TIME COMPLEXITY

Measuring computational complexity

» Time is the most limiting resource

» Computation time = number of steps
= number of cfgs in computation trace

» Steps on a Turing machine
which faithfully counts moves, as do physical devices

F22

Asymptotic complexity

 Performance of algorithms may differ wildly for different inputs.

» Measure complexity by bound on resources consumed
as a function of input size (“worst-case complexity”).

«ForaTM M over ¥ let Ty (w) be
the number of cfg’s in the trace of M for input w € &*.
This is defined only if M terminates on w.

* TM M | runs within time f|(f: N—N)
if Thr(w) < f(|w|) forall inputs w.

* So if M runs within f and f<g
then M runs within g as well.

F22

Which machine model

* You might take issue with using Turing machines as reference.
TMs “don’t cheat”, but perhaps they are too simple.

» For example, to compute the function w +— w - w (doubling the input)
A Turing transducer moves each symbol in w a distance w,
so the computation take > |w|* steps.

* If we use an auxiliary string (“tape”) the doubling of w
can be performed in ¢- |w| steps, for some small constant c.

Which machine model

* You might take issue with using Turing machines as reference.
TMs “don’t cheat”, but perhaps they are too simple.

» For example, to compute the function w +— w - w (doubling the input)
A Turing transducer moves each symbol in w a distance w,
so the computation take > |w|* steps.

* If we use an auxiliary string (“tape”) the doubling of w
can be performed in ¢- |w| steps, for some small constant c.

 Useful generalization of Turing machines:

multi-tape Turing machines |

each using a fixed number of strings.

F22

Comparing asymptotic behaviors

» Asymptotic behavior of a function f: N—N:
behavior “at infinity”, for large arguments growing yet larger.

« Example: 10-n?® < 2" for all “sufficiently large” n (here n > 15).

Comparing asymptotic behaviors

» Asymptotic behavior of a function f: N—N:
behavior “at infinity”, for large arguments growing yet larger.

« Example: 10-n?® < 2" for all “sufficiently large” n (here n > 15).

» An asymptote (of a curve) in geometry
is a line tangent to a curve at infinity.

« Example: The z-axis is an asymptote of the curve y =1/x.
So is the y-axis.

Comparing asymptotic behaviors

» Asymptotic behavior of a function f: N—N:
behavior “at infinity”, for large arguments growing yet larger.

« Example: 10-n?® < 2" for all “sufficiently large” n (here n > 15).

» An asymptote (of a curve) in geometry
is a line tangent to a curve at infinity.

« Example: The z-axis is an asymptote of the curve y =1/x.
So is the y-axis.

» a—syn—-ptote Greek for not falling together

F22

Coefficients ignored: big-O notation

» Circustantial details may double or triple machine performance.
It makes sense to abstract away from such details.

» Define f < ¢ if for some ¢ > 0 we have
f(n) <c-g(n) for all sufficiently large n.
l.e. there is some k s.t. f(n) <c-g(n) forall n>k.

Coefficients ignored: big-O notation

» Circustantial details may double or triple machine performance.

It makes sense to abstract away from such details.

» Define f < ¢ if for some ¢ > 0 we have

f(n) <c-g(n) for all sufficiently large n.

l.e. there is some k s.t. f(n) <c-g(n) forall n> k.

» We say then that “f is
and write f = O(g).

big-O

bE

of g

* More accurately we could define O(g) ={f | f < g}
and then write f € O(g).

Coefficients ignored: big-O notation

» Circustantial details may double or triple machine performance.

It makes sense to abstract away from such details.

» Define f < ¢ if for some ¢ > 0 we have

f(n) <c-g(n) for all sufficiently large n.

l.e. there is some k s.t. f(n) <

» We say then that “f is
and write f = O(g).

big-O

c-g(n) forall n> k.

bE

of g

* More accurately we could define O(g) ={f | f < g}
and then write f € O(g).

« f=0(g9) means dc,kn f(n)<c-g(n)forall n=> k.
or Jeven f(n) <c-g(n).

Coefficients ignored: big-O notation

» Circustantial details may double or triple machine performance.
It makes sense to abstract away from such details.

» Define f < g if for some ¢ > 0 we have
f(n) <c-g(n) for all sufficiently large n.
l.e. there is some k s.t. f(n) <c-g(n) forall n> k.

* We say then that “f is| big-O|of g~
and write f = O(g).

* More accurately we could define O(g) ={f | f < g}
and then write f € O(g).

« f=0(g) means dc,kn f(n)<c-g(n)forall n=>k.
or dev*n f(n) <c-g(n).

» Convention: use n as a catch-all variable for natural numbers,
writing eg O(n?) for “ O(f) where f(n)=n?"

*Other asymptotic behaviors

f=0(g) f=9Qg)

JeV*n f(n) < c-g(n) deV*n f(n) = c-g(n)
f/g is bounded from above f/g is bounded from below
f = ol(g) f=w(g)

VeVen f(n) < c-g(n) Ve V*n f(n) 2 c-g(n)
flg—0 flg— o0
f=6(g)

Je,d ¥on c-g(n) < f(n) < ¢-g(n)

g & f have similar asymptotic behavior

Time complexity classes

* TM M |runs in time O(f) (“order f”)
if its time complexity is ¢- f

for some constant ¢ > 0.

* The f’s of interest are non-decreasing:
f(n+1) = f(n) forall n.

n2
« Examples: logn, n, nlogn, n? n’ 2", 2%, nl, n"

« We write Time(f) for the collection of languages
recognized by a Turing acceptor in time O(f) .

