
TIME COMPLEXITY



Measuring computational complexity

• Time is the most limiting resource

• Computation time = number of steps

= number of cfgs in computation trace

• Steps on a Turing machine

which faithfully counts moves, as do physical devices
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Asymptotic complexity

• Performance of algorithms may differ wildly for different inputs.

• Measure complexity by bound on resources consumed

as a function of input size (“worst-case complexity”).

• For a TM MMM over ΣΣΣ let TM(w)TM(w)TM(w) be

the number of cfg’s in the trace of MMM for input w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ .

This is defined only if MMM terminates on www .

• TM MMM runs within time fff (f : N→Nf : N→Nf : N→N )

if TM(w) 6 f(|w|)TM(w) 6 f(|w|)TM(w) 6 f(|w|) for all inputs www.

• So if MMM runs within fff and f 6 gf 6 gf 6 g

then MMM runs within ggg as well.
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Which machine model

• You might take issue with using Turing machines as reference.

TMs “don’t cheat”, but perhaps they are too simple.

• For example, to compute the function w 7→ w · ww 7→ w · ww 7→ w · w (doubling the input)

A Turing transducer moves each symbol in www a distance www ,

so the computation take > |w|2> |w|2> |w|2 steps.

• If we use an auxiliary string (“tape”) the doubling of www

can be performed in c · |w|c · |w|c · |w| steps, for some small constant ccc.
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• You might take issue with using Turing machines as reference.

TMs “don’t cheat”, but perhaps they are too simple.

• For example, to compute the function w 7→ w · ww 7→ w · ww 7→ w · w (doubling the input)

A Turing transducer moves each symbol in www a distance www ,

so the computation take > |w|2> |w|2> |w|2 steps.

• If we use an auxiliary string (“tape”) the doubling of www

can be performed in c · |w|c · |w|c · |w| steps, for some small constant ccc.

• Useful generalization of Turing machines:

multi-tape Turing machines ,

each using a fixed number of strings.
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Comparing asymptotic behaviors

• Asymptotic behavior of a function f : N→Nf : N→Nf : N→N:

behavior “at infinity”, for large arguments growing yet larger.

• Example: 10 · n3 < 2n10 · n3 < 2n10 · n3 < 2n for all “sufficiently large” nnn (here n > 15n > 15n > 15).
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Comparing asymptotic behaviors

• Asymptotic behavior of a function f : N→Nf : N→Nf : N→N:

behavior “at infinity”, for large arguments growing yet larger.

• Example: 10 · n3 < 2n10 · n3 < 2n10 · n3 < 2n for all “sufficiently large” nnn (here n > 15n > 15n > 15).

• An asymptote (of a curve) in geometry

is a line tangent to a curve at infinity.

• Example: The xxx-axis is an asymptote of the curve y = 1/xy = 1/xy = 1/x .

So is the yyy-axis.

• a-syn-ptote Greek for not falling together
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Coefficients ignored: big-O notation

• Circustantial details may double or triple machine performance.

It makes sense to abstract away from such details.

• Define f 4 gf 4 gf 4 g if for some c > 0c > 0c > 0 we have

f(n) 6 c · g(n)f(n) 6 c · g(n)f(n) 6 c · g(n) for all sufficiently large nnn.

I.e. there is some kkk s.t. f(n) 6 c · g(n)f(n) 6 c · g(n)f(n) 6 c · g(n) for all n > kn > kn > k.
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⋆Other asymptotic behaviors

f = O(g)f = O(g)f = O(g)

∃c ∀∞n f (n) 6 c · g(n)∃c ∀∞n f (n) 6 c · g(n)∃c ∀∞n f (n) 6 c · g(n)

f/gf/gf/g is bounded from above

f = Ω(g)f = Ω(g)f = Ω(g)

∃c ∀∞n f (n) > c · g(n)∃c ∀∞n f (n) > c · g(n)∃c ∀∞n f (n) > c · g(n)

f/gf/gf/g is bounded from below

f = o(g)f = o(g)f = o(g)

∀c ∀∞n f (n) 6 c · g(n)∀c ∀∞n f (n) 6 c · g(n)∀c ∀∞n f (n) 6 c · g(n)

f/g → 0f/g → 0f/g → 0

f = ω(g)f = ω(g)f = ω(g)

∀c ∀∞n f (n) > c · g(n)∀c ∀∞n f (n) > c · g(n)∀c ∀∞n f (n) > c · g(n)

f/g → ∞f/g → ∞f/g → ∞

f = Θ(g)f = Θ(g)f = Θ(g)

∃ c, c′ ∀∞ n c · g(n) 6 f(n) 6 c′ · g(n)∃ c, c′ ∀∞ n c · g(n) 6 f(n) 6 c′ · g(n)∃ c, c′ ∀∞ n c · g(n) 6 f(n) 6 c′ · g(n)

ggg & fff have similar asymptotic behavior



Time complexity classes

• TM MMM runs in time O(f)O(f)O(f) (“order fff”)

if its time complexity is c · fc · fc · f

for some constant c > 0c > 0c > 0.

• The fff ’s of interest are non-decreasing:

f(n + 1) > f(n)f(n + 1) > f(n)f(n + 1) > f(n) for all nnn.

• Examples: log n, n, n log n, n2, n5, 2n, 2n2

, n!, nnlog n, n, n log n, n2, n5, 2n, 2n2

, n!, nnlog n, n, n log n, n2, n5, 2n, 2n2

, n!, nn.

• We write Time(f)(f)(f) for the collection of languages

recognized by a Turing acceptor in time O(f)O(f)O(f) .

• Similar notation for transducers.

• The reference to Turing machines is needed:

if another machine model is used then we needs to specify,

as in “this algorithms runs in quadratic time on a RAM.
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The Time Hierarchy Theorem

• We can expect that significantly more computation time

implies that more functions are computable.

• This is indeed true in virtually all practical cases:

• Time Hierarchy Theorem. If

(1) t, T : N → Nt, T : N → Nt, T : N → N are “reasonable”; and

(2) t(n) log(t(n)) = o(T (n))t(n) log(t(n)) = o(T (n))t(n) log(t(n)) = o(T (n)) then Time (t) ((t) ((t) ( Time (T )(T )(T ).

• Using Calculus notations, the main condition of the Theorem states

t(n) · log(t(n))

T (n)
→ 0 (n → ∞)

t(n) · log(t(n))

T (n)
→ 0 (n → ∞)

t(n) · log(t(n))

T (n)
→ 0 (n → ∞)
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Using the Time-Hierarchy Theorem

• A function fff is “reasonable” means here that

computable (for unary numerals) in time O(f)O(f)O(f):

f(1n)f(1n)f(1n) is computable in a number of steps linear in f(n)f(n)f(n) . Such func-

tions are called time-constructible.

• The time-constructibility condition is essential:

without it there are huge “gaps”: a lot more computation time

without obtaining new functions (the Gap Theorem).

• Time(n) ( Time(n2) ( Time(n3) ( Time(2n) ( Time(3n) ( Time(2n2

)Time(n) ( Time(n2) ( Time(n3) ( Time(2n) ( Time(3n) ( Time(2n2

)Time(n) ( Time(n2) ( Time(n3) ( Time(2n) ( Time(3n) ( Time(2n2

)

• But not Time(n) 6= Time(n · log n)Time(n) 6= Time(n · log n)Time(n) 6= Time(n · log n)

which requires a separate proof.
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⋆Time Hierarchy proof idea

• Given total functions f1, f2, . . .f1, f2, . . .f1, f2, . . . over NNN,

obtain a function ggg not listed: g(n) = fn(n) + 1g(n) = fn(n) + 1g(n) = fn(n) + 1 .

• Proof idea for Time Hierarchy:

Part A: List Time(t)Time(t)Time(t) , obtain ggg not in the list.

