−−→ B

• Program action:

if (state = A(state = A(state = A and cursor = 0cursor = 0cursor = 0)

{state := B;{state := B;{state := B;

if (left 6= e)(left 6= e)(left 6= e)

right := cursor ∗ right;right := cursor ∗ right;right := cursor ∗ right;

cursor := hd(left);cursor := hd(left);cursor := hd(left);

left := tl(left)}left := tl(left)}left := tl(left)}

F23 52

Interpreting Turing transducers (example)

• Machine transitions: S
0 (+)→ A A

0 (1)→ B A
1 (−)→ BS

0 (+)→ A A
0 (1)→ B A

1 (−)→ BS
0 (+)→ A A

0 (1)→ B A
1 (−)→ B

• Initializing:

state := S; left := e; cursor := >; right := instate := S; left := e; cursor := >; right := instate := S; left := e; cursor := >; right := in

• Execution:

do (a transition applies)

{{{ if (state = S(state = S(state = S and cursor = 0)cursor = 0)cursor = 0)

{ · · · }{ · · · }{ · · · } {. . .}{. . .}{. . .};

{{{ if (state = A(state = A(state = A and cursor = 0)cursor = 0)cursor = 0)

{ · · · }{ · · · }{ · · · } ...

F23 53

THEOREM:

If a partial function is computable by a Turing transducer,

then it is computable by a program.

• What’s the point of this theorem?

• Answer:

Towards a uniform automation of compilation.

• Early 1950s’ computers were programmed mannually,

by re-switching the radio-tube components for each new task.

• See http://www.columbia.edu/cu/computinghistory/eniac.html

F23 54

A universal interpreter

• Consider toy machines first, all with:

– I/O alphabet: Σ = {0, 1}
Machine alphabet: Γ = {0, 1, ⊔, >}.

– Up to five states A, B, C, D, E with A initial and B print state.

• Textual coding of machines:

– Transition entry: q γ α p

q, p ∈ {A, B, C, D, E},

σ ∈ Γ,

α ∈ {0, 1, ⊔,−,+}.

– Transition function: the transition entries separated by $.

F23 55

Example

– Transducer MMM is

A
>(+)→ C, C

0,1(+)→ C, C
⊔⊔⊔ (1)→ B

– Represented by

M# = A>+ C $ C 0+ C $ C 1+ C $ C ⊔ 1 B

F23 56

Program interpreters

• Program Int is an interpreter for toy Turing transducer

if for each M and w ∈ {0, 1}∗,

Int on input M#
✷w returns u

IFF

M on input w returns u

• We use ✷ as a mega-separator, so as to have just one input

string.

F23 57

Interpreter for toy Turing transducers

• Main variables:

⋆ machine: safely keep a copy of M#

⋆ state, left, cursor and right

⋆ search, and a working copy of M#

⋆ The current transition, stored in variables

instate, insymbol, action, and outstate.

F23 58

• Broad outline of the interpreter:

Initialize;

do (continue = e)(continue = e)(continue = e)

{Yield};{Yield};{Yield};

Extract

• Initialize extracts from the variable inputinputinput

the transition table of MMM and the initial configuration.

• The variable continuecontinuecontinue is εεε iff a terminal cfg has been en-

countered.

• The program-segment Yield searches for a transition ap-

plicable to current cfg.

When found, state, left, cursor, rightstate, left, cursor, rightstate, left, cursor, right are updated.

• Extract extracts the string in the “output block” of the final cfg,

and assigns it to the program variable outoutout .

F23 59

Interpreters made more universal

• Our universal interpreter UPT for Turing transducers

has two inputs: a (textually presented) Turing machine, and a

binary string.

• What about Turing machines with more states?

and with alphabets with more symbols?

• Use an alphabet containing s,d, 0, 1.

Represent

each state by a s-followed-by-boolean-string

each letter by a d-followed-by-boolean-string

• Now we have a univeral program UPT for all Turing transducers.

F23 61

Interpreters in other directions

• Can we have a Turing transducer interpreting Turing transduc-

ers?

• Absolutely! Just compile UPT into a Turing transducer UTT.

• What about a program interpreter UPP for all programs?

• Definition of UPP:

on given program PPP and its input-string www:

1. Compile PPP into a Turing machine MMM .

2. Apply UPT to MMM and www.

F23 62

The Turing-Church Thesis

Turing-Church Thesis:

The notion of computability is com-

pletely captured

by Turing machines.

• Here a “thesis” means a declaration of faith,

no rigorous proof is possible (circularity).

• It can be shaken, but never definitively confirmed.

F23 63

F23 64

Evidence for TC Thesis: hardware

1. Information is based on discrete and unambiguous representa-

tion,

and can therefore be given by discrete and recognized sym-

bols

laid out in space.

2. Such layouts can be reduced to a one-dimensional layout,

because a discrete space can be equipped with addresses.

3. Computation is a discrete process:

separate steps, specific rules.

4. So any computing device has discrete states,

and a finite set of transition rules.

5. A computing device navigates through data, and access it.

No loss in limiting to single symbol per step.

6. Device can modify data in an implementable way.

No loss in limiting to single symbol

Evidence for TC:

stability of computability

• Stability of computability.

symbolic computation (grammars and rewrite-systems),

functional abstraction (lambda calculus),

recurrence and search

(general recursive functions, functional programs)

programming languages.

• Equivalences are implementable and feasible.

• Equivalences are uniform and systematic.

F23 67

So why Turing machines

(or other simple hardware) ?

• Why referring primarily to Turing machines?

1. Direct relation to hardware, hence to the analysis of computa-

tion itself.

2. Isolates the central and essential aspects of computing:

finite number of states;

discrete and addressable memory

unbounded but finite

local and discrete actions

3. Simpler computation models are more easily emulated,

so showing universality for other models is easier using TMs.

4. Realistic estimate of resources:

e.g. a PS can have a huge output in very few steps.

F23 68

