INDUCTIVELY GENERATED DATA

4.501-2023 1

Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.

Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.
Generative step: If n € N then “next”of n, sn ,is € N

Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.
Generative step: If n € N then “next”of n, sn ,is € N

 Implicit assumptions:

The meanings of 0 and “next” are known and given.

4.501-2023 2

Generating {0,1}*

» Base. The empty string is in {0, 1}*.

» Generative step.
If we{0,1}* then Ow and 1w are € {0,1}*

Generating {0,1}*

» Base. The empty string is in {0,1}*.
» Generative step.

If we{0,1}* then Ow and 1w are € {0,1}*

 Implicit assumptions:

The meanings of the empty string
and of juxtaposition are known.

Generating {0,1}*

» Base. The empty string is in {0,1}*.

» Generative step.
If we{0,1}* then Ow and 1w are € {0,1}*

 Implicit assumptions:

The meanings of the empty string
and of juxtaposition are known.

» Note: We generate strings here “from the head”;
This conforms with the general use of constructors,
and relflected in the functions head and fall.

Generating {0,1}*

» Base. The empty string is in {0,1}*.

» Generative step.
If we{0,1}* then Ow and 1w are € {0,1}*

 Implicit assumptions:
The meanings of the empty string
and of juxtaposition are known.

» Note: We generate strings here “from the head”;
This conforms with the general use of constructors,
and relflected in the functions head and fall.

« But numerals are in fact generated from the tail:
[7654321]10 =14+10- [765432]10

4.501-2023

Format of generative definitions

« Two parts in a generative dfn of set S:

» Base:
Particular known objects are in S.

Format of generative definitions

« Two parts in a generative dfn of set S:
» Base:
Particular known objects are in S.

» Generative steps:
If certain objects are in S

then so are vertain objects obtained from those.

4.501-2023 4

Another example: Binary trees

» | Binary tree| means here a
finite, ordered, unlabeled binary tree

Base: The singleton tree e isin BT.

Generative step:
tO tl

If %o, t; are binary trees then so is \./

Implicit assumptions:
We know what a singleton tree and
juncture of trees mean.

4.501-2023 5

Try this...

» Generate the set E of even natural numbers.

Try this...

» Generate the set E of even natural numbers.

» Base: 0

» Generative step: If ne€ E then n—2 € E.

4.501-2023 6

Boolean terms

» Two ways to define boolean terms (closed ones: no variables):

Boolean terms

» Two ways to define boolean terms (closed ones: no variables):
 IBT: Infix boolean terms:

» 0and 1 are in IBT
» If ¢,/ € IBT then (¢t)A(¢)€IBT and (t)V () € IBT

Boolean terms

» Two ways to define boolean terms (closed ones: no variables):
 IBT: Infix boolean terms:

» 0 and 1 are in IBT
» If ¢,/ € IBT then (¢t)A(¢)€IBT and (t)V () € IBT
 PBT: Prefix boolean terms:

» 0 and 1 are in PBT
» If t,/ e PBT then Attt € PBT and Vit € PBT

Boolean terms

» Two ways to define boolean terms (closed ones: no variables):
 IBT: Infix boolean terms:

» 0and 1 are in IBT
» If ¢,/ € IBT then (¢t)A(¢)€IBT and (t)V () € IBT

 PBT: Prefix boolean terms:

» 0 and 1 are in PBT
» If t,/ e PBT then Attt € PBT and Vit € PBT

* Main difference between IBT and PBT:
No parentheses in PBT !

4.501-2023 7

Lists of natural numbers

» Generate L(N) the|lists of natural numbers|.

 Fix a textual coding of N, say binary numerals.

Lists of natural numbers

» Generate L(N) the|lists of natural numbers|.

 Fix a textual coding of N, say binary numerals.

» [lis a list of naturals.

» If / isalistand £ anumeralthen k: /7 is alist.

Lists of natural numbers

» Generate L(N) the

lists of natural numbers |.

 Fix a textual coding of N, say binary numerals.

» [lis a list of naturals.

» If / isalistand £ anumeralthen k: /7 is alist.

« Examples:

1:0,

0:101:10011:10: .

4.501-2023 8

REASONING ABOUT
INDUCTIVE DATA

4.501-2023 9

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

* So how can we prove anything about N ?