Part B: Build a universal interpreter for Time(t)Time(t)Time(t) ,

that runs in Time(T )Time(T )Time(T ) .

So g ∈ Time(T ) − Time(t)g ∈ Time(T ) − Time(t)g ∈ Time(T ) − Time(t) .

• (B) is technical.

(A) is thorny: can we list Time(t)Time(t)Time(t) ?
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Listing Time(t)Time(t)Time(t)

• The bad news: For any fff of interest,

there is no effective listing of the transducers in time O(f)O(f)O(f) .

• The good news:

We only need listed a transducer for each function in Time(t)Time(t)Time(t).

• For any transducer MMM , and constant ccc ,

define McMcMc as MMM with a built-in “clock”,

aborting computation for input www after c · f(|w|)c · f(|w|)c · f(|w|) steps.

• McMcMc can be made to run in Time(t)Time(t)Time(t), clock and all,

using the assumption that fff is time-constructible.
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Polynomial vs exponential growth rate

• Polynomial growth-rate: f(n) = nkf(n) = nkf(n) = nk, kkk fixed.

• Exponential growth-rate: f(n) = knf(n) = knf(n) = kn, kkk fixed.

• The choice of base kkk does not change the general picture:

pn = kanpn = kanpn = kan where a = logk p = log p/ log ka = logk p = log p/ log ka = logk p = log p/ log k

• But polynomial and exponential growth-rates tell very different stories:

If an algorithm runs 2n2n2n steps on input of size nnn, then

the universe is too small to deal with input of size 300:

It is believed that there are 1090 ≈ 23001090 ≈ 23001090 ≈ 2300 quarks in the universe.
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Graphics

• Any exponential function overtakes any polynomial function

for sufficiently large inputs.



• Taking logarithmic scaling for the increase

visualizes the difference more clearly:

Every polynomial function flattens out rapidly,

whereas any exponential function grows steadily:

log(nk) = k · log nlog(nk) = k · log nlog(nk) = k · log n , flattening.

log(2n) = nlog(2n) = nlog(2n) = n , steadily increasing



⋆Exponentials surpass polynomials: an elementary proof

• Fact: For every kkk we have 2n > nk2n > nk2n > nk for sufficiently large nnn.

• First, by induction on qqq we get 2q > q(q + 1)2q > q(q + 1)2q > q(q + 1) for q > 5q > 5q > 5.

• So if q > k > 5q > k > 5q > k > 5, then 2q > q(q+1) > k(q + 1)2q > q(q+1) > k(q + 1)2q > q(q+1) > k(q + 1).

• Take n > 2kn > 2kn > 2k.

Then 2q 6 n < 2q+12q 6 n < 2q+12q 6 n < 2q+1 for some q > kq > kq > k, and

2n2n2n >>> 22q

22q

22q

for n > 2qn > 2qn > 2q

>>> 2k(q+1)2k(q+1)2k(q+1) since 2q > k(q + 1)2q > k(q + 1)2q > k(q + 1)

=== (2q+1)k(2q+1)k(2q+1)k

>>> nknknk since 2q+1 > n2q+1 > n2q+1 > n
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⋆Exponentials surpass polynomials: a calculus proof

• Write f ≻ gf ≻ gf ≻ g for “fff eventually exceeds ggg,”

i.e. ∃a ∀x>a f(x) > g(x)∃a ∀x>a f(x) > g(x)∃a ∀x>a f(x) > g(x).

• By induction on kkk:

for every mmm, ex ≻ m · xkex ≻ m · xkex ≻ m · xk , i.e. limx→∞ xk/ex = 0limx→∞ xk/ex = 0limx→∞ xk/ex = 0

• For k = 0k = 0k = 0 we have x0 = 1x0 = 1x0 = 1, and indeed limx→∞ 1/ex = 0limx→∞ 1/ex = 0limx→∞ 1/ex = 0.

• Assuming limx→∞ xk/ex = 0limx→∞ xk/ex = 0limx→∞ xk/ex = 0 we have

limx→∞ xk+1/exlimx→∞ xk+1/exlimx→∞ xk+1/ex === limx→∞ (xk+1)′/(ex)′limx→∞ (xk+1)′/(ex)′limx→∞ (xk+1)′/(ex)′ by L’Hopital Rule

=== limx→∞ ((k+1) xk)/exlimx→∞ ((k+1) xk)/exlimx→∞ ((k+1) xk)/ex

=== (k+1) limx→∞ xk/ex(k+1) limx→∞ xk/ex(k+1) limx→∞ xk/ex

=== 000 by IH
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PTime decidable problems

• A Turing decider runs in polynomial time (PTime)

if its running time on input of size nnn is O(nk)O(nk)O(nk) for some kkk.

• All standard machine acceptors can be compiled into

Turing machines with increase of computation time

bounded by a polynomial (usually n2n2n2).

So “PTime” remains unchanged from model to model.

• We can therefore consider informal algorithms

without worrying about low level implementation.
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⋆The Cobham-Edmunds Thesis

• PTime is a practical first-approximation

of the scope of computational feasibility :

Cobham-Edmunds Thesis (1964)

An algorithm is (intuitively) feasible iff it runs in PTime.

• Since all basic computation models simulate each other

within a factor polynomial in the size of the input,

this Thesis can refer to “algorithms.”)
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• The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,
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Flaws of the Cobham-Edmunds Thesis

• The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,

just like the Turing-Church Thesis.

• But it is far more problematic than the Turing Thesis,

and should be taken with a grain of salt, as a rough guide.

• Here are some issues that weaken it.

1. The exponents should matter: n100n100n100 is not feasible.

2. The coefficients should matter: 100100 n100100 n100100 n is not feasible.

3. Conversely, time of order nlog log nnlog log nnlog log n is not admitted,

and yet nlog log n < n8nlog log n < n8nlog log n < n8 for all n < 228

= 2256 ≈ 1077n < 228

= 2256 ≈ 1077n < 228

= 2256 ≈ 1077.
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Some important PTime-decidable problems

• CONNECTIVITY: Given a graph G = (V, E)G = (V, E)G = (V, E), is it connected?

• A simple algorithm:

For each pair u, vu, vu, v of vertices check all permutations

of the remaining vertices for being a path from uuu to vvv .

• This is not feasible, e.g. 100! ≈ 10158100! ≈ 10158100! ≈ 10158.

• But there are algorithms quadratic in the number of nodes. (Dijkstra’s

Algorithm, 1969)
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Other PTime-decidable problem

• LINEAR-INEQUAL: Given a set of linear inequalities,

does it have a real-number solution?

Example 3x + y > 0, x + 3y 6 03x + y > 0, x + 3y 6 03x + y > 0, x + 3y 6 0 . A PTime decision algorithm was

found in 1979 by Leo Khachian.

• EDGE-COVER: Given a graph GGG and a target t > 0t > 0t > 0

is there a set of 6 t6 t6 t edges which includes all vertices (Edmunds

1965).

(In contrast, we know of no PTime-decision for VERTEX-COVER.)

• PRIMALITY: Given a natural number, is it prime?

A PTime decision algorithm for primality

was developed in 2006 by Agrawal, Kayal and Saxena.
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Enhanced uses of induction

• To reason inductively,

we sometimes need at each step more than what we wish to prove.

• Example we studied:

To parse a single (prefix notation) boolean expression,

parse arbitrary strings into a concatenation of expressions.
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Memoization: caching data for repeated use

• Memoization = memorize information for future use

(Greek: mnémé = memory).

• Example. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime decidable then so is L+L+L+.

• How about exhaustive search:

For each partition of input www into concatenated non-empty substrings

check whether all parts are in LLL.

• There are 2n−12n−12n−1 partitions of www of size nnn!!

• But the number of “parts” is only quadratic in nnn !

