TIME COMPLEXITY

Measuring computational complexity

- Time is the most limiting resource
- Computation time = number of steps
 - = number of cfgs in computation trace
- Steps on a *Turing machine*
 - which faithfully counts moves, as do physical devices

Asymptotic complexity

- Performance of algorithms may differ wildly for different inputs.
- Measure complexity by bound on resources consumed as a function of input *size* ("worst-case complexity").
- For a TM M over Σ let $T_M(w)$ be

the number of cfg's in the trace of M for input $w \in \Sigma^*$. This is defined only if M terminates on w.

- TM *M* runs within time *f* $(f : \mathbb{N} \to \mathbb{N})$ if $T_M(w) \leq f(|w|)$ for all inputs *w*.
- So if *M* runs within f and $f \leq g$ then *M* runs within *g* as well.

Which machine model

- You might take issue with using Turing machines as reference.
 TMs "don't cheat", but perhaps they are too simple.
- For example, to compute the function $w \mapsto w \cdot w$ (doubling the input) A Turing transducer moves each symbol in w a distance w, so the computation take $> |w|^2$ steps.
- If we use an auxiliary string ("tape") the doubling of wcan be performed in $c \cdot |w|$ steps, for some small constant c.

Which machine model

- You might take issue with using Turing machines as reference.
 TMs "don't cheat", but perhaps they are too simple.
- For example, to compute the function $w \mapsto w \cdot w$ (doubling the input) A Turing transducer moves each symbol in w a distance w, so the computation take $> |w|^2$ steps.
- If we use an auxiliary string ("tape") the doubling of wcan be performed in $c \cdot |w|$ steps, for some small constant c.
- Useful generalization of Turing machines:

multi-tape Turing machines,

each using a fixed number of strings.

Comparing asymptotic behaviors

Asymptotic behavior of a function *f* : N→N:
 behavior "at infinity", for large arguments growing yet larger.

• Example: $10 \cdot n^3 < 2^n$ for all "sufficiently large" n (here n > 15).

Comparing asymptotic behaviors

- Asymptotic behavior of a function *f* : N→N:
 behavior "at infinity", for large arguments growing yet larger.
- Example: $10 \cdot n^3 < 2^n$ for all "sufficiently large" n (here n > 15).
- An *asymptote* (of a curve) in geometry is a line tangent to a curve at infinity.
- Example: The *x*-axis is an asymptote of the curve y = 1/x. So is the *y*-axis.

Comparing asymptotic behaviors

- Asymptotic behavior of a function *f* : N→N: behavior "at infinity", for large arguments growing yet larger.
- Example: $10 \cdot n^3 < 2^n$ for all "sufficiently large" n (here n > 15).
- An *asymptote* (of a curve) in geometry is a line tangent to a curve at infinity.
- Example: The x-axis is an asymptote of the curve y = 1/x. So is the y-axis.
- a-syn-ptote Greek for not falling together

- Circustantial details may double or triple machine performance.
 It makes sense to abstract away from such details.
- Define f ≼ g if for some c > 0 we have
 f(n) ≤ c ⋅ g(n) for all sufficiently large n.
 I.e. there is some k s.t. f(n) ≤ c ⋅ g(n) for all n ≥ k.

- Circustantial details may double or triple machine performance.
 It makes sense to abstract away from such details.
- Define f ≼ g if for some c > 0 we have
 f(n) ≤ c ⋅ g(n) for all sufficiently large n.
 I.e. there is some k s.t. f(n) ≤ c ⋅ g(n) for all n ≥ k.
- We say then that "f is **big-O** of g" and write f = O(g).
- More accurately we could define $O(g) = \{f \mid f \preccurlyeq g\}$ and then write $f \in O(g)$.

- Circustantial details may double or triple machine performance.
 It makes sense to abstract away from such details.
- Define f ≼ g if for some c > 0 we have
 f(n) ≤ c ⋅ g(n) for all sufficiently large n.
 I.e. there is some k s.t. f(n) ≤ c ⋅ g(n) for all n ≥ k.
- We say then that "f is **big-O** of g" and write f = O(g).
- More accurately we could define $O(g) = \{f \mid f \preccurlyeq g\}$ and then write $f \in O(g)$.
- f = O(g) means $\exists c, k n \ f(n) \leq c \cdot g(n)$ for all $n \geq k$. or $\exists c \forall^{\infty} n \ f(n) \leq c \cdot g(n)$.

- Circustantial details may double or triple machine performance.
 It makes sense to abstract away from such details.
- Define f ≼ g if for some c > 0 we have
 f(n) ≤ c ⋅ g(n) for all sufficiently large n.
 I.e. there is some k s.t. f(n) ≤ c ⋅ g(n) for all n ≥ k.
- We say then that "f is big-O of g" and write f = O(g).
- More accurately we could define $O(g) = \{f \mid f \preccurlyeq g\}$ and then write $f \in O(g)$.
- f = O(g) means $\exists c, k n \ f(n) \leq c \cdot g(n)$ for all $n \geq k$. or $\exists c \forall^{\infty} n \ f(n) \leq c \cdot g(n)$.
- Convention: use *n* as a catch-all variable for natural numbers, writing eg $O(n^2)$ for "O(f) where $f(n) = n^2$."

*Other asymptotic behaviors

$$f = \Theta(g)$$

$$\exists c, c' \ \forall^{\infty} n \qquad c \cdot g(n) \leqslant f(n) \leqslant c' \cdot g(n)$$

$$a \ \& f \text{ have similar asymptotic behavior}$$

nave sinniai asymptotic bena

Time complexity classes

- TM *M* runs in time O(f) ("order f") if its time complexity is $c \cdot f$ for some constant c > 0.
- The *f* 's of interest are non-decreasing:

 $f(n+1) \ge f(n)$ for all n.

- Examples: $\log n$, n, $n \log n$, n^2 , n^5 , 2^n , 2^{n^2} , n!, n^n .
- We write Time(f) for the collection of languages recognized by a Turing acceptor in time O(f).
- Similar notation for transducers.
- The reference to Turing machines is needed: if another machine model is used then we needs to specify, as in "this algorithms runs in quadratic time on a RAM.