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

* So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastoneof 2" +1 and 2" —1 isprime.”
2,3,5,7,17,31 Hooray!

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

* So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastoneof 2" +1 and 2" —1 isprime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

* So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastoneof 2" +1 and 2" —1 isprime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 2% +1 are prime
3,5,17,257,65537 . Yahoo!

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

* So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastoneof 2" +1 and 2" —1 isprime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 22" +1 are prime
3,5,17,257,65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

* So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastoneof 2" +1 and 2" —1 isprime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 22" +1 are prime
3,5,17,257,65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

 So how can we hope to prove
that all natural numbers are such-and-such ?

4.501-2023 10

10

Finitely generated infinities!

» The secret is that inductive data is generated by finite rules.

» Therefore we have a finite tool for proving that all
generated objects satisfy certain properties.

4.501-2023 11

11

Following the process

» Suppose we generate N using a green pen.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

0o 1

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

» They all come out green:
As we generate N we make sure that we start with green,
and that each step maintains green-ness.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

» They all come out green:
As we generate N we make sure that we start with green,
and that each step maintains green-ness.

» Green-ness is here the process’ | invariant:
True at the outset, and preserved by the steps.

4.501-2023

12

12

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

 Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

 Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall z € N.

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

 Assume:

» Base. P(0) and
» Step. For all n € N, P(n) implies P(n+1).

« Conclude: P(z) forall z € N.

» As natural numbers are being generated,
they all come out satisfying P.

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

 Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall z € N.

» As natural numbers are being generated,
they all come out satisfying P.

» A property of natural numbers that holds for zero
and is invariant under successor
is true of every natural number.

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

 Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall z € N.

» As natural numbers are being generated,
they all come out satisfying P.

» A property of natural numbers that holds for zero
and is invariant under successor
is true of every natural number.

» The premise of the STEP is often called the “induction assumption”
or the Induction Hypothesis (IH).

4.501-2023 13

13

Example

« Show that 2% < 2**! for all 2 € N. What is the property?

14

Example

e Show that 2% < 2*+1 for all = € N.

. P(z) is 2% < 2v+1

14

Example

e Show that 2% < 2*+1 for all = € N.
 If we know that

» 27 < 27+l s true for 2 = 0; and

» 2T < 2%t for x =n
implies that 2% < 27! for z =n+1

e then 2% < 2*+! forall = € N.

14

Example

e Show that 2% < 2*+1 for all = € N.
 If we know that

» 27 < 27+l s true for 2 = 0; and

» 2T < 2%t for x =n
implies that 2% < 27! for z =n+1

e then 2% < 2*+! forall = € N.
» But we do have

» Base: 20=1 < 2 =920+

14

Example

e Show that 2% < 2*+1 for all = € N.
 If we know that

» 27 < 27+l s true for 2 = 0; and

» 2T < 2%t for x =n
implies that 2% < 27! for z =n+1

e then 2% < 2*+! forall = € N.
» But we do have

» Base: 20=1 < 2 =20+

» Step: If 2" < 2"*! (P(z) for = =n)then
ontl = gn 4 gn < ontl 4 gntl — 9n+2 nextt (P(z) for = =n+1)

14

Example

e Show that 2% < 2*+1 for all = € N.
 If we know that

» 27 < 27+l s true for 2 = 0; and

» 2T < 2%t for x =n
implies that 2% < 27! for z =n+1

e then 2% < 2*+! forall = € N.
» But we do have

» Base: 20=1 < 2 =920+

» Step: If 2" < 2"*! (P(z) for = =n)then
ontl = gn 4 gn < ontl 4 gntl — 9n+2 nextt (P(z) for = =n+1)

« By Induction, 2% < 2**! forall z € N.

4.501-2023 14

14

Try this...

* Prove by induction on N that =z < 2* forall x € N.
We are given that exponentiation is an increasing function.

* By Induction = < 2* forall z € N,

15

Try this...

* Prove by induction on N that =z < 2* forall x € N.
We are given that exponentiation is an increasing function.

» Base: For t=0 we have 22=0<1 =27,

» Step: Assume n < 2". Then

n+1l < 2"+1 (IH)

2n + 20

2" + 2" (exponentiation is increasing)
2n+1

N

* By Induction = < 2* forall x € N.

4.501-2023 15

15

Example: Divisibility

e P(x): 2°+ 2z isdivisible by 3.