• And (as for the parsing algorithm) we can uniformize matters

by finding whether substrings are in L+L+L+ rather than LLL .

• This we can do by a simple induction on length.
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A Ptime algorithm for L+L+L+

• We calculate the set SSS of substrings of www that are in L+L+L+.

• We do this by induction on length, i.e. calculating successively

Si =Si =Si = the set of strings in SSS of length iii.

• S1S1S1 consists of the letters in www.

• Si+1Si+1Si+1 can be calculated from S1, . . . , SiS1, . . . , SiS1, . . . , Si in PTime.

• So the entire algorithm is in PTime.
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A concrete case of the algorithm:

• L =L =L = English words.

• letustakethisshortsentenceasaniceexampleletustakethisshortsentenceasaniceexampleletustakethisshortsentenceasaniceexample

• Consider substrings of length 1. S1 = aS1 = aS1 = a

• Substrings of length 2: S2 = us,hi,or,as,an,amS2 = us,hi,or,as,an,amS2 = us,hi,or,as,an,am

• Substrings of length 3: S3 = let,ten,asa,his,iceS3 = let,ten,asa,his,iceS3 = let,ten,asa,his,ice

• Substrings of length 4: S4 = take,this,hiss,sentS4 = take,this,hiss,sentS4 = take,this,hiss,sent

• Substrings of length 5: S5 = letus,stake,short,ampleS5 = letus,stake,short,ampleS5 = letus,stake,short,ample

• .........

• Substrings of length 37: S37 = ustakethisshortsentenceasaniceexampleS37 = ustakethisshortsentenceasaniceexampleS37 = ustakethisshortsentenceasaniceexample

• Substrings of length 39: S39 = ∅S39 = ∅S39 = ∅

• Substrings of length 40: S40 = letustakethisshortsentenceasaniceexampleS40 = letustakethisshortsentenceasaniceexampleS40 = letustakethisshortsentenceasaniceexample
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Same idea: CFLs are in Time(n3)Time(n3)Time(n3)

• A useful tool: Chomsky grammars.

• A Chomsky grammar is a CFG using only two type of productions:

[Terminal.] A→σA→σA→σ (σ ∈ Σσ ∈ Σσ ∈ Σ)

[Split.] A→BCA→BCA→BC (B, CB, CB, C other than SSS)

• Theorem

Every CFL without εεε is generated by a Chomsky grammar.
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Cubic-time decidability of CFLs

• Given a Chomsky grammar GGG over ΣΣΣ

we construct a cubic-time memoization algorithm

deciding whether a given string www is generated by GGG.

• This is known as the Cocke-Younger-Kasami (CYK) Algorithm,

after three who re-discovered it in 1965/67.

But it was first invented by Itiroo Sakai in 1961!
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The CYK Algorithm

• For each non-terminal AAA of GGG let

SiSiSi be the set of pairs SMS(A,u) where

1. AAA is a non-terminal,

2. uuu a substring of www of length iii , and

3. A ⇒∗
G uA ⇒∗
G uA ⇒∗
G u.

• S1S1S1 is obtained directly from the Unit Productions of GGG .
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Inductive calculation of SiSiSi

• Si+1Si+1Si+1 is obtained from SjSjSj for j 6 ij 6 ij 6 i :

1. For each substring uuu of length i + 1i + 1i + 1

2. for each split u = x · yu = x · yu = x · y (Note: |x|, |y| 6 i|x|, |y| 6 i|x|, |y| 6 i)

3. for each Split production A → BCA → BCA → BC

If (B, x) ∈ S|x|(B, x) ∈ S|x|(B, x) ∈ S|x| and (C, y) ∈ S|y|(C, y) ∈ S|y|(C, y) ∈ S|y| ,

then place (A, u)(A, u)(A, u) in Si+1Si+1Si+1.

• There are O(n)O(n)O(n) substrings of length i 6 ni 6 ni 6 n ,

and O(n)O(n)O(n) splits for each substring,

so for each i 6 ni 6 ni 6 n the process is in time O(n2)O(n2)O(n2) .

• If |w| = n|w| = n|w| = n then there are nnn passes,

so the entire algorithm is in cubic time.
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A CYK Example

Generating apcbp+qcaqapcbp+qcaqapcbp+qcaq:

SSS →→→ LRLRLR

LLL →→→ aLb | caLb | caLb | c

RRR →→→ bRa | cbRa | cbRa | c

An equivalent Chomsky grammar:

(1) S → LR (2) L → AM | c (3) M → LB (4) R → BN | c(1) S → LR (2) L → AM | c (3) M → LB (4) R → BN | c(1) S → LR (2) L → AM | c (3) M → LB (4) R → BN | c

(5) N → RA (6) A → a (7) B → b(5) N → RA (6) A → a (7) B → b(5) N → RA (6) A → a (7) B → b

Decide whether acbbcaacbbcaacbbca is generated.
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Calculating SiSiSi

The grammar:

(1) S → LR (2) L → AM | c (3) M → LB (4) R → BN | c(1) S → LR (2) L → AM | c (3) M → LB (4) R → BN | c(1) S → LR (2) L → AM | c (3) M → LB (4) R → BN | c

(5) N → RA (6) A → a (7) B → b(5) N → RA (6) A → a (7) B → b(5) N → RA (6) A → a (7) B → b

The sets:

S1 :S1 :S1 : A ⇒ a, B ⇒ b, L ⇒ c, R ⇒ cA ⇒ a, B ⇒ b, L ⇒ c, R ⇒ cA ⇒ a, B ⇒ b, L ⇒ c, R ⇒ c

S2 :S2 :S2 : M → LB ⇒∗ cbM → LB ⇒∗ cbM → LB ⇒∗ cb

N → RA ⇒∗ caN → RA ⇒∗ caN → RA ⇒∗ ca

S3 :S3 :S3 : L → AM ⇒∗ acbL → AM ⇒∗ acbL → AM ⇒∗ acb

R → BN ⇒∗ bcaR → BN ⇒∗ bcaR → BN ⇒∗ bca

S4 :S4 :S4 : M → LB ⇒∗ acbbM → LB ⇒∗ acbbM → LB ⇒∗ acbb

S5 :S5 :S5 : ∅∅∅

S6 :S6 :S6 : S → LR ⇒∗ acbbcaS → LR ⇒∗ acbbcaS → LR ⇒∗ acbbca
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Closure properties of PTime problems

• Closure under set operations:

complement, union, intersection.

• Closure under language operations:

concatenation, plus, star.
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Closure properties of PTime functions

• PTime is closed under composition:

Suppose f, g : Σ∗ → Σ∗f, g : Σ∗ → Σ∗f, g : Σ∗ → Σ∗.

If f ∈ Time(nk)f ∈ Time(nk)f ∈ Time(nk) and g ∈ Time(nℓ)g ∈ Time(nℓ)g ∈ Time(nℓ)

then f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ)f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ)f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).

• Suppose transducer TTT computes fff in time c · nkc · nkc · nk ,

and T ′T ′T ′ computes ggg in time d · nℓd · nℓd · nℓ .

• Given input w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗,

TTT terminates in 6 c|̇w|k6 c|̇w|k6 c|̇w|k steps,

and so has an output yyy of size 6 c · |w|k6 c · |w|k6 c · |w|k.

• Given yyy as input,

T ′T ′T ′ operates in time 6 d · |y|ℓ6 d · |y|ℓ6 d · |y|ℓ,

i.e. 6 e · |w|k·ℓ6 e · |w|k·ℓ6 e · |w|k·ℓ ( e = d · cke = d · cke = d · ck )
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PTIME REDUCTIONS



Reminder: reductions between problems

• Let PPP and QQQ be problems.