« Similar notation for transducers.

 The reference to Turing machines is needed:
if another machine model is used then we needs to specify,
as in “this algorithms runs in quadratic time on a RAM.

F22

The Time Hierarchy Theorem

» We can expect that significantly more computation time
implies that more functions are computable.

 This is indeed true in virtually all practical cases:

| Time Hierarchy Theorem. | If

(1) t,T : N— N are “reasonable”; and
(2) t(n)log(t(n)) =o(T(n)) then Time(t) C Time(T).

» Using Calculus notations, the main condition of the Theorem states

t(n) - log(t(n))
T(n)

— 0 (n— o0)

F22

Using the Time-Hierarchy Theorem

* A function f is “reasonable” means here that
computable (for unary numerals) in time O(f):
f(1™) is computable in a number of steps linear in f(n). Such func-
tions are called time-constructible.

 The time-constructibility condition is essential:
without it there are huge “gaps”: a lot more computation time
without obtaining new functions (the Gap Theorem).

- Time(n) C Time(n?) C Time(n?) C Time(2") C Time(3") C Time(2")

* But not Time(n) # Time(n -logn)
which requires a separate proof.

F22 10

*Time Hierarchy proof idea

 Given total functions fi, fo,... over N,

obtain a function g not listed: g(n) = f.(n) + 1.

* Proof idea for Time Hierarchy:
Part A: List Time(t), obtain g not in the list.
Part B: Build a universal interpreter for Time(t),
that runs in Time(T').
So g € Time(T) — Time(t).

* (B) is technical.
(A) is thorny: can we list Time(t) ?

F22

11

Listing Time(t)

» The bad news: For any f of interest,
there is no effective listing of the transducers in time O(f) .

» The good news:
We only need listed a transducer for each functionin Time(t).

 For any transducer M , and constant c,
define M, as M with a built-in “clock”,

aborting computation for input w after ¢- f(|w|) steps.

» M, can be made to run in Time(%), clock and all,
using the assumption that f is time-constructible.

F22 12

POLYNOMIAL TIME

Polynomial vs exponential growth rate

« Polynomial growth-rate: f(n) =n*, k fixed.
» Exponential growth-rate: f(n) = k", k fixed.

» The choice of base £ does not change the general picture:
p" = k" where a = log.p =logp/logk

» But polynomial and exponential growth-rates tell very different stories:
If an algorithm runs 2" steps on input of size n, then
the universe is too small to deal with input of size 300:
It is believed that there are 10%° ~ 23%° quarks in the universe.

F22 14

Graphics

» Any exponential function overtakes any polynomial function
for sufficiently large inputs.

“y

T 2000

T-250

« Taking logarithmic scaling for the increase
visualizes the difference more clearly:

1e+10 '
le+09
1e+08
1e4Q7 |
1e+06
100000 -
10000 |
1000
100 |
10

1

Every polynomial function flattens out rapidly,
whereas any exponential function grows steadily:

log(n*) = k - log n, flattening.

log(2") = n, steadily increasing

*Exponentials surpass polynomials: an elementary proof

F22

- Fact: For every k we have 2" > n* for sufficiently large n.

« First, by induction on ¢ we get 27 > g(q+ 1) for ¢ > 5.

«Soif g =k >5,then 27 > q(q+1) = k(g + 1).

« Take n > 2F.

Then 2¢ < n < 29+ for some ¢q > k, and

2n

vV WV

\Y

22 for n > 2¢
2ka+1) gince 29 > k(g +1)
(2q+l)k

nk since 21t > n

17

*Exponentials surpass polynomials: a calculus proof

* Write f > g for “f eventually exceeds g,
i.e. JaVr>a [f(x)> g(x).

* By induction on k:

for every m, e* = m-zF ie. lim,_. 2%/e* =0
«For k=0 we have z° =1, and indeed lim,_,,, 1/e* = 0.
« Assuming lim,_. 2"/e* =0 we have

lim, o 2%1/e® = lim,_ (2**1)/(e*)’ by LHopital Rule
= limy 00 ((k+1) 2¥)/e?
= (k+1) lim,_ 2*/e*
=0 by IH

F22 18

PTime decidable problems

A Turing decider

if its running time on input of size n is O(n*) for some k.

runs in polynomial time (PTime)

« All standard machine acceptors can be compiled into

Turing machines with increase of computation time

bounded by a polynomial (usually n?).

So “PTime” remains unchanged from model to model.

» We can therefore consider informal algorithms

without worrying about low level implementation.

F22

19

*The Cobham-Edmunds Thesis

* PTime is a practical first-approximation
of the scope of computational feasibility

Cobham-Edmunds Thesis (1964)

An algorithm is (intuitively) feasible iff it runs in PTime.

» Since all basic computation models simulate each other
within a factor polynomial in the size of the input,
this Thesis can refer to “algorithms.”)

F22

20

Flaws of the Cobham-Edmunds Thesis

 The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,
just like the Turing-Church Thesis.

Flaws of the Cobham-Edmunds Thesis

 The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,
just like the Turing-Church Thesis.

 But it is far more problematic than the Turing Thesis,
and should be taken with a grain of salt, as a rough guide.

Flaws of the Cobham-Edmunds Thesis

 The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,
just like the Turing-Church Thesis.

 But it is far more problematic than the Turing Thesis,
and should be taken with a grain of salt, as a rough guide.

* Here are some issues that weaken it.