- We can expect that significantly more computation time implies that more functions are computable.
- This is indeed true in virtually all practical cases:
- **Time Hierarchy Theorem.** If (1) $t, T : \mathbb{N} \to \mathbb{N}$ are "reasonable"; and (2) $t(n)\log(t(n)) = o(T(n))$ then $\text{Time}(t) \subsetneq \text{Time}(T)$.
- Using Calculus notations, the main condition of the Theorem states

$$\frac{t(n) \cdot \log(t(n))}{T(n)} \to 0 \quad (n \to \infty)$$

- A function *f* is "reasonable" means here that computable (for unary numerals) in time *O*(*f*): *f*(1ⁿ) is computable in a number of steps linear in *f*(*n*). Such functions are called *time-constructible*.
- The time-constructibility condition is essential: without it there are huge "gaps": a lot more computation time without obtaining new functions (the Gap Theorem).
- Time $(n) \subsetneq$ Time $(n^2) \subsetneq$ Time $(n^3) \subsetneq$ Time $(2^n) \subsetneq$ Time $(3^n) \subsetneq$ Time (2^{n^2})
- But *not* Time(n) \neq Time($n \cdot \log n$)

which requires a separate proof.

*Time Hierarchy proof idea

- Given total functions f_1, f_2, \ldots over \mathbb{N} , obtain a function g not listed: $g(n) = f_n(n) + 1$.
- Proof idea for Time Hierarchy:
 <u>Part A</u>: List **Time**(*t*), obtain *g* not in the list.
 <u>Part B</u>: Build a universal interpreter for **Time**(*t*), that runs in **Time**(*T*).
 So *g* ∈ **Time**(*T*) − **Time**(*t*).
- (B) is technical.
 - (A) is thorny: can we list Time(t)?

Listing Time(t)

- The bad news: For any f of interest, there is no effective listing of the transducers in time O(f).
- The good news:

We only need listed a transducer for each <u>function</u> in **Time**(t).

- For any transducer M, and constant c, define M_c as M with a built-in "clock", aborting computation for input w after c · f(|w|) steps.
- M_c can be made to run in Time(t), clock and all, using the assumption that f is time-constructible.

POLYNOMIAL TIME

Polynomial vs exponential growth rate

- Polynomial growth-rate: $f(n) = n^k$, k fixed.
- Exponential growth-rate: $f(n) = k^n$, k fixed.
- The choice of base k does not change the general picture:

 $p^n = k^{an}$ where $a = \log_k p = \log p / \log k$

• But polynomial and exponential growth-rates tell very different stories: If an algorithm runs 2^n steps on input of size n, then the universe is too small to deal with input of size 300: It is believed that there are $10^{90} \approx 2^{300}$ quarks in the universe. • Any exponential function overtakes any polynomial function for sufficiently large inputs.

• Taking logarithmic scaling for the increase visualizes the difference more clearly:

Every polynomial function flattens out rapidly,

whereas any exponential function grows steadily:

 $\log(n^k) = k \cdot \log n$, flattening.

 $log(2^n) = n$, steadily increasing

*Exponentials surpass polynomials: an elementary proof

- Fact: For every k we have $2^n > n^k$ for sufficiently large n.
- First, by induction on q we get $2^q > q(q+1)$ for $q \ge 5$.
- So if $q \ge k \ge 5$, then $2^q > q(q+1) \ge k(q+1)$.
- Take $n > 2^k$.

Then $2^q \leq n < 2^{q+1}$ for some $q \geq k$, and

 $\begin{array}{rcl} 2^n & \geqslant & 2^{2^q} & \text{ for } n \geqslant 2^q \\ & > & 2^{k(q+1)} & \text{ since } 2^q > k(q+1) \\ & = & (2^{q+1})^k \\ & > & n^k & \text{ since } 2^{q+1} > n \end{array}$

*Exponentials surpass polynomials: a calculus proof

- Write f ≻ g for "f eventually exceeds g,"
 i.e. ∃a ∀x > a f(x) > g(x).
- By induction on *k*:

for every $m, e^x \succ m \cdot x^k$, i.e. $\lim_{x \to \infty} x^k/e^x = 0$

- For k = 0 we have $x^0 = 1$, and indeed $\lim_{x\to\infty} 1/e^x = 0$.
- Assuming $\lim_{x\to\infty} x^k/e^x = 0$ we have

$$\lim_{x \to \infty} x^{k+1}/e^x = \lim_{x \to \infty} (x^{k+1})'/(e^x)' \text{ by L'Hopital Rule}$$
$$= \lim_{x \to \infty} ((k+1)x^k)/e^x$$
$$= (k+1) \lim_{x \to \infty} x^k/e^x$$
$$= 0 \text{ by IH}$$

PTime decidable problems

- A Turing decider **runs in polynomial time (PTime)** if its running time on input of size n is $O(n^k)$ for some k.
- All standard machine acceptors can be compiled into Turing machines with increase of computation time bounded by a polynomial (usually n²).
 So "PTime" remains unchanged from model to model.
- We can therefore consider informal algorithms without worrying about low level implementation.

*The Cobham-Edmunds Thesis

 PTime is a practical first-approximation of the scope of computational *feasibility*:

Cobham-Edmunds Thesis (1964)

An algorithm is (intuitively) feasible iff it runs in PTime.

 Since all basic computation models simulate each other within a factor polynomial in the size of the input, this Thesis can refer to "algorithms.")

• The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.
- Here are some issues that weaken it.
 - 1. The exponents should matter: n^{100} is not feasible.
 - 2. The coefficients should matter: $100^{100} n$ is not feasible.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.
- Here are some issues that weaken it.
 - 1. The exponents should matter: n^{100} is not feasible.
 - 2. The coefficients should matter: $100^{100} n$ is not feasible.
 - 3. Conversely, time of order $n^{\log \log n}$ is not admitted, and yet $n^{\log \log n} < n^8$ for all $n < 2^{2^8} = 2^{256} \approx 10^{77}$.