A reduction of PPP to QQQ is a function

ρ : Instances(P) → Instances(Q)ρ : Instances(P) → Instances(Q)ρ : Instances(P) → Instances(Q)

such that for every instance www of PPP,

w ∈ P IFF ρ(w) ∈ Qw ∈ P IFF ρ(w) ∈ Qw ∈ P IFF ρ(w) ∈ Q

• I.e., to find out whether w ∈ Pw ∈ Pw ∈ P we can find ρ(w)ρ(w)ρ(w),

and find whether it is in QQQ.

F22 37



Reminder: computable reductions

• If ρρρ is a computable reduction of PPP to QQQ then

we write ρ : P 6c Qρ : P 6c Qρ : P 6c Q and say

that PPP computably-reduces to QQQ .
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PTime reductions

• Computable reductions relate the

algorithmic solvability of problems.

• PTime reductions relate the feasibility of problems:

a PTime reduction of problem PPP to problem QQQ is

a PTime function ρρρ that maps instances of PPP to instances of QQQ,

such that w ∈ Pw ∈ Pw ∈ P iff ρ(w) ∈ Qρ(w) ∈ Qρ(w) ∈ Q.

• We write ρ : P 6p Qρ : P 6p Qρ : P 6p Q , with a subscript ppp.

• If there is such a ρρρ, we write P 6p QP 6p QP 6p Q

and say that PPP PTime-reduces to QQQ.
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Transitivity of PTime-reductions

• We had:

If ρ : P 6c Qρ : P 6c Qρ : P 6c Q and ρ′ : Q 6c Rρ′ : Q 6c Rρ′ : Q 6c R

then ρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c R

• Since PTime is closed under composition,

we similarly have:

If ρ : P 6p Qρ : P 6p Qρ : P 6p Q and ρ′ : Q 6p Rρ′ : Q 6p Rρ′ : Q 6p R

then ρ ◦ ρ′ : P 6p Rρ ◦ ρ′ : P 6p Rρ ◦ ρ′ : P 6p R

• Note the benefit of lumping together all polynomials:

For example, reducibility by quadratic time reduction

is not closed under composition.
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1/2-CLIQUE reduces to CLIQUE
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Example: CLIQUE reduces to INDEPENDENT-SET

B

C

D

E

{A,B,D} a clique of size 3

Missing edges are in

(V,E)

A blue graph

A

pink

A

B

C

D

E

A red graph

Missing edges are in

{A,B,D} an ind set of size 3

(V,V  −E)
2

blue



1/2-CLIQUE reduces to 1/3-CLIQUE
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CLIQUE reduces to 1/2-CLIQUE
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HAMILTONIAN-PATH reduces to HAMILTONIAN-CYCLE
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⋆EXACT-SUM reduces to INTEGER-PARTITION

• Reductions may be ingenious,

using particulars of the problems compared.

There are no silver bullets.

• Reducing INTEGER-PARTITION (IP) to EXACT-SUM (ES) was easy,

because IP is a secial case of ES.

• But we also have ρ : IP 6p ESρ : IP 6p ESρ : IP 6p ES

by the following PTime reduction ρρρ:

• Given instance (S, t)(S, t)(S, t) of ES let A =
∑

SA =
∑

SA =
∑

S.

Note: t < At < At < A : o/w (S, t)(S, t)(S, t) is trivially not in ES.

Define S ′ = ρ(S, t) =df S ∪ {A + t, 2A − t}S ′ = ρ(S, t) =df S ∪ {A + t, 2A − t}S ′ = ρ(S, t) =df S ∪ {A + t, 2A − t}. Note:
∑

S ′ = 4A
∑

S ′ = 4A
∑

S ′ = 4A .

• We show that SSS has a subset PPP adding up to ttt

iff S ′S ′S ′ has a subset P ′P ′P ′ adding up to (
∑

S ′)/2 = 2A(
∑

S ′)/2 = 2A(
∑

S ′)/2 = 2A.



• If we have P ⊂ SP ⊂ SP ⊂ S with
∑

P = t
∑

P = t
∑

P = t

then take P ′ = P ∪ {2A−t}P ′ = P ∪ {2A−t}P ′ = P ∪ {2A−t}.

• Conversely, suppose exists some P ′ ⊂ S ′P ′ ⊂ S ′P ′ ⊂ S ′ satisfying
∑

P ′ = 2A
∑

P ′ = 2A
∑

P ′ = 2A.

Let PPP be the one of P ′P ′P ′ and S ′−P ′S ′−P ′S ′−P ′ that has 2A − t2A − t2A − t .

Since (A + t) + (2A − t) = 3A(A + t) + (2A − t) = 3A(A + t) + (2A − t) = 3A and
∑

P = 2A
∑

P = 2A
∑

P = 2A

PPP cannot have A+tA+tA+t .

Let P = P ′ − {2A−t}P = P ′ − {2A−t}P = P ′ − {2A−t}. Then P ⊆ SP ⊆ SP ⊆ S and
∑

P = t
∑

P = t
∑

P = t.
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HAMILTONIAN-PATH reduces to UNDIRECTED-HAMILTONIAN-PATH

• Does this directed-graph have a Hamiltonian path?

a b

ed

c
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• Creating a direction-gadget:

ED

C

in out

A B
B

A

E

C
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• Same for the neighboring

ED

C

A

in out

in outin out

in out

B
BA

E

C

• But is directionality assured?
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• We need a middle-node in each gadget:

ED

C

A oB −B+BB

in out

C

E

A
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• For the entire graph:

ED

C

A B

A B

C

E

D

in out

• This mapping is a PTime reduction of HAMILTONIAN-PATH

to UNDIRECTED-HAMILTONIAN-PATH.
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PTime reductions and problem feasibility

• Had: If QQQ is decidable and P 6c QP 6c QP 6c Q

then PPP is decidable.

• Now: If QQQ is PTime-decidable and P 6p QP 6p QP 6p Q

then PPP is PTime-decidable.

• I.e., If PPP is not PTime-decidable and P 6p QP 6p QP 6p Q

then QQQ is not PTime-decidable.

• Similarly: If QQQ is NP and P 6p QP 6p QP 6p Q then PPP is NP

• I.e.: If PPP is not NP and P 6p QP 6p QP 6p Q then QQQ is not NP
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Examples

• INTEGER-PARTITION 6p6p6p EXACT-SUM.

So if EXACT-SUM is PTime-decidable then so is INTEGER-PARTITION.

• CLIQUE 6p6p6p INDEPENDENT-SET.

So if INDEPENDENT-SET is PTime-decidable then so is CLIQUE.
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PTime reduces to linear time

• The Time Hierarchy Theorem implies that for every k > 0k > 0k > 0 there are

problems decidable in time O(nk+1)O(nk+1)O(nk+1) but not in time O(nk)O(nk)O(nk) .

• But the distinction between the powers in PTime is

obliterated by PTime reductions.

• Suppose problem PPP is decidable by MMM within time a · nka · nka · nk, for n > hn > hn > h.

Then it has a variation P ′P ′P ′ s.t. P 6p P ′P 6p P ′P 6p P ′

but P ′P ′P ′ is decidable for all www in time 6 |w|6 |w|6 |w|.

• Let P ′ = { w · ⊔mw | w ∈ P, mw = a · |w|k + H }P ′ = { w · ⊔mw | w ∈ P, mw = a · |w|k + H }P ′ = { w · ⊔mw | w ∈ P, mw = a · |w|k + H }

where H = max{TimeM(x) | |x| 6 h}H = max{TimeM(x) | |x| 6 h}H = max{TimeM(x) | |x| 6 h} .

• Define ρ : P 6 P ′ρ : P 6 P ′ρ : P 6 P ′ by ρ(w) = w · ⊔mwρ(w) = w · ⊔mwρ(w) = w · ⊔mw.

• ρρρ is computable, and is a reduction by defn of P ′P ′P ′ .

• But P ′P ′P ′ is decidable in time identical to the length of the input.