1. The exponents should matter: n'® is not feasible.

2. The coefficients should matter: 100’ is not feasible.

Flaws of the Cobham-Edmunds Thesis

 The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,
just like the Turing-Church Thesis.

* But it is far more problematic than the Turing Thesis,
and should be taken with a grain of salt, as a rough guide.

* Here are some issues that weaken it.

1. The exponents should matter: n'® is not feasible.
2. The coefficients should matter: 100 n is not feasible.

3. Conversely, time of order n'°2'°¢" is not admitted,
8 ,
and yet n'ele” < nd forall n < 22 =226 ~ 107",

F22 21

Some important PTime-decidable problems

* CONNECTIVITY: Given a graph G = (V, E), is it connected?

A simple algorithm:
For each pair u,v of vertices check all permutations
of the remaining vertices for being a path from « to v.

« This is not feasible, e.g. 100! ~ 108,

 But there are algorithms quadratic in the number of nodes. (Dijkstra’s
Algorithm, 1969)

F22 22

Other PTime-decidable problem

* LINEAR-INEQUAL: Given a set of linear inequalities,
does it have a real-number solution?
Example 3z+y >0, 4+ 3y <0 . A PTime decision algorithm was
found in 1979 by Leo Khachian.

* EDGE-COVER: Given a graph G and atarget t > 0
is there a set of <t edges which includes all vertices (Edmunds
1965).
(In contrast, we know of no PTime-decision for VERTEX-COVER.)

* PRIMALITY: Given a natural number, is it prime?
A PTime decision algorithm for primality
was developed in 2006 by Agrawal, Kayal and Saxena.

F22 23

Enhanced uses of induction

* To reason inductively,
we sometimes need at each step more than what we wish to prove.

» Example we studied:
To parse a single (prefix notation) boolean expression,
parse arbitrary strings into a concatenation of expressions.

F22 24

Memoization: caching data for repeated use

* | Memoization

= memorize information for future use

(Greek: mnéme = memory).

« Example. If L C ¥* is PTime decidable then so is L™.

 How about exhaustive search:

For each partition of input w into concatenated non-empty substrings

check whether all parts are in L.

« There are 2"~! partitions of w of size n!!

 But the number of “parts” is only quadratic in n !

* And (as for the parsing algorithm) we can uniformize matters

by finding whether substrings are in L* rather than L.

» This we can do by a simple induction on length.

F22

25

A Ptime algorithm for L*

« We calculate the set S of substrings of w that are in L*.

» We do this by induction on length, i.e. calculating successively
S; = the set of strings in S of length 1.

« S, consists of the letters in w.
* S;41 can be calculated from Sp,...,S; in PTime.

» So the entire algorithm is in PTime.

F22

26

A concrete case of the algorithm:

» L = English words.

» letustakethisshortsentenceasaniceexample

» Consider substrings of length 1. S; = a

» Substrings of length 2: S5 = us,hi,or,as,an,am

» Substrings of length 3: S5 = let,ten,asa,his,ice

» Substrings of length 4: S, = take,this,hiss,sent

» Substrings of length 5: S5 = letus,stake,short,ample

» Substrings of length 37: S3; = ustakethisshortsentenceasaniceexample

« Substrings of length 39: S39 =0

» Substrings of length 40: Sy, = letustakethisshortsentenceasaniceexample

F22 27

Same idea: CFLs are in Time(n?)

* A useful tool: Chomsky grammars.

A

Chomsky grammar

[Terminal.] A—o

[Split] A— BC

« Theorem

is a CFG using only two type of productions:

(o € X)
(B, C other than S)

Every CFL without € is generated by a Chomsky grammar.

F22

Cubic-time decidability of CFLs

» Given a Chomsky grammar G over &

we construct a cubic-time memoization algorithm

deciding whether a given string w is generated by G.

* This is known as the

Cocke-Younger-Kasami (CYK)

after three who re-discovered it in 1965/67.

But it was first invented by ltiroo Sakai in 1961!

F22

Algorithm,

29

The CYK Algorithm

 For each non-terminal A of G let
S; be the set of pairs SMS(A,u) where

1. A is a non-terminal,
2. u a substring of w of length i, and

3. A =% .

* S, is obtained directly from the Unit Productions of G'.

F22

30

Inductive calculation of S;

* Siy1 is obtained from S; for j < :
1. For each substring « of length 7 + 1
2. for each split u =z -y (Note: |z|,|y| < 1)
3. for each Split production A — BC
If (B,z)€ S and (C,y) €Sy,
then place (A,u) in Sjy.

» There are O(n) substrings of length i < n,
and O(n) splits for each substring,

so for each i < n the process is in time O(n?) .

* If |{w| =n then there are n passes,
so the entire algorithm is in cubic time.

F22

31

A CYK Example

Generating aPcb?tical;

S — LR
L — alb|c
R — DbRal|c

An equivalent Chomsky grammar:

(1) S=LR (2) L>AM|c (3 M—-LB (4 R—BN|c
(6) N—+-RA (6) A—>a (7) B—Db

Decide whether acbbca is generated.

F22 32

Calculating S;

The grammar:

(1) S— LR (2) L—AM |c (3) M— LB (4) R— BN | c
(5) N— RA (6) A— a (7) B—b
The sets:
S$1: A= a B=Db L=c R=c
So: M — LB =* cb
N — RA =* ca
S3: L - AM =* acb
R — BN =* bca
Si: M — LB=* acbb
S5: 0
Se¢: S - LR=* acbbca

F22 33

Closure properties of PTime problems

» Closure under set operations:
complement, union, intersection.