Some important PTime-decidable problems

- CONNECTIVITY: Given a graph G = (V, E), is it connected?
- A simple algorithm:

For each pair u, v of vertices check all permutations of the remaining vertices for being a path from u to v.

- This is not feasible, e.g. $100! \approx 10^{158}$.
- But there are algorithms quadratic in the number of nodes. (Dijkstra's Algorithm, 1969)

• LINEAR-INEQUAL: Given a set of linear inequalities,

does it have a real-number solution?

Example $3x + y \ge 0$, $x + 3y \le 0$. A PTime decision algorithm was found in 1979 by Leo Khachian.

• EDGE-COVER: Given a graph \mathcal{G} and a target t > 0

is there a set of $\leq t$ edges which includes all vertices (Edmunds 1965).

(In contrast, we know of no PTime-decision for VERTEX-COVER.)

• PRIMALITY: Given a natural number, is it prime?

A PTime decision algorithm for primality

was developed in 2006 by Agrawal, Kayal and Saxena.

Enhanced uses of induction

- To reason inductively,
 - we sometimes need at each step more than what we wish to prove.
- Example we studied:

To parse a single (prefix notation) boolean expression,

parse arbitrary strings into a concatenation of expressions.

Memoization: caching data for repeated use

- Memoization = memorize information for future use (Greek: mnémé = memory).
- **Example.** If $L \subseteq \Sigma^*$ is PTime decidable then so is L^+ .
- How about exhaustive search:

For each partition of input w into concatenated non-empty substrings check whether all parts are in L.

- There are 2^{n-1} partitions of w of size n!!
- But the number of "parts" is only quadratic in *n* !
- And (as for the parsing algorithm) we can uniformize matters by finding whether substrings are in L^+ rather than L.
- This we can do by a simple induction on length.

A Ptime algorithm for L^+

- We calculate the set S of substrings of w that are in L^+ .
- We do this by induction on length, i.e. calculating successively

 S_i = the set of strings in S of length i.

- S_1 consists of the letters in w.
- S_{i+1} can be calculated from S_1, \ldots, S_i in PTime.
- So the entire algorithm is in PTime.

A concrete case of the algorithm:

- L = English words.
- letustakethisshortsentenceasaniceexample
- Consider substrings of length 1. $S_1 = a$
- Substrings of length 2: $S_2 = us, hi, or, as, an, am$
- Substrings of length 3: $S_3 = let, ten, asa, his, ice$
- Substrings of length 4: $S_4 = take, this, hiss, sent$
- Substrings of length 5: $S_5 = letus, stake, short, ample$
-
- Substrings of length 37: $S_{37} =$ ustakethisshortsentenceasaniceexample
- Substrings of length 39: $S_{39} = \emptyset$
- Substrings of length 40: $S_{40} =$ *letustakethisshortsentenceasaniceexample*
Same idea: CFLs are in $Time(n^3)$

- A useful tool: Chomsky grammars.
- A **Chomsky grammar** is a CFG using only two type of productions:

[Terminal.] $A \rightarrow \sigma$ ($\sigma \in \Sigma$) [Split.] $A \rightarrow BC$ (B, C other than S)

Theorem

Every CFL without ε is generated by a Chomsky grammar.

Cubic-time decidability of CFLs

- Given a Chomsky grammar *G* over Σ we construct a cubic-time memoization algorithm deciding whether a given string *w* is generated by *G*.
- This is known as the Cocke-Younger-Kasami (CYK) Algorithm, after three who re-discovered it in 1965/67.
 But it was first invented by Itiroo Sakai in 1961!

The CYK Algorithm

- For each non-terminal A of G let
 - S_i be the set of pairs SMS(A,u) where
 - 1. A is a non-terminal,
 - 2. \boldsymbol{u} a substring of \boldsymbol{w} of length \boldsymbol{i} , and
 - 3. $A \Rightarrow^*_G u$.
- S_1 is obtained directly from the Unit Productions of G.

Inductive calculation of S_i

- S_{i+1} is obtained from S_j for $j \leq i$:
 - 1. For each substring u of length i + 1
 - 2. for each split $u = x \cdot y$ (Note: $|x|, |y| \leq i$)
 - 3. for each Split production $A \rightarrow BC$
 - If $(B, x) \in S_{|x|}$ and $(C, y) \in S_{|y|}$, then place (A, u) in S_{i+1} .
- There are O(n) substrings of length $i \leq n$, and O(n) splits for each substring, so for each $i \leq n$ the process is in time $O(n^2)$.
- If |w| = n then there are n passes, so the entire algorithm is in cubic time.

A CYK Example

Generating $a^p c b^{p+q} c a^q$:

 $egin{array}{cccc} S &
ightarrow LR \ L &
ightarrow aLb \mid c \ R &
ightarrow bRa \mid c \end{array}$

An equivalent Chomsky grammar:

(1)
$$S \to LR$$
 (2) $L \to AM \mid c$ (3) $M \to LB$ (4) $R \to BN \mid c$
(5) $N \to RA$ (6) $A \to a$ (7) $B \to b$

Decide whether **acbbca** is generated.

Calculating S_i

The grammar:

(1)
$$S \to LR$$
 (2) $L \to AM \mid c$ (3) $M \to LB$ (4) $R \to BN \mid c$
(5) $N \to RA$ (6) $A \to a$ (7) $B \to b$

The sets:

 $egin{aligned} S_1: A \Rightarrow ext{a}, & B \Rightarrow ext{b}, & L \Rightarrow ext{c}, & R \Rightarrow ext{c} \ S_2: & M o & LB \Rightarrow^* ext{cb} \ & N o & RA \Rightarrow^* ext{ca} \ S_3: & L o & AM \Rightarrow^* ext{acb} \ & R o & BN \Rightarrow^* ext{bca} \ & S_4: & M o & LB \Rightarrow^* ext{acbb} \ & S_5: & \emptyset \ & S_6: & S o & LR \Rightarrow^* ext{acbbca} \end{aligned}$

F22

Closure properties of PTime problems

- Closure under set operations: complement, union, intersection.
- Closure under language operations: concatenation, plus, star.