Another simplification

• Suppose a problem PPP is deidable within time a · na · na · n

for all n > kn > kn > k.

There is a problem P ′P ′P ′ ,

decidable within time nnn for all input,

such that P 6p P ′P 6p P ′P 6p P ′.

• The proof is similar to the one above: Use padding.
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PTIME CERTIFICATION



Exhaustive search for real-life problems

• Some problems require exponential time algorithms because

exponentiation is explicit in their specification.

• Transducer example (exponentially large output):

For input www output a string of length > |w|> |w|> |w|.

Acceptor example (exponentially long trace):

Given acceptor MMM and string www,

does MMM runs > 2|w|> 2|w|> 2|w| steps on input www ?

• However our examples of exhaustive search are unrealistic because

the number of cases is forbidding,

not because the specification is unrealistic!
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Reminder: Certifications

• A certification for a decision problem PPP

is a binary relation ⊢P⊢P⊢P between strings (the certificates),

and instances of PPP, such that for all instances www

www satisfies PPP IFF c ⊢P wc ⊢P wc ⊢P w for some c ∈ Cc ∈ Cc ∈ C

• We showed that a language LLL is SD

iff it has a decidable certification.
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Feasible-certification

• A certification ⊢⊢⊢ for PPP is feasible

if c ⊢ wc ⊢ wc ⊢ w is decidable in time polynomial in |w||w||w| .

We write then c ⊢p wc ⊢p wc ⊢p w.

• In time ttt a Turing acceptor cannot read more

than the ttt initial symbols of ccc, so c ⊢ wc ⊢ wc ⊢ w implies that

|c||c||c| is eventually bounded

by |w|k|w|k|w|k for somekkk.

• Conversely, if the truth of c ⊢ wc ⊢ wc ⊢ w is computable in time

polynomial in |w| + |c||w| + |c||w| + |c| ,

and |c||c||c| is bounded by a polynomial in |w||w||w|,

then c ⊢ wc ⊢ wc ⊢ w is PTime in |w| + |c||w| + |c||w| + |c| , i.e. PTime as a set.



• In summary: PPP is feasibly certified iff c ⊢ wc ⊢ wc ⊢ w is decidable in PTime (w, cw, cw, c

both counted!)

and |c||c||c| is bounded by a polynomial in |w||w||w|.

• Restricting certificate size is essential:

otherwise any SD problem PPP would be PTime certified

because the time to check that a trace ccc is correct is O(|c|2)O(|c|2)O(|c|2),

and so is polynomial in |w| + |c||w| + |c||w| + |c| .



NP: Non-deterministic PTime

.

• The class of PTime-certified problems is also referred to

as NP short for “Non-deterministic PTime”.

The reasons are mostly of historical interest.

• A non-deterministic (ND) Turing acceptor is defined like an acceptor,

expect that its transition mapping is not necessarily univalent.

• We say that an ND acceptor MMM accepts a string www

if there is an accepting computation-trace ccc of MMM for input www .

• Moreover, that acceptance is within time 6 t6 t6 t

if the trace ccc has 6 t6 t6 t cfgs.

• MMM is PTime if there are a, k, h > 0a, k, h > 0a, k, h > 0 such that if MMM accepts www , |w| > h|w| > h|w| > h ,

then it accepts www in time 6 a · |w|k)6 a · |w|k)6 a · |w|k) .

• A language LLL is in NP if it is recognized by a ND PTime acceptor.



NP = Feasibly certified

• Feasible certification for a language LLL implies

a non-deterministic recognizing algorithm:

◮ A problem PPP with a feasible certification

is recognized in PTime by a “non-deterministic algorithm”:

◮ Given an instance www , guess a certificate ccc.

This takes time |c||c||c| , i.e. polynomial in |w||w||w|.

◮ Checking c ⊢ wc ⊢ wc ⊢ w takes time polynomial in |w||w||w|, since ⊢⊢⊢ is feasible.

• Conversely, recognition of LLL by a PTime ND algorithm

implies that LLL is feasibly certified:

◮ Suppose PPP is recognized in PTime by an ND algorithm MMM .

◮ A certificate for an instance www is any road map

that steers the ND choices to an accepting trace.



NP-COMPLETENESS:

Maximally complex NP problems



Maximal complexity in SD

• A problem PPP is SD-hard

if every SD problem is computably-reducible to PPP.

• If PPP is SD-hard, and P 6c P ′P 6c P ′P 6c P ′ then P ′P ′P ′ is SD-hard:

Every SD problem QQQ is reducible to PPP since PPP is SD-hard.

So by transitivity of 6c6c6c it follows that P 6c P ′P 6c P ′P 6c P ′ we get by Q 6c P ′Q 6c P ′Q 6c P ′.

• PPP is SD-complete if it is SD-hard and is itself SD.

• An obvious SD-complete problem: ACCETANCE.

If P = L(M)P = L(M)P = L(M) then P 6c ACCEPTANCEP 6c ACCEPTANCEP 6c ACCEPTANCE by a reduction that maps

instance www of PPP

to the instance (M#, w)(M#, w)(M#, w) of accept.
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Clear broad picture for SD...

Decidable

The SD problems

<
c

SD CompleteAll equivalent 

All equivalent 

lots of stuff 
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Maximally complex NP problems

• A problem PPP is NP-hard if every problem in NP is 6p P6p P6p P.

• Since 6p6p6p is transitive, if PPP is NP-hard, and P 6p P ′P 6p P ′P 6p P ′ ,

then P ′P ′P ′ is NP-hard as well.

• A problem PPP is NP-complete if it is both NP and NP-hard.

• From these definitions it follows that if there is

an NP-hard problem PPP which is PTime decidable,

then every NP problem is PTime-decidable!
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Blurry picture for NP

<
p

All

− equiv

(Ladner’s Theorem)

   Impossible

lots of stuff 

NP Complete

PTime decidable PTime decidable

NP Complete

PTime decidable

<
p

All

− equiv<
p

The NP problems: 2 possibilities
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Computing is binary...

• We conceive a certification ⊢P⊢P⊢P for a problem PPP in two stages:

1. Identify what sort of objects are the certificates.

E.g. a certificate for an instance of HAMILTONIAN-PATH

is a list ℓℓℓ without repetition of the vertices.

2. State properties that make a certificate valid.

For HAMILTONIAN-PATH these are:

ℓℓℓ is without repetitions, and

successive entries are adjacent in GGG .
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Reminder: Boolean valuations

• Boolean expressions are generated from variables

using negation, conjunction, and disjunction.

Example: (−x) ∧ −(y ∨ x)(−x) ∧ −(y ∨ x)(−x) ∧ −(y ∨ x).

• Given a valuation V : V ar → {0, 1}V : V ar → {0, 1}V : V ar → {0, 1} of variables,

each boolean expression evaluates to 0 or 1.

• Example: If V (x) = 0, V (y) = 0V (x) = 0, V (y) = 0V (x) = 0, V (y) = 0 then V (−x ∧ −(y ∨ x)) = 1V (−x ∧ −(y ∨ x)) = 1V (−x ∧ −(y ∨ x)) = 1

• A valuation VVV verifies EEE if V (E) = 1V (E) = 1V (E) = 1.

• EEE is satisfiable if it is verified by some VVV ,

It is valid if it verified by every VVV .

• So EEE is satisfiable iff −E−E−E is not satisfiable

and is valid iff −E−E−E is not satisfiable.



Boolean satisfiability

• BOOL-SAT: Is a given boolean expression satisfiable?

• A certification for BOOL-SAT:

A certificate for an expression EEE is a valuation verifying it.

• Checking a certificate is PTime in the size of the expresson.

So the certification is feasible.
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Coding certificates by boolean expressions

• Digital coding is central to describing discrete data,

and the simplest form of digital coding is binary, i.e. using booleans.