 Closure under language operations:
concatenation, plus, star.

F22

34

Closure properties of PTime functions

* PTime is closed under composition:
Suppose f,g: ¥F — ¥*.
If feTime(n*) and g < Time(nf)
then fog € Time((n*)’) = Time(n*?).
« Suppose transducer T' computes f intime c-nF,
and 7" computes g intime d-n’.
» Given input w € ¥*,
T terminates in < c|w|* steps,
and so has an output y of size <c-|w|r.
» Given y as input,
T' operates in time < d- |y|’,

ie. <e-|lw* (e=d-c)

F22

35

PTIME REDUCTIONS

Reminder: reductions between problems

*Let P and O be problems.

A

reduction

of P to O is a function

p : Instances(P) — Instances(Q)

such that for every instance w of P,

weP IFF p(w)eQ

* l.e., to find out whether w € P we can find p(w),
and find whether itis in O.

F22

37

Reminder: computable reductions

* If p is a computable reduction of P to O then
we write p: P <. O and say
that P computably-reduces to O .

F22

38

PTime reductions

« Computable reductions relate the
algorithmic solvability of problems.

» PTime reductions relate the feasibility of problems:

a| PTime reduction|of problem P to problem Q is

a PTime function p that maps instances of P to instances of O,
suchthat weP iff plw)e 0.

* We write p: P <, O, with a subscript p.

« If there is such a p, we write P <, O

and say that P | PTime-reduces|to O.

F22

Transitivity of PTime-reductions

* We had:
f p: P <. Q and p: 9 <. R
then pop: P<. R

» Since PTime is closed under composition,
we similarly have:
f p:P <, Q9 and p': 0 <, R
then pop': P, R

* Note the benefit of lumping together all polynomials:
For example, reducibility by quadratic time reduction
is not closed under composition.

F22

40

1/2-CLIQUE reduces to CLIQUE

F22

41

Example: CLIQUE reduces to INDEPENDENT-SET

(V;E)

A

SN

A blue graph

o C

Missing edges are in
{A,B,D} a clique of size 3

A red graph
Missing edges are in blue
{A,B,D} an ind set of size 3

1/2-CLIQUE reduces to 1/3-CLIQUE

F22

43

CLIQUE reduces to 1/2-CLIQUE

F22

44

HAMILTONIAN-PATH reduces to HAMILTONIAN-CYCLE

F22

45

*EXACT-SUM reduces to INTEGER-PARTITION

» Reductions may be ingenious,
using particulars of the problems compared.
There are no silver bullets.

» Reducing INTEGER-PARTITION (IP) to EXACT-SUM (ES) was easy,
because IP is a secial case of ES.

« But we also have p: IP <, ES
by the following PTime reduction p:

» Given instance (S,t) of ESlet A=xS.
Note: t < A: o/w (S,t) is trivially not in ES.
Define S = p(S,t) =4« S U {A+1t,2A —t}. Note: ©=5" =4A.

» We show that S has a subset P adding up to ¢
iff S’ has a subset P’ adding up to (=5')/2 = 2A.

F22

*lfwe have PC S with =P =1
then take P’ = P U {2A—t}.

« Conversely, suppose exists some P’ C S’ satisfying =P’ = 2A.
Let P bethe one of P and S'—P’ thathas 2A —¢.
Since (A+1t)+(2A—t)=3A and =P =2A
P cannot have A+t .

Let P =P — {2A—t}. Then PC S and =P =t.

47

HAMILTONIAN-PATH reduces to UNDIRECTED-HAMILTONIAN-PATH

 Does this directed-graph have a Hamiltonian path?

F22

48

« Creating a direction-gadget:

F22

49

« Same for the neighboring

A B
® (&

 But is directionality assured?

F22 50

» We need a middle-node in each gadget:

F22

in out

B* B° B~
O—0=0

o000

51

« For the entire graph:

3@
E

 This mapping is a PTime reduction of HAMILTONIAN-PATH
to UNDIRECTED-HAMILTONIAN-PATH.

e

7

F22

52

PTime reductions and problem feasibility

 Had: If O is decidable and P <. O
then P is decidable.

 Now: If O is PTime-decidable and
then P is PTime-decidable.

P<,Q

* le., If P is not PTime-decidableand P <, O

then O is not PTime-decidable.
* Similarly: If @ isNPand P <, O
*le:lf PisnotNPand P <,0

F22

then P is NP

then O is not NP

53

Examples

* INTEGER-PARTITION <, EXACT-SUM.
So if EXACT-SUM is PTime-decidable then so is INTEGER-PARTITION.

* CLIQUE <, INDEPENDENT-SET.
So if INDEPENDENT-SET is PTime-decidable then so is CLIQUE.

F22

54

PTime reduces to linear time

» The Time Hierarchy Theorem implies that for every k > 0 there are
problems decidable in time O(n**!) but not in time O(n*) .

« But the distinction between the powers in PTime is
obliterated by PTime reductions.

« Suppose problem P is decidable by M within time a - n*, for n > h.
Then it has a variation P’ s.t. P <, P’

but P’ is decidable for all w intime < |w|.

clet P={w-U"™ | weP,my=a-|lwr+H}
where H = max{Timey/(z) | |z| < h}.

«Define p: PP by pw)=w- L,
* p is computable, and is a reduction by defn of P’.

« But P’ is decidable in time identical to the length of the input.

Another simplification

» Suppose a problem P is deidable within time a - n
forall n > k.
There is a problem P’
decidable within time n for all input,
such that P <, P'.