Closure properties of PTime functions

• **PTime** is closed under composition:

Suppose $f, g: \Sigma^* \to \Sigma^*$.

- If $f \in \text{Time}(n^k)$ and $g \in \text{Time}(n^\ell)$ then $f \circ g \in \text{Time}((n^k)^\ell) = \text{Time}(n^{k \cdot \ell})$.
- Suppose transducer T computes f in time $c \cdot n^k$, and T' computes g in time $d \cdot n^\ell$.
- Given input $w \in \Sigma^*$,

T terminates in $\leq c |w|^k$ steps, and so has an output *y* of size $\leq c \cdot |w|^k$.

• Given *y* as input,

T' operates in time $\leq d \cdot |y|^{\ell}$,

i.e. $\leqslant e \cdot |w|^{k \cdot \ell}$ ($e = d \cdot c^k$)

PTIME REDUCTIONS

Reminder: reductions between problems

Let *P* and *Q* be problems.
A *reduction* of *P* to *Q* is a function *ρ*: *Instances*(*P*) → *Instances*(*Q*)
such that for every instance *w* of *P*, *w* ∈ *P* IFF *ρ*(*w*) ∈ *Q*

• I.e., to find out whether $w \in \mathcal{P}$ we can find $\rho(w)$, and find whether it is in \mathcal{Q} .

Reminder: computable reductions

If ρ is a computable reduction of P to Q then we write ρ: P ≤_c Q and say that P computably-reduces to Q.

PTime reductions

- Computable reductions relate the algorithmic solvability of problems.
- PTime reductions relate the *feasibility* of problems:
 - a *PTime reduction* of problem \mathcal{P} to problem \mathcal{Q} is a PTime function ρ that maps instances of \mathcal{P} to instances of \mathcal{Q} , such that $w \in \mathcal{P}$ iff $\rho(w) \in \mathcal{Q}$.
- We write ρ : $\mathcal{P} \leq_p \mathcal{Q}$, with a subscript p.
- If there is such a ρ , we write $\mathcal{P} \leq_p \mathcal{Q}$ and say that \mathcal{P} *PTime-reduces* to \mathcal{Q} .

Transitivity of PTime-reductions

• We had:

If $\rho : \mathcal{P} \leq_c \mathcal{Q}$ and $\rho' : \mathcal{Q} \leq_c \mathcal{R}$ then $\rho \circ \rho' : \mathcal{P} \leq_c \mathcal{R}$

• Since PTime is closed under composition,

we similarly have:

If $\rho : \mathcal{P} \leq_p \mathcal{Q}$ and $\rho' : \mathcal{Q} \leq_p \mathcal{R}$ then $\rho \circ \rho' : \mathcal{P} \leq_p \mathcal{R}$

• Note the benefit of lumping together all polynomials:

For example, reducibility by quadratic time reduction is *not* closed under composition.

1/2-CLIQUE *reduces to* CLIQUE

Example: CLIQUE reduces to INDEPENDENT-SET

A blue graph Missing edges are in pink {A,B,D} a clique of size 3 A red graph Missing edges are in blue {A,B,D} an ind set of size 3

1/2-CLIQUE reduces to 1/3-CLIQUE

CLIQUE *reduces to* 1/2-CLIQUE

HAMILTONIAN-PATH *reduces to* HAMILTONIAN-CYCLE

*EXACT-SUM *reduces to* INTEGER-PARTITION

- Reductions may be ingenious, using particulars of the problems compared.
 There are no silver bullets.
- Reducing INTEGER-PARTITION (IP) to EXACT-SUM (ES) was easy, because IP is a secial case of ES.
- But we also have ρ : IP $\leq_p ES$ by the following PTime reduction ρ :
- Given instance (S, t) of ES let $A = \sum S$. Note: t < A: o/w (S, t) is trivially not in ES.

Define $S' = \rho(S, t) =_{df} S \cup \{A + t, 2A - t\}$. Note: $\Sigma S' = 4A$.

• We show that *S* has a subset *P* adding up to *t* iff *S'* has a subset *P'* adding up to $(\Sigma S')/2 = 2A$.

- If we have $P \subset S$ with $\Sigma P = t$ then take $P' = P \cup \{2A - t\}$.
- Conversely, suppose exists some $P' \subset S'$ satisfying $\Sigma P' = 2A$. Let P be the one of P' and S' - P' that has 2A - t. Since (A + t) + (2A - t) = 3A and $\Sigma P = 2A$ P cannot have A+t.

Let $P = P' - \{2A - t\}$. Then $P \subseteq S$ and $\Sigma P = t$.

• Does this directed-graph have a Hamiltonian path?

• Creating a direction-gadget:

• Same for the neighboring

• But is directionality assured?

• We need a middle-node in each gadget:

• For the entire graph:

• This mapping is a PTime reduction of HAMILTONIAN-PATH to UNDIRECTED-HAMILTONIAN-PATH.

PTime reductions and problem feasibility

- Had: If \mathcal{Q} is decidable and $\mathcal{P} \leq_c \mathcal{Q}$ then \mathcal{P} is decidable.
- Now: If Q is *PTime*-decidable and $P \leq_p Q$ then P is *PTime*-decidable.
- I.e., If \mathcal{P} is **not** PTime-decidable and $\mathcal{P} \leq_p \mathcal{Q}$ then \mathcal{Q} is **not** PTime-decidable.
- Similarly: If \mathcal{Q} is **NP** and $\mathcal{P} \leq_p \mathcal{Q}$ then \mathcal{P} is **NP**
- I.e.: If \mathcal{P} is **not** NP and $\mathcal{P} \leq_p \mathcal{Q}$ then \mathcal{Q} is **not** NP

Examples

• INTEGER-PARTITION \leq_p EXACT-SUM.

So if EXACT-SUM is PTime-decidable then so is INTEGER-PARTITION.

• CLIQUE \leq_p INDEPENDENT-SET.