By Induction:

16

Example: Divisibility

e P(x): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For 2 =0
23 +22=0>+2-0=0 which is divisible by 3.

16

Example: Divisibility

« P(z): 2%+ 2z is divisible by 3.
By Induction:

» Base. For 2 =0
23 +22=0>+2-0=0 which is divisible by 3.
» Step. Assume P(n) (IH). Thenfor z =n+1
#+2r = (n+1)°+ (2n+2)
= N+3n?+3n+1)+(2n+2)
= n¥+2n)+3(n?2+n+1)
23 + 2z is the sum of numbers divisible by 3,
and is therefore divisible by 3.

16

Example: Divisibility

e P(x): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For 2 =0
23 +22=0>+2-0=0 which is divisible by 3.
» Step. Assume P(n) (IH). Thenfor z =n+1
#+2r = (n+1)°+ (2n+2)
= N+3n?+3n+1)+(2n+2)
= n¥+2n)+3(n?2+n+1)
23 + 2z is the sum of numbers divisible by 3,
and is therefore divisible by 3.

« By Induction 2%+ 2z is divisible by 3, for all z € N.

16

Example: Divisibility

e P(x): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For 2 =0

23 +22=0>+2-0=0 which is divisible by 3.

» Step. Assume P(n) (IH). Thenfor z =n+1
#+2r = (n+1)°+ (2n+2)
= N+3n?+3n+1)+(2n+2)
= n¥+2n)+3(n?2+n+1)
23 + 2z is the sum of numbers divisible by 3,
and is therefore divisible by 3.

« By Induction 2%+ 2z is divisible by 3, for all z € N.

16

4.501-2023 16

Ilterated summation

) 0+142+---4z = z(x+1)/2

By Induction :

17

Ilterated summation

(%) O+1+4+2+---4+z = z(x+1)/2
By Induction :

» Base. (x)istruefor x=0: 0=0-(0+1)/2.

17

Ilterated summation

(%) O+1+4+2+---4+z = z(x+1)/2
By Induction :

» Base. (x)istruefor x=0: 0=0-(0+1)/2.
» Step. Assume (x) for x=n. Thenfor z=n+1
O+14+---4+z = 04+1+---+n+(n+l)
= 2ot 4 (n41) (IH)
= (n+1)(3n+1)
= i(n+1)(n+2)
= 1z(z+1)
That is, (x) for z =n+1.

17

Ilterated summation

(%) O+1+4+2+---4+z = z(x+1)/2
By Induction :

» Base. (x)istruefor x=0: 0=0-(0+1)/2.

» Step. Assume (x) for x=n. Thenfor z=n+1
0+1+---4+2 = 0+1+4+---+n+(n+l)

= 2ot 4 (n41) (IH)

= (n+1)(3n+1)

= i(n+1)(n+2)

= 1z(z+1)
That is, (x) for z =n+1.

» Conclude: (%) holds for every z € N,

4.501-2023 17

17

Involving other data

A property of natural numbers may refer to non-numeric data!

(x) Every set with x elements has 2* subsets

By Induction.

18

Involving other data

A property of natural numbers may refer to non-numeric data!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. = = 0. The only set with 0 elements is 0,
which has just 2° =1 subset, namely 0 itself.

18

Involving other data

A property of natural numbers may refer to non-numeric data!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. = = 0. The only set with 0 elements is 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).
For t =n+1 let S be a set with n+1 elements.
Choose a € S (S can't be empty!) and let S™ =4 S — {a}.

18

Involving other data

A property of natural numbers may refer to non-numeric data!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. = = 0. The only set with 0 elements is 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).

For x =n+1 let S be a set with n+1 elements.

Choose a € S (S can't be empty!) and let S™ =4 S — {a}.
By IH S~ has 2" subsets Aj,..., Asn.

Subsets of S: Aj,...,Am, AyU{a}, ..., Asn U {a}

which are all different. So S has 2" + 2" = 2"*! subsets.

18

Involving other data

A property of natural numbers may refer to non-numeric data!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. = = 0. The only set with 0 elements is 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).
For x =n+1 let S be a set with n+1 elements.

Choose a € S (S can't be empty!) and let S™ =4 S — {a}.