• No surprise then that a good candidate for NP-hardness

is Boolean Satisfiability bool-sat.

• We use yes/no questions to code the potential certificates,

and then yes/no questions that check their validity as certificates.
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Boolean coding of potential certificates

• Let’s look again at the HAMILTONIAN-PATH (HP) Problem:

Does a given directed graph G = (V, E)G = (V, E)G = (V, E) have a Hamiltonian path?

• Let nnn be the number of vertices in GGG.

The question is: Is there a listing

u1, u2, . . . , unu1, u2, . . . , unu1, u2, . . . , un of all vertices, without repetition,

so that ui(E)ui+1ui(E)ui+1ui(E)ui+1 for i < ni < ni < n.

• We convey this intent by a boolean expression, using

for each v ∈ Vv ∈ Vv ∈ V and i = 1..ni = 1..ni = 1..n a fresh boolean variable xivxivxiv

intended to be true iff the iii’th entry in the list is vvv.
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Using booleans to state the existence of a H-path

• Given GGG, we construct a boolean expression EGEGEG

stating that the boolean variables xivxivxiv describe a Hamiltonian path.

• This will show that GGG has a Hamiltonian path iff EGEGEG is satisfiable.

• For cocreteness, consider our earlier example:

a b

ed

c

• Any listing in positions 1,2,3,4,5 of the vertices V = {a, b, c, d, e}V = {a, b, c, d, e}V = {a, b, c, d, e}

will assign truth values for the 25 variables.
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• E.g. the listing a, b, c, d, ea, b, c, d, ea, b, c, d, e is conveyed by the valuation assigning 1

to x1a, x2b, x3c, x4d, x5ex1a, x2b, x3c, x4d, x5ex1a, x2b, x3c, x4d, x5e and 0 to the remaining 20 variables.

Here is that valuation, with the variable set to 1 (true) in orange.

x1ax1ax1a x1bx1bx1b x1cx1cx1c x1dx1dx1d x1ex1ex1e

x2ax2ax2a x2bx2bx2b x2cx2cx2c x2dx2dx2d x2ex2ex2e

x3ax3ax3a x3bx3bx3b x3cx3cx3c x3dx3dx3d x3ex3ex3e

x4ax4ax4a x4bx4bx4b x4cx4cx4c x4dx4dx4d x4ex4ex4e

x5ax5ax5a x5bx5bx5b x5cx5cx5c x5dx5dx5d x5ex5ex5e

• Our Hamiltonian path, a→d→e→b→ca→d→e→b→ca→d→e→b→c: is conveyed by the following

valuation:

x1ax1ax1a x1bx1bx1b x1cx1cx1c x1dx1dx1d x1ex1ex1e

x2ax2ax2a x2bx2bx2b x2cx2cx2c x2dx2dx2d x2ex2ex2e

x3ax3ax3a x3bx3bx3b x3cx3cx3c x3dx3dx3d x3ex3ex3e

x4ax4ax4a x4bx4bx4b x4cx4cx4c x4dx4dx4d x4ex4ex4e

x5ax5ax5a x5bx5bx5b x5cx5cx5c x5dx5dx5d x5ex5ex5e



The vertex-listing is a path

• We state the conditions that make a valuation

of the variables xivxivxiv into a Hamiltonian path.

• At least one position per vertex:

For each vertex vvv the disjunction x1v ∨ · · · ∨ xnvx1v ∨ · · · ∨ xnvx1v ∨ · · · ∨ xnv.

• At most one position per vertex:

For each vertex vvv and distinct i, j = 1..ni, j = 1..ni, j = 1..n

the expression −(xiv ∧ xjv)−(xiv ∧ xjv)−(xiv ∧ xjv)
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Successive vertices are adjacent in the graph

• For each position i < ni < ni < n

the disjunction of all expressions xiv ∧ xi+1,uxiv ∧ xi+1,uxiv ∧ xi+1,u where v(E)uv(E)uv(E)u.

• E.g., positions 2 and 3 are related by one of the 9 edges:

(x2a ∧ x3b) ∨ (x2a ∧ x3c) ∨ (x2a ∧ x3d)(x2a ∧ x3b) ∨ (x2a ∧ x3c) ∨ (x2a ∧ x3d)(x2a ∧ x3b) ∨ (x2a ∧ x3c) ∨ (x2a ∧ x3d)

∨ (x2b ∧ x3c)∨ (x2b ∧ x3c)∨ (x2b ∧ x3c)

∨ (x2d ∧ x3c) ∨ (x2d ∧ x3e)∨ (x2d ∧ x3c) ∨ (x2d ∧ x3e)∨ (x2d ∧ x3c) ∨ (x2d ∧ x3e)

∨ (x2e ∧ x3b) ∨ (x2e ∧ x3c)∨ (x2e ∧ x3b) ∨ (x2e ∧ x3c)∨ (x2e ∧ x3b) ∨ (x2e ∧ x3c)

∨ (x2e ∧ x3d)∨ (x2e ∧ x3d)∨ (x2e ∧ x3d)
a b

ed

c
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The reduction

• We’ve obtained a reduction ρ : HP 6p BOOL-SATρ : HP 6p BOOL-SATρ : HP 6p BOOL-SAT

• ρρρ maps a directed grarph G = (V, E)G = (V, E)G = (V, E) to the conjunction AGAGAG of the

boolean expressions as above,

based on the particular size and edge-relation of GGG.

• AGAGAG is computable in time cubic in the size of GGG.
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• The mapping ρρρ is a reduction:

◮ If there is a Hamilt path u1 →· · ·→unu1 →· · ·→unu1 →· · ·→un in GGG

then the boolean expression AGAGAG is satisfied by the valuation

that assigns 1 to xivxivxiv iff vvv is uiuiui.

◮ Conversely, if the expression AGAGAG is satisfied by a valuation VVV

then (v1..vk)(v1..vk)(v1..vk) is a Hamilt path,

where vivivi is the unique vvv for which V (xiv) = 1V (xiv) = 1V (xiv) = 1.

• Conclusion: ρ : HAMILT-PATH 6p BOOL-SATρ : HAMILT-PATH 6p BOOL-SATρ : HAMILT-PATH 6p BOOL-SAT
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From ND PTime to ND linear time

• We show that every problem

recognized by a ND acceptor MMM in PTime 6p6p6p BOOL-SAT.

• The method is similar to the boolean coding of HAMILONIAN-PATH.

• We saw that each problem decidable in PTime

is PTime-reducible to a problem decidable on site.

• The same padding technique shows that

each problem recognized by a ND acceptor in PTime

is PTime reducible to a problem recognized by a ND acceptor on-site.

• By transitivity of 6p6p6p we only need ONSITE-ACCEPT 6p6p6p BOOL-SAT.

•
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Coding ND on-site acceptor in BOOL-SAT

• Define a PTime reduction ρ : ONSITE-ACCEPT 6p BOOL-SATρ : ONSITE-ACCEPT 6p BOOL-SATρ : ONSITE-ACCEPT 6p BOOL-SAT.

• ρρρ maps (M, w)(M, w)(M, w) (MMM a ND) to bool expssn EM,wEM,wEM,w s.t.

MMM accepts www in time |w||w||w| iff EM,wEM,wEM,w is satisfiable.