So if INDEPENDENT-SET is PTime-decidable then so is CLIQUE.

- The Time Hierarchy Theorem implies that for every k > 0 there are problems decidable in time $O(n^{k+1})$ but not in time $O(n^k)$.
- But the distinction between the powers in PTime is obliterated by PTime reductions.
- Suppose problem *P* is decidable by *M* within time *a* · *n^k*, for *n* > *h*. Then it has a variation *P'* s.t. *P* ≤_{*p*} *P'* but *P'* is decidable for *all w* in time ≤ |*w*|.
- Let $\mathcal{P}' = \{ w \cdot \sqcup^{m_w} \mid w \in \mathcal{P}, m_w = a \cdot |w|^k + H \}$ where $H = \max\{\mathsf{Time}_M(x) \mid |x| \leq h\}$.
- Define $\rho: \mathcal{P} \leqslant \mathcal{P}'$ by $\rho(w) = w \cdot \sqcup^{m_w}$.
- ρ is computable, and is a reduction by defn of \mathcal{P}' .
- But \mathcal{P}' is decidable in time identical to the length of the input.

Another simplification

Suppose a problem *P* is deidable within time *a* · *n* for all *n ≥ k*.
There is a problem *P'*, decidable within time *n* for *all* input, such that *P ≤_p P'*.

• The proof is similar to the one above: Use padding.

PTIME CERTIFICATION

Exhaustive search for real-life problems

- Some problems require exponential time algorithms because exponentiation is explicit in their specification.
- Transducer example (exponentially large output): For input *w* output a string of length ≥ |*w*|.
 Acceptor example (exponentially long trace): Given acceptor *M* and string *w*, does *M* runs ≥ 2^{|w|} steps on input *w*?
- However our examples of exhaustive search are unrealistic because the *number of cases* is forbidding, not because the specification is unrealistic!

Reminder: Certifications

A *certification* for a decision problem *P* is a binary relation ⊢_P between strings (the *certificates*), and instances of *P*, such that for all instances *w*

w satisfies \mathcal{P} IFF $c \vdash_P w$ for some $c \in C$

• We showed that a language *L* is SD iff it has a decidable certification.

Feasible-certification

• A certification ⊢ for *P* is *feasible*

if $c \vdash w$ is decidable in time polynomial in |w|. We write then $c \vdash_p w$.

- In time t a Turing acceptor cannot read more than the t initial symbols of c, so c ⊢ w implies that
 |c| is eventually bounded by |w|^k for some k.
- Conversely, if the truth of c ⊢ w is computable in time polynomial in |w| + |c|, and |c| is bounded by a polynomial in |w|, then c ⊢ w is PTime in |w| + |c|, i.e. PTime as a set.

• In summary: \mathcal{P} is feasibly certified iff $c \vdash w$ is decidable in PTime (w, c both counted!)

and |c| is bounded by a polynomial in |w|.

• Restricting certificate size is essential:

otherwise any SD problem \mathcal{P} would be PTime certified because the time to check that a trace *c* is correct is $O(|c|^2)$, and so is polynomial in |w| + |c|.

- The class of PTime-certified problems is also referred to as <u>NP</u> short for *"Non-deterministic PTime"*. The reasons are mostly of historical interest.
- A non-deterministic (ND) Turing acceptor is defined like an acceptor, expect that its transition mapping is not necessarily univalent.
- We say that an ND acceptor M accepts a string w if there is an accepting computation-trace c of M for input w.
- Moreover, that acceptance is within time $\leq t$ if the trace c has $\leq t$ cfgs.
- *M* is PTime if there are a, k, h > 0 such that if *M* accepts w, |w| > h, then it accepts w in time $\leq a \cdot |w|^k$.
- A language L is in **NP** if it is recognized by a ND PTime acceptor.

NP = Feasibly certified

- Feasible certification for a language *L* implies a non-deterministic recognizing algorithm:
 - A problem *P* with a feasible certification is recognized in PTime by a "non-deterministic algorithm":
 - Given an instance w, guess a certificate c. This takes time |c|, i.e. polynomial in |w|.
 - Checking $c \vdash w$ takes time polynomial in |w|, since \vdash is feasible.
- Conversely, recognition of *L* by a PTime ND algorithm implies that *L* is feasibly certified:
 - Suppose \mathcal{P} is recognized in PTime by an ND algorithm M.
 - A certificate for an instance w is any road map that steers the ND choices to an accepting trace.
NP-COMPLETENESS: Maximally complex NP problems

Maximal complexity in SD

• A problem *P* is *SD-hard*

if every SD problem is computably-reducible to \mathcal{P} .

- If *P* is SD-hard, and *P* ≤_c *P'* then *P'* is SD-hard:
 Every SD problem *Q* is reducible to *P* since *P* is SD-hard.
 So by transitivity of ≤_c it follows that *P* ≤_c *P'* we get by *Q* ≤_c *P'*.
- \mathcal{P} is **SD-complete** if it is SD-hard and is itself SD.
- An obvious SD-complete problem: ACCETANCE.

If $\mathcal{P} = \mathcal{L}(M)$ then $\mathcal{P} \leq_c \mathsf{ACCEPTANCE}$ by a reduction that maps instance w of \mathcal{P}

to the instance $(M^{\#}, w)$ of accept.

Clear broad picture for SD...

Maximally complex NP problems

- A problem \mathcal{P} is *NP-hard* if every problem in **NP** is $\leq_p \mathcal{P}$.
- Since \leq_p is transitive, if \mathcal{P} is NP-hard, and $\mathcal{P} \leq_p \mathcal{P}'$, then \mathcal{P}' is NP-hard as well.
- A problem \mathcal{P} is *NP-complete* if it is both NP and NP-hard.
- From these definitions it follows that if there is an NP-hard problem *P* which is PTime decidable, then every NP problem is PTime-decidable!

Blurry picture for NP

The NP problems: 2 possibilities

Computing is binary...