» The proof is similar to the one above: Use padding.

F22

56

PTIME CERTIFICATION

Exhaustive search for real-life problems

» Some problems require exponential time algorithms because
exponentiation is explicit in their specification.

 Transducer example (exponentially large output):
For input w output a string of length > |w|.

Acceptor example (exponentially long trace):
Given acceptor M and string w,
does M runs > 2/*l steps on input w ?

» However our examples of exhaustive search are unrealistic because
the number of cases is forbidding,
not because the specification is unrealistic!

F22 58

Reminder: Certifications

* A certification for a decision problem P
is a binary relation Fp between strings (the certificates),
and instances of P, such that for all instances w

w satisfies P IFF c¢tkp w forsome ce(C

» We showed that a language L is SD
iff it has a decidable certification.

F22

59

Feasible-certification

» A certification + for P is|feasible

if ¢+ w is decidable in time polynomial in |w| .
We write then ¢, w.

* In time ¢ a Turing acceptor cannot read more
than the ¢ initial symbols of ¢, so ¢ w implies that
lc| is eventually bounded
by |w|* for somek.

» Conversely, if the truth of ¢ w is computable in time
polynomial in |w|+ ||,
and |¢| is bounded by a polynomial in |w|,
then ¢+ w is PTimein |w|+ |c|,i.e. PTime as a set.

* Insummary: P is feasibly certified iff c - w is decidable in PTime (w, ¢
both counted!)

and |c| is bounded by a polynomial in |w|.

» Restricting certificate size is essential:
otherwise any SD problem P would be PTime certified
because the time to check that a trace ¢ is correct is O(|c|?),
and so is polynomial in |w| + |¢|.

NP: Non-deterministic PTime

 The class of PTime-certified problems is also referred to

as | NP |short for “Non-deterministic PTime”.

The reasons are mostly of historical interest.

» A non-deterministic (ND) Turing acceptor is defined like an acceptor,
expect that its transition mapping is not necessarily univalent.

» We say that an ND acceptor M |accepts a string w

if there is an accepting computation-trace ¢ of M for input w.

» Moreover, that acceptance is | within time <t

if the trace ¢ has <t cfgs.

« M is PTime ifthere are a, k,h > 0 such thatif M accepts w, |w| > h,
then it accepts w intime < a - |w|").

* Allanguage L isin NP if it is recognized by a ND PTime acceptor.

NP = Feasibly certified

 Feasible certification for a language L implies
a non-deterministic recognizing algorithm:

» A problem P with a feasible certification
Is recognized in PTime by a “non-deterministic algorithm”:

» Given an instance w, guess a certificate c.

This takes time ||, i.e. polynomial in |w|.

» Checking ¢t w takes time polynomial in |w/|, since | is feasible.
» Conversely, recognition of L by a PTime ND algorithm

implies that L is feasibly certified:

» Suppose P is recognized in PTime by an ND algorithm M .

» A certificate for an instance w is any road map
that steers the ND choices to an accepting trace.

NP-COMPLETENESS:
Maximally complex NP problems

Maximal complexity in SD

* A problem P is|SD-hard
if every SD problem is computably-reducible to P.

« If P is SD-hard, and P <. P’ then P’ is SD-hard:
Every SD problem O is reducible to P since P is SD-hard.
So by transitivity of <, it follows that P <. P’ we getby O <. P’.

« P is| SD-complete |if it is SD-hard and is itself SD.

 An obvious SD-complete problem: ACCETANCE.
If P=L(M) then P <. ACCEPTANCE by a reduction that maps

instance w of P
to the instance (M#, w) of accept.

F22 65

Clear broad picture for SD...

F22

All equivalent

All equivalent

The SD problems

SD Complete

lots of stuff ¢

Decidable

66

Maximally complex NP problems

* A problem P is

NP-hard

if every problemin NP is <, P.

» Since <, is transitive, if P is NP-hard, and P <, P’
then P’ is NP-hard as well.

» A problem P is

NP-complete|if it is both NP and NP-hard.

* From these definitions it follows that if there is

an NP-hard problem P which is PTime decidable,

then every NP problem is PTime-decidable!

F22

67

Blurry picture for NP

The NP problems: 2 possibilities

All NP Complete NP Complete

<p ~ equiv
A
lots of stuff <
p

All
< . PTime decidable PTime decidable PTime decidable
<p - equw

Impossible
(Ladner’s Theorem)

F22

68

Computing is binary...

» We conceive a certification Fp for a problem P in two stages:

1. Identify what sort of objects are the certificates.
E.g. a certificate for an instance of HAMILTONIAN-PATH
is a list ¢ without repetition of the vertices.

2. State properties that make a certificate valid.
For HAMILTONIAN-PATH these are:
¢ is without repetitions, and
successive entries are adjacentin G'.

F22 69

Reminder: Boolean valuations

» Boolean expressions are generated from variables
using negation, conjunction, and disjunction.
Example: (—xz) A —(y V x).

« Given a valuation V: Var — {0,1} of variables,
each boolean expression evaluates to 0 or 1.

« Example: If V(z)=0,V(y)=0 then V(—-zA—-(yVz)=1

A valuation V |verifies| E if V(E) = 1.

« F is|satisfiable|if it is verified by some V ,

It is | valid|if it verified by every V.

« SO F is satisfiable iff —F' is not satisfiable
and is valid iff —F' is not satisfiable.

Boolean satisfiability

* BOOL-SAT: Is a given boolean expression satisfiable?