• The trace in grid form:

s
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_ _ _ _

> _ _ _ _

> _ _ _
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> _ _ _

> _ _ _

> _ _ _
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0

0

0
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1

a

1

0

0

w

|w|
successive cfgs

terminal configuration

initial configuration
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The grid as yes/no questions

s

r

r

p

_ _ _ _

> _ _ _ _

> _ _ _
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> _ _ _
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0

0

0
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1

1

1

1

1

1

1

a

1

0

0

w

|w|
successive cfgs

terminal configuration

initial configuration

• For each state qqq and i 6 |w|i 6 |w|i 6 |w| xi,qxi,qxi,q for “state of iii’th cfg is qqq”

• For each i, j 6 |w|i, j 6 |w|i, j 6 |w| : ci,jci,jci,j for “cursor of iii’th cfg at jjj”

• For each i, j 6 |w|i, j 6 |w|i, j 6 |w| and σ ∈ Σσ ∈ Σσ ∈ Σ : ℓi,j,σσσℓi,j,σσσℓi,j,σσσ for “ (i, j)(i, j)(i, j) cell has σσσ
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Yes/no for consistency conditions

s
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1

0

0

w

|w|
successive cfgs

terminal configuration

initial configuration

• One state + one cursor per row

• one symbol per cell

• First row is initial state + >w>w>w.

• Last row has accept state
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Yes/no for operational conditions
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0

0

w

|w|
successive cfgs

terminal configuration

initial configuration

• Each subsequent row is obtained from the preceding

by one of the rules of MMM
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BOOL-SAT is NP-Complete

• BOOL-SAT is fersibly certified:

The certificate is the satisfying valuation.

• BOOL-SAT is NP-hard:

Every NP problem reduces to ND-ONSITE-ACCEPT by padding,

and ND-ONSITE-ACCEPT 6 BOOL-SAT6 BOOL-SAT6 BOOL-SAT.
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Normal forms

• Boolean expressions may be arbitrarily complex.

Can we facilitate eductions by focusing on some that are simple?

• Reductions to normal forms are all around!

• Decimal fractions (percents):

3/8 versus 4/11 (.375 vs .364)

• Better: normalized scientific notation for real numbers:

123.45 = 1.2345 × 102123.45 = 1.2345 × 102123.45 = 1.2345 × 102,

0.0012345 = 1.2345 × 10−30.0012345 = 1.2345 × 10−30.0012345 = 1.2345 × 10−3,

1.2345 = 1.2345 × 1001.2345 = 1.2345 × 1001.2345 = 1.2345 × 100

• Display immediately the order of magnitude.

• Polynomials are defined using +, ×, −+, ×, −+, ×, − in any order.

• Putting order in the chaos:

××× in the scope of −−−, in the scope of +++.



• −((x + y) · x) · (1 − y) = x2 · y + x · y2 − x2 − x · y−((x + y) · x) · (1 − y) = x2 · y + x · y2 − x2 − x · y−((x + y) · x) · (1 − y) = x2 · y + x · y2 − x2 − x · y
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Normal form for boolean expressions

• For boolean expressions: chaos of negations, conjunctions, disjunction

• Normal form: negations in scope of conjunctions in scope of disjunc-

tions

−[(x ∨ −u) ∧ (y ∨ v)] = (−x ∨ −y)

∧ (−x ∨ −v)

∧ (u ∨ −y)

∧ (u ∨ −v)

• Literals: variables or their negation.

• (disjunctive) clauses: disjunction of literals (1,2,3,0... disjuncts)

• Conjunctive normal expression (CNF):

conjunction of disjunctive clauses
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CNF and satisfiability

• More orderly BOOL-SAT: ask only about satisfiability of CNFs:

CNF-SAT:

Given a CNF boolean expression EEE, is it satisfiable?

• We’ll show that CNF-SAT is NP-hard.

• NP-hardness of problems would be made easier:

CNF-SAT 6p PCNF-SAT 6p PCNF-SAT 6p P easier to show than BOOL-SAT 6p PBOOL-SAT 6p PBOOL-SAT 6p P
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CNF-SAT is NP-hard

• Method: Reduce bool-sat to cnf-sat.

• Every boolean expression can be converted

into an equivalent CNF expression.

• But this does NOT yield the desired reduction!

• Expression EEE is converted into a CNF equivalent

which may be exponentially longer!

• However: NO NEED for an equivalent CNF!

Suffices a CNF whose satisfiability is equivalent

to the satisfiability of EEE.

• We can even restrict attention to 3CNF expressions

where each clause has 6 36 36 3 literals.
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3CNF-Satisfiability

• 3CNF SATISFIABILITY Does a given 3CNF expression have a veri-

fying valuation.

• BOOL-SAT 3CNF-SATBOOL-SAT 3CNF-SATBOOL-SAT 3CNF-SAT

• Example, AAA is (x ∧ y) ∨ (z ∧ −(x ∨ u))(x ∧ y) ∨ (z ∧ −(x ∨ u))(x ∧ y) ∨ (z ∧ −(x ∨ u))

v
v v

v

y z

x u

x

A



• Name with fresh variables the compound sub-expressions of AAA:

aaa ≡≡≡ AAA

bbb ≡≡≡ x ∧ yx ∧ yx ∧ y

ccc ≡≡≡ x ∧ ux ∧ ux ∧ u

ddd ≡≡≡ −(x ∧ u)−(x ∧ u)−(x ∧ u)

eee ≡≡≡ z ∨ −(x ∧ u)z ∨ −(x ∧ u)z ∨ −(x ∧ u)

v

v v

v

z

x u

x

A

b c

y d

e
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v

v v

v

z

x u

x

A

b c

y d

e

• Define A=A=A= to be the conjunction of

(a ↔ (b ∨ c))(a ↔ (b ∨ c))(a ↔ (b ∨ c))

(b ↔ (x ∧ y))(b ↔ (x ∧ y))(b ↔ (x ∧ y))

(c ↔ (z ∧ d))(c ↔ (z ∧ d))(c ↔ (z ∧ d))

(d ↔ −e)(d ↔ −e)(d ↔ −e)

(e ↔ (x ∨ u))(e ↔ (x ∨ u))(e ↔ (x ∨ u))



In 3CNF form:

(a ↔ (b ∨ c))

ā ∨ b ∨ c,

a ∨ b̄,

a ∨ c̄,

(b ↔ (x ∧ y))

b̄ ∨ x,

b̄ ∨ y

x̄ ∨ ȳ ∨ b,

(c ↔ (z ∧ d))

c̄ ∨ z,

c̄ ∨ d,

z̄ ∨ d̄ ∨ c,

(d ↔ −e)

d̄ ∨ ē,

e ∨ d̄,

(e ↔ (x ∨ u))
ē ∨ x ∨ u,

x̄ ∨ e,

ū ∨ e



• AAA is satisfiable iff the 3CNF a ∧ A=a ∧ A=a ∧ A= is satisfiable.

• a ∧ A=a ∧ A=a ∧ A= is of size linear in the size of AAA .
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Exact-3CNF-Sat

• Further tightening the normal form for boolean expression.

• EXACT-3CNF-SAT:

Does a given 3CNF expression w/ exactly 3 literals per clause

have a satisfying valuation?

• 3CNF-SAT 6P exact-3cnf-sat3CNF-SAT 6P exact-3cnf-sat3CNF-SAT 6P exact-3cnf-sat

• Given a 3-CNF AAA obtain ρ(A)ρ(A)ρ(A) by

1. Replacing clauses L0 ∨ L1L0 ∨ L1L0 ∨ L1 by

(L0 ∨ L1 ∨ y) ∧ (L0 ∨ L1 ∨ ȳ)(L0 ∨ L1 ∨ y) ∧ (L0 ∨ L1 ∨ ȳ)(L0 ∨ L1 ∨ y) ∧ (L0 ∨ L1 ∨ ȳ) (yyy fresh);

2. Replacing single-literal clauses LLL by

(L ∨ y ∨ z) ∧ (L ∨ y ∨ z̄) ∧ (L ∨ ȳ ∨ z) ∧ (L ∨ ȳ ∨ z̄)(L ∨ y ∨ z) ∧ (L ∨ y ∨ z̄) ∧ (L ∨ ȳ ∨ z) ∧ (L ∨ ȳ ∨ z̄)(L ∨ y ∨ z) ∧ (L ∨ y ∨ z̄) ∧ (L ∨ ȳ ∨ z) ∧ (L ∨ ȳ ∨ z̄)
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NP COMPLETENESS ALL AROUND



INDEP-SET is NP-complete

• Define ρ : EXACT-3CNF 6p INDEP-SETρ : EXACT-3CNF 6p INDEP-SETρ : EXACT-3CNF 6p INDEP-SET.