- We conceive a certification $\vdash_{\mathcal{P}}$ for a problem \mathcal{P} in two stages:
 - 1. Identify what sort of objects are the certificates.
 - E.g. a certificate for an instance of HAMILTONIAN-PATH

is a list ℓ without repetition of the vertices.

2. State properties that make a certificate valid.

For HAMILTONIAN-PATH these are:

- ℓ is without repetitions, and
- successive entries are adjacent in G.

Reminder: Boolean valuations

- Boolean expressions are generated from variables using negation, conjunction, and disjunction.
 Example: (-x) ∧ -(y ∨ x).
- Given a valuation $V: Var \rightarrow \{0,1\}$ of variables, each boolean expression evaluates to 0 or 1.
- Example: If V(x) = 0, V(y) = 0 then $V(-x \land -(y \lor x)) = 1$
- A valuation V **verifies** E if V(E) = 1.
- *E* is *satisfiable* if it is verified by *some V*,
 It is *valid* if it verified by *every V*.
- So E is satisfiable iff -E is not satisfiable and is valid iff -E is not satisfiable.

Boolean satisfiability

- BOOL-SAT: Is a given boolean expression satisfiable?
- A certification for **BOOL-SAT**:
 - A certificate for an expression E is a valuation verifying it.
- Checking a certificate is PTime in the size of the expresson. So the certification is feasible.

Coding certificates by boolean expressions

- Digital coding is central to describing discrete data, and the simplest form of digital coding is binary, i.e. using booleans.
- No surprise then that a good candidate for NP-hardness is Boolean Satisfiability bool-sat.
- We use yes/no questions to code the potential certificates, and then yes/no questions that check their validity as certificates.

Boolean coding of potential certificates

- Let's look again at the HAMILTONIAN-PATH (HP) Problem: Does a given directed graph G = (V, E) have a Hamiltonian path?
- Let *n* be the number of vertices in *G*.
 The question is: Is there a listing *u*₁, *u*₂, ..., *u*_n of all vertices, without repetition,
 so that *u_i(E)u_{i+1}* for *i < n*.
- We convey this intent by a boolean expression, using for each v ∈ V and i = 1..n a fresh boolean variable x_{iv} intended to be true iff the i'th entry in the list is v.

Using booleans to state the existence of a H-path

- Given G, we construct a boolean expression E_G stating that the boolean variables x_{iv} describe a Hamiltonian path.
- This will show that G has a Hamiltonian path iff E_G is satisfiable.
- For cocreteness, consider our earlier example:

• Any listing in positions 1,2,3,4,5 of the vertices $V = \{a, b, c, d, e\}$ will assign truth values for the 25 variables. E.g. the listing a, b, c, d, e is conveyed by the valuation assigning 1 to x_{1a}, x_{2b}, x_{3c}, x_{4d}, x_{5e} and 0 to the remaining 20 variables.
Here is that valuation, with the variable set to 1 (true) in orange.

x_{1a}	x_{1b}	x_{1c}	x_{1d}	x_{1e}
x_{2a}	<i>x</i> _{2b}	x_{2c}	x_{2d}	x_{2e}
x_{3a}	<i>x</i> _{3b}	x _{3c}	x _{3d}	x_{3e}
x_{4a}	<i>x</i> _{4b}	x_{4c}	x_{4d}	x_{4e}
x_{5a}	x_{5b}	x_{5c}	x_{5d}	x_{5e}

- Our Hamiltonian path, $a \rightarrow d \rightarrow e \rightarrow b \rightarrow c$: is conveyed by the following valuation:
 - x_{1a} x_{1b} x_{1c} x_{1d} x_{1e}
 - x_{2a} x_{2b} x_{2c} x_{2d} x_{2e}
 - x_{3a} x_{3b} x_{3c} x_{3d} x_{3e}
 - x_{4a} x_{4b} x_{4c} x_{4d} x_{4e}
 - x_{5a} x_{5b} x_{5c} x_{5d} x_{5e}

The vertex-listing is a path

- We state the conditions that make a valuation of the variables x_{iv} into a Hamiltonian path.
- At least one position per vertex:

For each vertex v the disjunction $x_{1v} \vee \cdots \vee x_{nv}$.

• At most one position per vertex:

For each vertex v and distinct i, j = 1..n

the expression $-(x_{iv} \wedge x_{jv})$

Successive vertices are adjacent in the graph

For each position i < n the disjunction of all expressions x_{iv} ∧ x_{i+1,u} where v(E)u.
E.g., positions 2 and 3 are related by one of the 9 edges: (x_{2a} ∧ x_{3b}) ∨ (x_{2a} ∧ x_{3c}) ∨ (x_{2a} ∧ x_{3d}) ∨ (x_{2b} ∧ x_{3c}) ∨ (x_{2d} ∧ x_{3c}) ∨ (x_{2d} ∧ x_{3e}) ∨ (x_{2e} ∧ x_{3b}) ∨ (x_{2e} ∧ x_{3c}) ∨ (x_{2e} ∧ x_{3d})

The reduction

- We've obtained a reduction ρ : HP \leq_p BOOL-SAT
- ρ maps a directed grarph G = (V, E) to the conjunction A_G of the boolean expressions as above,

based on the particular size and edge-relation of G.

• A_G is computable in time cubic in the size of G.

- The mapping ρ is a reduction:
 - If there is a Hamilt path u₁→···→un in G
 then the boolean expression A_G is satisfied by the valuation
 that assigns 1 to x_{iv} iff v is u_i.
 - Conversely, if the expression A_G is satisfied by a valuation V then $(v_1..v_k)$ is a Hamilt path,

where v_i is the unique v for which $V(x_{iv}) = 1$.

• Conclusion: ρ : HAMILT-PATH \leq_p BOOL-SAT

From ND PTime to ND linear time

- We show that every problem recognized by a ND acceptor M in PTime \leq_p BOOL-SAT.
- The method is similar to the boolean coding of HAMILONIAN-PATH.
- We saw that each problem decidable in PTime is PTime-reducible to a problem decidable on site.
- The same padding technique shows that each problem recognized by a ND acceptor in PTime is PTime reducible to a problem recognized by a ND acceptor on-site.
- By transitivity of \leq_p we only need ONSITE-ACCEPT \leq_p BOOL-SAT.