* A certification for BOOL-SAT:
A certificate for an expression E' is a valuation verifying it.

» Checking a certificate is PTime in the size of the expresson.
So the certification is feasible.

F22

71

Coding certificates by boolean expressions

» Digital coding is central to describing discrete data,
and the simplest form of digital coding is binary, i.e. using booleans.

* No surprise then that a good candidate for NP-hardness
is Boolean Satisfiability bool-sat.

» We use yes/no questions to code the potential certificates,
and then yes/no questions that check their validity as certificates.

F22 72

Boolean coding of potential certificates

* Let’s look again at the HAMILTONIAN-PATH (HP) Problem:
Does a given directed graph G = (V, E) have a Hamiltonian path?

 Let n be the number of vertices in G.
The question is: Is there a listing
uq, Us, . . ., u, Of all vertices, without repetition,
so that w;(F)u;y, for i <n.

« We convey this intent by a boolean expression, using
foreach v € V and i = 1..n a fresh boolean variable z;,
intended to be true iff the i'th entry in the list is v.

F22 73

Using booleans to state the existence of a H-path

» Given G, we construct a boolean expression Eg
stating that the boolean variables z;, describe a Hamiltonian path.

 This will show that G has a Hamiltonian path iff E¢ is satisfiable.

* For cocreteness, consider our earlier example:

@) ,

A

O

* Any listing in positions 1,2,3,4,5 of the vertices V = {a,b,c,d, e}
will assign truth values for the 25 variables.

F22 74

» E.g. the listing a,b,c,d, e is conveyed by the valuation assigning 1

t0 14, To, X3, T4, 5. and O to the remaining 20 variables.

Here is that valuation, with the variable set to 1 (true) in orange.

» Our Hamiltonian path,

valuation:

T2q
I3q
T4q

I5q

T1p
Tap

I3p

I5p

T1e
e
I3c

Tye

T1d

I3d
T4d

T5d

T1e

T2e

T4e

Ise

Tq
T3q
T4qa

I5q

a—d—e—=b—c:

T1p

I3p
T4p

Is5p

AT

Toe

T

Ise

Tid
Toq

L3d

I5d

T1e
Toe
T3e

T4e

is conveyed by the following

The vertex-listing is a path

» We state the conditions that make a valuation
of the variables z;, into a Hamiltonian path.

* At least one position per vertex:

For each vertex v the disjunction xy, V ---V z,,.

» At most one position per vertex:
For each vertex v and distinct i, =1..n
the expression —(zi, A 2j,)

F22

76

Successive vertices are adjacent in the graph

» For each position i < n
the disjunction of all expressions z;, A z;41, Where v(E)u.

 E.g., positions 2 and 3 are related by one of the 9 edges:
(T2a A Z3p) V (Toa AT3c) V (220 A Z34)
V (z9 A T3.)
V (29g A x3:) V (g A Z3¢)
V (29e A x3p) V (X2 A X3c)
Vv (

Zoe N\ T3q)

F22 77

The reduction

« We've obtained a reduction p: HP <, BOOL-SAT

* p maps a directed grarph G = (V, E) to the conjunction A of the
boolean expressions as above,
based on the particular size and edge-relation of G.

» Ac is computable in time cubic in the size of G.

F22 78

» The mapping p is a reduction:

» If there is a Hamilt path vy —---—u, In G
then the boolean expression Ag is satisfied by the valuation
that assigns 1 to z;, iff v is w;.

» Conversely, if the expression Ag is satisfied by a valuation V
then (v;..v) is a Hamilt path,
where v; is the unique v for which V(z;,) = 1.

» Conclusion: p: HAMILT-PATH <p BOOL-SAT

F22 79

From ND PTime to ND linear time

» We show that every problem
recognized by a ND acceptor M in PTime <, BOOL-SAT.

» The method is similar to the boolean coding of HAMILONIAN-PATH.

» We saw that each problem decidable in PTime
is PTime-reducible to a problem decidable on site.

» The same padding technique shows that
each problem recognized by a ND acceptor in PTime
iIs PTime reducible to a problem recognized by a ND acceptor on-site.

« By transitivity of <, we only need ONSITE-ACCEPT <, BOOL-SAT.

F22 80

Coding ND on-site acceptor in BOOL-SAT

* Define a PTime reduction p: ONSITE-ACCEPT <, BOOL-SAT.

*p maps (M,w) (M aND) to bool expssn Ej ., S.t.

M accepts w in time |w| iff Ey,, is satisfiable.

» The trace in grid form:

a 1> 1102 | | _|_ terminal configuratiol
A)

q/|>/1 1|0 1| _|_|_ | _
qll>l1/1ol2 | | _

| W | q 1> 1102 | | _|_ F successive cfgs

ol >0l ||
vl >1l1ol]
el >lol]ola] | _|_

si|[=[oafola| __]] _]mitia configuration

| w

state

F22 81

The grid as yes/no questions

lall>l1]/1l0]12 | _ | _| _ |terminal configuratiol
T B
q| >|1/1 0 1| _ | _| _|_
q | >l11lofa] | _|_|_
| | q ll>1/1]0]1] > successive cfgs
p >0l || _|_
sl]
r > 010 1 _|_|_|_
=010 1 _|_|_|_]|initial configuration
T w

State

* For each state g and i < |w| z;, for “state of i'th cfgis q~
« Foreach i,j < |w|: ¢ for “cursor of i'th cfg at 5~
*Foreach i,j < |w| and o € ¥: ¢, for “(i,j) cell has o