Try to map exact-3CNF EEE with kkk disj-clauses

to graph GGG + target kkk.

• First idea: Map each clause to a triangle of literals.

Satisfying kkk clauses requires then one vertex per triangle:

(x0 ∨ x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x̄4 ∨ x0)(x0 ∨ x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x̄4 ∨ x0)(x0 ∨ x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x̄4 ∨ x0)

• An initial draft of GGG :
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xx
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x x
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• Choose a vertex in each triangle, eg top left.

Oops, we are trying to have both x2x2x2 and x̄2x̄2x̄2 true!



• Consistency edge for x2x2x2:

_

1
x

2

_
xx

0

x
2

x
1

x
3

x x
_

32

x
4

x
_

4

x
0

2

_
x

F22 99



• Additional consistency edges for x2x2x2:
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• Consistency edge for x1x1x1:
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• Consistency edge for x3x3x3:
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• Consistency edge for x4:
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• Final graph GGG:
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• If AAA has a satisfying valuation msV,

then GGG has an independent-set SSS of size ttt ,

consisting of vertices true under VVV .

• If GGG has an independent set SSS of size ttt ,

then SSS must have one vertex per triangle,

and the valuation that verifies the labels of SSS satisfies AAA .
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Consequence: CLIQUE is NP-complete

• We showed that clique is NP,

and that INDEPENDENT-SET 6p6p6p CLIQUE.

• Since INDEPENDENT-SET is NP-hard, so is CLIQUE.
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The INTEGER-PROGRAMMING problem

• Dealing with finite sets of linear inequalities,

such as 2x − 3y + 4z − 7 > 02x − 3y + 4z − 7 > 02x − 3y + 4z − 7 > 0. Quite flexible:

◮ Inequality between expressions: E > E ′E > E ′E > E ′ same as E − E ′ > 0E − E ′ > 0E − E ′ > 0.

◮ Equality: E = E ′E = E ′E = E ′ iff E > E ′E > E ′E > E ′ and E ′ > EE ′ > EE ′ > E .

◮ Strict inequality: E > 0E > 0E > 0 same as E − 1 > 0E − 1 > 0E − 1 > 0 .

• INTEGER-PROGRAMMING: Given a set of linear inequalities,

does it have an integer solution?

• Example: 2x + y > 0, −x + 2y − 4 > 02x + y > 0, −x + 2y − 4 > 02x + y > 0, −x + 2y − 4 > 0 has solution x = −1, y = 2x = −1, y = 2x = −1, y = 2

• A PTime-certification: The solution is the certificate.

• Snag: Size of solution is non-trivial. Need:

Exists kkk s.t. every solvable instance LLL has a solution of textual

size 6 |L|k6 |L|k6 |L|k.



INTEGER-PROGRAMMING is NP-hard

• CNF-SAT 6P6P6P INTEGER-PROGRAMMING

• Given CNF expression x ∨ y ∨ −z − x ∨ v ∨ zx ∨ y ∨ −z − x ∨ v ∨ zx ∨ y ∨ −z − x ∨ v ∨ z

• Rephrased as set of inequalities:

0 6 x 6 1 0 6 y 6 1 0 6 z 6 1 0 6 v 6 10 6 x 6 1 0 6 y 6 1 0 6 z 6 1 0 6 v 6 10 6 x 6 1 0 6 y 6 1 0 6 z 6 1 0 6 v 6 1

x + y + (1 − z) > 1 (1 − x) + v + z > 1x + y + (1 − z) > 1 (1 − x) + v + z > 1x + y + (1 − z) > 1 (1 − x) + v + z > 1

• So INTEGER-PROGRAMMING Is NP-hard, and therefore NP-complete.
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EXACT-SUM is NP-complete

• Recall: Given set SSS of positive integers and target t > 0t > 0t > 0

is there P ⊆ SP ⊆ SP ⊆ S such that
∑

P = t
∑

P = t
∑

P = t.

• Did: it is NP

• We show NP-hardness: ρ : 3cnf-sat 6p exact-sumρ : 3cnf-sat 6p exact-sumρ : 3cnf-sat 6p exact-sum
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Representing the boolean switch

• Represent a boolean choice by a pair of positive integers:

The condition x+ + x− = 1x+ + x− = 1x+ + x− = 1 is equivalent to having one of x+x+x+ and x−x−x−

being 1 and the other 0.

• Represent multiple boolean choices by a table of 0/1 digits:

N−
1N−
1N−
1 111 000 000

N+
1N+
1N+
1 111 000 000

N−
2N−
2N−
2 111 000

N+
2N+
2N+
2 111 000

N−
3N−
3N−
3 111

N+
3N+
3N+
3 111

• To force each pair to add up to 1 we require that

the entire table adds up to the decimal 111 . . . 1111 . . . 1111 . . . 1:

• N+
i , N−

iN+
i , N−

iN+
i , N−

i represent a booelan choice for the boolean variable xixixi.



Representing clauses

• Extend each row with additional info about the variable,

in the form of extra digits to the right.

• Say we want ot prepresent the clauses of

(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4)(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4)(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4)

• The jjj’th extra digit to the right indicates whether

the boolean choice implied by the row makes the jjj’th clause true:
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(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4)(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4)(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4)

C1 C2 C3 C4

N+
1 1 0 0 0 1 1 0 0

N−
1 1 0 0 0 0 0 1 0

N+
2 0 1 0 0 0 1 1 1

N−
2 0 1 0 0 1 0 0 0

N+
3 0 0 1 0 1 0 0 0

N−
3 0 0 1 0 0 0 0 1

N+
4 0 0 0 1 0 0 1 0

N−
4 0 0 0 1 0 1 0 1

1 1 1 1 1+ 1+ 1+ 1+
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Balancing the sums

C1 C2 C3 C4

N+
1 1 0 0 0 1 1 0 0

N−
1 1 0 0 0 0 0 1 0

N+
2 0 1 0 0 0 1 1 1

N−
2 0 1 0 0 1 0 0 0

N+
3 0 0 1 0 1 0 0 0

N−
3 0 0 1 0 0 0 0 1

N+
4 0 0 0 1 0 0 1 0

N−
4 0 0 0 1 0 1 0 1

0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 1

t = 1 1 1 1 4 4 4 4



• The given boolean expression is satisfiable iff

the 16 numbers above, 10,001,100 . . . 10,2,1,

can be added to 11,114,444.

• EXACT-SUM is NP-complete,

• Why not “fill-up” with 1,1, adding up to 3,

in place of 1,2, adding up to 4? (Answer: We want distinct integers)
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⋆HAMILTONIAN-PATH

• HAMILTONIAN-PATH: Given a directed graph G = (V, E)G = (V, E)G = (V, E) ,

does it have a path visiting each vertex exactly once

• The problem has a feasible certification: the certificate is the path.
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⋆The truth gadget for HAMILTONIAN-PATH

• 3CNF-SAT 6P6P6P HAMILTONIAN-PATH

• A boolean gadget:

true

false
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⋆The gadget used as a switchboard

A boolean switchboard:

x
0

x
0

_
x

4
x

5

x
0

x
2

_
x

7

x
4

_
x

1

_
x

0
v v

v v

v v

The x
0

switchboard used positively by two clauses and negatively by one
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Combining the switchboards

x
0

x
1

x
k

x
0

x
1

x
k

C
m

C
1

v v
_

C
0

hamiltonian-path is NP-complete.