•

Coding ND on-site acceptor in **BOOL-SAT**

- Define a PTime reduction ρ : ONSITE-ACCEPT \leq_p BOOL-SAT.
- ρ maps (M, w) (M a ND) to bool expssn $E_{M,w}$ s.t.

M accepts *w* in time |w| iff $E_{M,w}$ is satisfiable.

• The trace in grid form:

The grid as yes/no questions

- For each state q and $i \leq |w|$ $x_{i,q}$ for "state of i'th cfg is q"
- For each $i, j \leq |w|$: $c_{i,j}$ for "cursor of i'th cfg at j"
- For each $i, j \leq |w|$ and $\sigma \in \Sigma$: $\ell_{i,j,\sigma}$ for "(i, j) cell has σ

Yes/no for consistency conditions

- One state + one cursor per row
- one symbol per cell
- First row is initial state + > w.
- Last row has accept state

Yes/no for operational conditions

• Each subsequent row is obtained from the preceding

by one of the rules of M

BOOL-SAT *is NP-Complete*

• BOOL-SAT is fersibly certified:

The certificate is the satisfying valuation.

• BOOL-SAT is NP-hard:

Every NP problem reduces to ND-ONSITE-ACCEPT by padding, and ND-ONSITE-ACCEPT \leq **BOOL-SAT**.

Normal forms

• Boolean expressions may be arbitrarily complex.

Can we facilitate eductions by focusing on some that are simple?

- Reductions to **normal forms** are all around!
- Decimal fractions (percents):

```
3/8 versus 4/11 (.375 vs .364)
```

• Better: normalized scientific notation for real numbers:

 $123.45 = 1.2345 \times 10^2$, $0.0012345 = 1.2345 \times 10^{-3}$,

 $1.2345 = 1.2345 \times 10^{0}$

- Display immediately the order of magnitude.
- Polynomials are defined using $+, \times, -$ in any order.
- Putting order in the chaos:

 \times in the scope of -, in the scope of +.

•
$$-((x+y)\cdot x)\cdot (1-y) = x^2 \cdot y + x \cdot y^2 - x^2 - x \cdot y$$

Normal form for boolean expressions

- For boolean expressions: chaos of negations, conjunctions, disjunction
- Normal form: negations in scope of conjunctions in scope of disjunctions

$$-[(x \lor -u) \land (y \lor v)] = (-x \lor -y)$$
$$\land (-x \lor -v)$$
$$\land (u \lor -y)$$
$$\land (u \lor -v)$$

- *Literals:* variables or their negation.
- *(disjunctive) clauses:* disjunction of literals (1,2,3,0... disjuncts)
- Conjunctive normal expression (CNF):

conjunction of disjunctive clauses

CNF and satisfiability

• More orderly BOOL-SAT: ask only about satisfiability of CNFs: CNF-SAT:

Given a CNF boolean expression E, is it satisfiable?

- We'll show that CNF-SAT is NP-hard.
- NP-hardness of problems would be made easier:

CNF-SAT $\leq_p \mathcal{P}$ easier to show than **BOOL-SAT** $\leq_p \mathcal{P}$

CNF-SAT is NP-hard

- Method: Reduce bool-sat to cnf-sat.
- Every boolean expression can be converted into an equivalent CNF expression.
- But this does NOT yield the desired reduction!
- Expression *E* is converted into a CNF equivalent which may be *exponentially longer*!
- However: NO NEED for an equivalent CNF!
 Suffices a CNF whose *satisfiability* is equivalent to the *satisfiability* of *E*.
- We can even restrict attention to <u>3CNF</u> expressions where each clause has ≤ 3 literals.

3CNF-Satisfiability

- 3CNF SATISFIABILITY Does a given 3CNF expression have a verifying valuation.
- BOOL-SAT 3CNF-SAT
- Example, A is $(x \land y) \lor (z \land -(x \lor u))$

• Name with fresh variables the compound sub-expressions of **A**:

 $\bar{a} \lor b \lor c$, $(a \leftrightarrow (b \lor c)) \quad \begin{array}{c} a \lor \overline{b}, \\ a \lor \overline{c}, \end{array}$ $\bar{b} \lor x,$ $\begin{array}{cc} (b \leftrightarrow (x \wedge y)) & \overline{b} \lor y \\ \overline{x} \lor \overline{y} \lor b, \end{array}$ $\bar{c} \lor z$, $(c \leftrightarrow (z \wedge d)) \quad \begin{array}{c} \bar{c} \lor d, \\ \bar{z} \lor \bar{d} \lor c, \end{array}$ $\bar{d} \lor \bar{e},$ $(d \leftrightarrow -e) \qquad e \lor \bar{d},$ $\bar{e} \lor x \lor u,$ $(e \leftrightarrow (x \lor u)) \quad \bar{x} \lor e,$ $\bar{u} \vee e$

In 3CNF form:

- *A* is satisfiable iff the 3CNF $a \wedge A^{=}$ is satisfiable.
- $a \wedge A^{=}$ is of size linear in the size of A.

Exact-3CNF-Sat

- Further tightening the normal form for boolean expression.
- EXACT-3CNF-SAT:

Does a given 3CNF expression w/ exactly 3 literals per clause have a satisfying valuation?

- 3CNF-SAT \leq_P exact-3cnf-sat
- Given a 3-CNF A obtain $\rho(A)$ by

1. Replacing clauses $L_0 \lor L_1$ by $(L_0 \lor L_1 \lor y) \land (L_0 \lor L_1 \lor \overline{y}) \quad (y \text{ fresh});$

2. Replacing single-literal clauses L by

 $(L \lor y \lor z) \ \land \ (L \lor y \lor \bar{z}) \ \land \ (L \lor \bar{y} \lor z) \ \land \ (L \lor \bar{y} \lor \bar{z})$

NP COMPLETENESS ALL AROUND

INDEP-SET *is NP-complete*

Define ρ: EXACT-3CNF ≤_p INDEP-SET.
 Try to map exact-3CNF *E* with *k* disj-clauses to graph *G* + target *k*.