F22 82

Yes/no for consistency conditions

all>/1]2/0/2]_
qll>/ 1101 _
7q7 >11]1,0] 1| _
W@ > 1101
p | >1/1/0 1|
rll>l1l1lo0 1 _
rl>lol1/01]
S > 0101 _
| w

state

» One state + one cursor per row
 one symbol per cell

* First row is initial state + >w.
 Last row has accept state

F22

terminal configuratiol
~

F successive cfgs

J
initial configuration

83

Yes/no for operational conditions

a 1> 11|02 | | _|_ terminal configuratiol
1 B

q/|>/ 1 101 _|_|_|_
qll>/1l1 02| _ | _|_

W I q I>l1]l1]0]1 . F successive cfgs
pll> 1ol | _|_|_
>0l]

r|>o0|1/0 1 _|_|_|_
si|[=ofafola| _|_]_] _]mitia configuration
| w

state

» Each subsequent row is obtained from the preceding
by one of the rules of M

F22 84

BOOL-SAT is NP-Complete

* BOOL-SAT is fersibly certified:
The certificate is the satisfying valuation.

* BOOL-SAT is NP-hard:
Every NP problem reduces to ND-ONSITE-ACCEPT by padding,
and ND-ONSITE-ACCEPT < BOOL-SAT.

F22

85

Normal forms

» Boolean expressions may be arbitrarily complex.

Can we facilitate eductions by focusing on some that are simple?

* Reductions to | normal forms

» Decimal fractions (percents):

are all around!

3/8 versus 4/11 (.375 vs .364)

» Better: normalized scientific notation for real numbers:

123.45 = 1.2345 x 102,
0.0012345 = 1.2345 x 1073,
1.2345 = 1.2345 x 10°

» Display immediately the order of magnitude.

» Polynomials are defined using +, x, — in any order.

 Putting order in the chaos:

x in the scope of —, in the scope of +.

F22

—(z+y)-z)-(1-y)=2"-y+z-y—2>—z-y

87

Normal form for boolean expressions

» For boolean expressions: chaos of negations, conjunctions, disjunction

F22

Normal form:| negations in scope of conjunctions in scope of disjunc-

tions

Literals:

—[lzV-u)A(yVvo)] = (—zV —y)
A (—x V —v)
A(uV —y)
A (uV —v)

variables or their negation.

(disjunctive) clauses:|disjunction of literals (1,2,3,0... disjuncts)

Conjunctive normal expression (CNF):

conjunction of disjunctive clauses

88

CNF and satisfiability

* More orderly BOOL-SAT: ask only about satisfiability of CNFs:

CNF-SAT:
Given a CNF boolean expression E, is it satisfiable?

 We'll show that CNF-SAT is NP-hard.

* NP-hardness of problems would be made easier:
CNF-SAT <, P easier to show than BOOL-SAT <, P

F22 89

CNF-SAT is NP-hard

* Method: Reduce bool-sat t0 cnf-sat.

 Every boolean expression can be converted

into an equivalent CNF expression.

* But this does NOT yield the desired reduction!

» Expression E' is converted into a CNF equivalent

which may be exponentially longer!

» However: NO NEED for an equivalent CNF!
Suffices a CNF whose satisfiability is equivalent

to the satisfiability of E.

» We can even restrict attention to

3CNF

where each clause has < 3 literals.

F22

expressions

90

3CNF-Satisfiability

« 3CNF SATISFIABILITY Does a given 3CNF expression have a veri-
fying valuation.

« BOOL-SAT 3CNF-SAT

« Example, A is (x Ay)V (2 A —(zV u))
)
/ \

X u

A

» Name with fresh variables the compound sub-expressions of A:

a = A

b = xzAy

c = xAu

d = —(xAu)

e = zV—(xAu)

R
2 fiﬁd

x Yy
/®<

X u

@A

F22 92

» Define A~ to be the conjunction of

In 3CNF form:

(a <> (bV)

(b (zAy))

(c+ (zNAd))

(d < —e)

(e <> (zVu))

eVaxVu,
T Ve,
u\Ve

F22

» A is satisfiable iff the 3SCNF a A A= is satisfiable.

* a/N\ A~ isof size linear in the size of A.

95

Exact-3CNF-Sat

* Further tightening the normal form for boolean expression.

* EXACT-3CNF-SAT:
Does a given 3CNF expression w/ exactly 3 literals per clause
have a satisfying valuation?

* 3CNF-SAT <p exact-3cnf-sat
* Given a 3-CNF A obtain p(A) by

1. Replacing clauses LoV L; by
(LoVIiVy) A (LoVIiVy) (y fresh);
2. Replacing single-literal clauses L by
(LVyVz) AN (LVyVz) A (LVyVz) A (LVYVZ)

F22 96

NP COMPLETENESS ALL AROUND

INDEP-SET is NP-complete

* Define p: EXACT-3CNF <, INDEP-SET.
Try to map exact-BCNF E' with k disj-clauses
to graph G + target k.

» First idea: Map each clause to a triangle of literals.
Satisfying k clauses requires then one vertex per triangle:

(:’1’20\/;’731\/1132) N (:’IZIV:’T’ZQ\/;’IJ;:,) /AN ($2V:’I_’;3V.’1’Z4) AN (@V@V:EO)

* An initial draft of G':

X, X, X, X X x, x X,
AV VA

» Choose a vertex in each triangle, eg top left.
Oops, we are trying to have both z, and z, true!