First idea: Map each clause to a triangle of literals.
 Satisfying k clauses requires then one vertex per triangle:

 $(x_0 \lor \bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_3 \lor x_4) \land (\bar{x}_2 \lor \bar{x}_4 \lor x_0)$

Choose a vertex in each triangle, eg top left.

Oops, we are trying to have both x_2 and \bar{x}_2 true!

• Additional consistency edges for x_2 :

• Consistency edge for x_3 :

• Consistency edge for x_4 :

• Final graph G:

- If A has a satisfying valuation msV,
 then G has an independent-set S of size t,
 consisting of vertices true under V.
- If G has an independent set S of size t, then S must have one vertex per triangle, and the valuation that verifies the labels of S satisfies A.

Consequence: CLIQUE is NP-complete

- We showed that clique is NP, and that INDEPENDENT-SET \leq_p CLIQUE.
- Since INDEPENDENT-SET is NP-hard, so is CLIQUE.

The INTEGER-PROGRAMMING problem

- Dealing with finite sets of linear inequalities, such as $2x - 3y + 4z - 7 \ge 0$. Quite flexible:
 - Inequality between expressions: $E \ge E'$ same as $E E' \ge 0$.
 - Equality: E = E' iff $E \ge E'$ and $E' \ge E$.
 - Strict inequality: E > 0 same as $E 1 \ge 0$.
- INTEGER-PROGRAMMING: Given a set of linear inequalities, does it have an integer solution?
- Example: $2x + y \ge 0$, $-x + 2y 4 \ge 0$ has solution x = -1, y = 2
- A PTime-certification: The solution is the certificate.
- Snag: Size of solution is non-trivial. Need:
 Exists k s.t. every solvable instance L has a solution of textual size ≤ |L|^k.

INTEGER-PROGRAMMING is NP-hard

- CNF-SAT \leq_P INTEGER-PROGRAMMING
- Given CNF expression $x \lor y \lor -z x \lor v \lor z$
- Rephrased as set of inequalities:

 $0 \leqslant x \leqslant 1$ $0 \leqslant y \leqslant 1$ $0 \leqslant z \leqslant 1$ $0 \leqslant v \leqslant 1$

 $x + y + (1 - z) \ge 1 \quad (1 - x) + v + z \ge 1$

• So INTEGER-PROGRAMMING Is NP-hard, and therefore NP-complete.

EXACT-SUM is NP-complete

- Recall: Given set *S* of positive integers and target t > 0is there $P \subseteq S$ such that $\Sigma P = t$.
- Did: it is NP
- We show NP-hardness: ρ : **3cnf-sat** \leq_p **exact-sum**

Representing the boolean switch

- Represent a boolean choice by a pair of positive integers: The condition x⁺ + x⁻ = 1 is equivalent to having one of x⁺ and x⁻ being 1 and the other 0.
- Represent multiple boolean choices by a table of 0/1 digits:

 $egin{array}{cccc} N_1^- & 1 & 0 & 0 \ N_1^+ & 1 & 0 & 0 \ N_2^- & & 1 & 0 \ N_2^+ & & 1 & 0 \ N_3^- & & & 1 \ N_3^+ & & & 1 \end{array}$

- To force each pair to add up to 1 we require that the entire table adds up to the decimal 111...1:
- N_i^+ , N_i^- represent a booelan choice for the boolean variable x_i .

Representing clauses

- Extend each row with additional info about the variable, in the form of extra digits to the right.
- Say we want of prepresent the clauses of $(x_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_1 \lor x_2 \lor x_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_4)$
- The j'th extra digit to the right indicates whether the boolean choice implied by the row makes the j'th clause true:

 $(x_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_1 \lor x_2 \lor x_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_4)$

					C_1	C_2	C_3	C_4
N_1^+	1	0	0	0	1	1	0	0
N_1^-	1	0	0	0	0	0	1	0
N_2^+	0	1	0	0	0	1	1	1
N_2^-	0	1	0	0	1	0	0	0
N_3^+	0	0	1	0	1	0	0	0
N_3^-	0	0	1	0	0	0	0	1
N_4^+	0	0	0	1	0	0	1	0
N_4^-	0	0	0	1	0	1	0	1
	1	1	1	1	1^{+}	1^{+}	1^{+}	1^{+}

Balancing the sums

					C_1	C_2	C_3	C_4
N_1^+	1	0	0	0	1	1	0	0
N_1^-	1	0	0	0	0	0	1	0
N_2^+	0	1	0	0	0	1	1	1
N_2^-	0	1	0	0	1	0	0	0
N_3^+	0	0	1	0	1	0	0	0
N_3^-	0	0	1	0	0	0	0	1
N_4^+	0	0	0	1	0	0	1	0
N_4^-	0	0	0	1	0	1	0	1
	0	0	0	0	2	0	0	0
	0	0	0	0	1	0	0	0
	0	0	0	0	0	2	0	0
	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	2	0
	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	2
	0	0	0	0	0	0	0	1
t =	1	1	1	1	4	4	4	4

- The given boolean expression is satisfiable iff the 16 numbers above, 10,001,100 ... 10,2,1, can be added to 11,114,444.
- EXACT-SUM is NP-complete,
- Why not "fill-up" with 1,1, adding up to 3,

in place of 1,2, adding up to 4? (Answer: We want distinct integers)

*HAMILTONIAN-PATH

- HAMILTONIAN-PATH: Given a directed graph G = (V, E), does it have a path visiting each vertex exactly once
- The problem has a feasible certification: the certificate is the path.

* The truth gadget for HAMILTONIAN-PATH

- 3CNF-SAT \leq_P HAMILTONIAN-PATH
- A boolean gadget:

*The gadget used as a switchboard

A boolean switchboard:

The x_0 switchboard used positively by two clauses and negatively by one

116

Combining the switchboards

hamiltonian-path is NP-complete.