» Consistency edge for xs:

S RS

*2 X3 Xy X0

F22 99

 Additional consistency edges for xs:

X X X X X X X X
. /ol ok \ /03 6\ /04
o/o% ® @)

X) X 3 X X 0

F22 100

» Consistency edge for z;:

—_—

~

J— J— —
-

X - i— x
QO\/ \\/ ————— \/O \/
O:::"'
) ---___% S T X4 -~ X0

F22 101

» Consistency edge for x3:

X, ____X X X, - X
O\/O/l/ OI\\/OZ ————— h /O
N o
% Tt < . b

F22

102

» Consistency edge for zy:

X X
0 . --=-=-21
O\ /O’ O\\
S O -~ -
X Te-- e

F22

103

« Final graph G:

 If A has a satisfying valuation msV,
then G has an independent-set S of size ¢,
consisting of vertices true under V.

 If G has an independent set S of size ¢,
then S must have one vertex per triangle,
and the valuation that verifies the labels of S satisfies A.

F22 104

Consequence: CLIQUE is NP-complete

* We showed that clique is NP,
and that INDEPENDENT-SET <, CLIQUE.

» Since INDEPENDENT-SET is NP-hard, so is CLIQUE.

F22 105

The INTEGER-PROGRAMMING problem

 Dealing with finite sets of linear inequalities,
suchas 2z —3y+4z— 7> 0. Quite flexible:

» Inequality between expressions: E > E' sameas E — E' > 0.
» Equality: E=F' iff E>E" and E'> E .

» Strict inequality: £ >0 sameas E—12>0.

* INTEGER-PROGRAMMING: Given a set of linear inequalities,
does it have an integer solution?

« Example: 2x+y >0, —x+2y—4>0 hassolution z=-1, y=2
* A PTime-certification: The solution is the certificate.

» Snag: Size of solution is non-trivial. Need:
Exists k s.t. every solvable instance L has a solution of textual
size < |L|*.

INTEGER-PROGRAMMING is NP-hard

* CNF-SAT <p INTEGER-PROGRAMMING
» Given CNF expression zVyV—z —xVoVz

* Rephrased as set of inequalities:
0<z<1l 0<y<l 0<2<1 0<Kv<l1l
r+y+(1—-2)=21 1-2)+v+22>1
* SO INTEGER-PROGRAMMING Is NP-hard, and therefore NP-complete.

F22 107

EXACT-SUM is NP-complete

» Recall: Given set S of positive integers and target ¢ > 0
isthere P C S suchthat =P =1t.

* Did: it is NP

* We show NP-hardness: p: 3cnf-sat <, exact-sum

F22 108

Representing the boolean switch

» Represent a boolean choice by a pair of positive integers:
The condition =z + 2~ =1 is equivalent to having one of z* and 2~
being 1 and the other 0.

» Represent multiple boolean choices by a table of 0/1 digits:

Ny |10 0
Ni|100
Ny| 10
Nf| 10
Ny 1
N 1

» To force each pair to add up to 1 we require that
the entire table adds up to the decimal 111...1:

« N, NI represent a booelan choice for the boolean variable z;.

Representing clauses

* Extend each row with additional info about the variable,
in the form of extra digits to the right.

» Say we want ot prepresent the clauses of
(x1VZVE3) A (21 VEVEY) AN (B VEXaVay) A (x2VIZ3VZy)

* The j’th extra digit to the right indicates whether
the boolean choice implied by the row makes the j’th clause true:

F22 110

(:’Blv.’fzv.’rg,) N (ZL‘1V£B2VE4) N (531V£L'2V£B4) AN (£L'2V533V.’1_74)

Cy Cy C5 Cy
Nfl1000 1 1 0 0
N7I1000/0 0 1 0
NFfl01000 1 1 1
Nyl0100/1 0 0 0
NflO0O10 1 0 0 0
Nyl0010/0 0 0 1
NflO0OO0O1 0 0 1 0
Ny0OO1[0 1 0 1

111 1/1% 1t 1% 1f

F22

Balancing the sums

¢y Cy O3 Cy
Nflftoo0o0[1 1 0
Nyltooojlo 0 1 0
Nflo1o00[0 1 1 1
Nylo100[1 0 0 0
Nfloo10[1 0 0 0
Nyloo10[{0 0 0 1
Nflooo1[{0 0 1 0
Nylooo1[lo 1 0 1
00002 0 0 0
00001 0 0 0
00000 2 0 0
00000 1 0 0
00000 0 2 0
00000 0 1 0
00000 0 0 2
00000 0 0 1
t=|1111/4 4 4 4

F22

» The given boolean expression is satisfiable iff
the 16 numbers above, 10,001,100 ... 10,2,1,
can be added to 11,114,444,

* EXACT-SUM is NP-complete,

* Why not “fill-up” with 1,1, adding up to 3,
in place of 1,2, adding up to 4?7 (Answer: We want distinct integers)

113

“HAMILTONIAN-PATH

* HAMILTONIAN-PATH: Given a directed graph G = (V, E) ,
does it have a path visiting each vertex exactly once

» The problem has a feasible certification: the certificate is the path.

F22

114

*The truth gadget for HAMILTONIAN-PATH

* 3CNF-SAT <p HAMILTONIAN-PATH

» A boolean gadget:

F22

115

*The gadget used as a switchboard

A boolean switchboard:
O P— v X v X }
/ —
% 0 3&4 o J
/O\

The X, switchboard used positively by two clauses and negatively by one

F22 116

Combining the switchboards

hamiltonian-path is NP-complete.