By IH S~ has 2" subsets A;,..., Aon.
Subsets of S: Aj,...,Am, AyU{a}, ..., Asn U {a}
which are all different. So S has 2" + 2" = 2"+l gsubsets.

By Induction (x) for all =z € N.

4.501-2023

18

18

Starting Induction elsewhere

e Show 22>z forall x> 1.

» We wish to start induction from 2.

19

Starting Induction elsewhere

e Show 22>z forall x> 1.

» We wish to start induction from 2.

But that’s the same as Induction for the property

(x+2)?2>(x+2) !

19

Starting Induction elsewhere

e Show 22>z forall x> 1.

» We wish to start induction from 2.

But that’s the same as Induction for the property

(z+2)?%>(x+2) !
» We refer to this as Shifted Induction:

» Base. 22=4>2
» Step. n? > n implies
(n+1)? = n?+2n+1
> n+2n+1 (IH)
> n+1 since n > 0)

19

Starting Induction elsewhere

e Show 22>z forall x> 1.

» We wish to start induction from 2.

But that’s the same as Induction for the property

(z+2)?%>(x+2) !
» We refer to this as Shifted Induction:

» Base. 22=4>2

» Step. n? > n implies
(n+1)? = n?+2n+1
> n+2n+1 (IH)
> n+1 since n > 0)

« Conclusion: z? > z for all integers = > 1.

19

4.501-2023

19

Shifted Induction

» The template for such reasoning is | Shifted Induction

« Given a property P(z) of natural numbers, and b € N,

» Assume: » Shifted Base. P true of b; and

» Shifted Step. Forall n > b,
P(n) implies P(n+1)
e Conclude: P(z) forallz>b .

* Induction is a special case, with b = 0.

4.501-2023 20

20

Another example

e3> 5.2" forall n > 4.

« By Shifted Induction with initial value 4.

21

Another example

¢ 3" >5-2" forall n > 4.
« By Shifted Induction with initial value 4.

» Basis. 3*=81>80=5-2¢

21

Another example

¢ 3" >5-2" forall n > 4.
« By Shifted Induction with initial value 4.

» Basis. 3*=81>80=5-2
» Step. If 3" > 5-2" then

3n+1 3.3

> 3-(5-27) (IH)
> 2.5-2"
5‘2’n+1

4.501-2023 21

21

Inductive reasoning in general

» The principle of inductive reasoning applies
to any inductively generated set S, not just N.

 If P(x) makes sense for z € S,
is true for every base element of S
and remains true under the generative steps for S,
then P(z) istrueforall = € S.

22

Inductive reasoning in general

» The principle of inductive reasoning applies
to any inductively generated set S, not just N.

 If P(x) makes sense for z € S,
is true for every base element of S
and remains true under the generative steps for S,
then P(z) istrueforall = € S.

» The underlying reason is the same as for N:
as the elements of S are generated,
the property P invariantly holds.

22

4.501-2023

22

Involving non-numeric data

« P(xz) may mention also non-numeric data.

« Example: Take “Every set with = elements has 2* subsets”

23

Involving non-numeric data

« P(xz) may mention also non-numeric data.
« Example: Take “Every set with = elements has 2* subsets”

« We prove by Induction on N that P(z) for all = € N.

23

Involving non-numeric data

« P(xz) may mention also non-numeric data.
« Example: Take “Every set with = elements has 2* subsets”
« We prove by Induction on N that P(z) for all = € N.

— Base. P(0): “Every set with 0 elements has 2’ =1 subsets”.
Indeed () has one subset.

23

Involving non-numeric data

« P(xz) may mention also non-numeric data.
« Example: Take “Every set with = elements has 2* subsets”
« We prove by Induction on N that P(z) for all = € N.

— Base. P(0): “Every set with 0 elements has 2’ =1 subsets”.
Indeed () has one subset.

— Step. Assume P(n).
To prove P(n+1) let S be a set with n+1 elements.
Choose a € S andlet S~ =5 —{a}.
By IH S~ has 2" subsets Aj,..., Aon.
The subsets of S are A, ..., Asm, Ay U{a},..., Am U {a},
which are all different.

So S has 2" + 2" = 2"+l gubsets.

23

Involving non-numeric data

« P(xz) may mention also non-numeric data.
« Example: Take “Every set with = elements has 2* subsets”

« We prove by Induction on N that P(z) for all = € N.

— Base. P(0): “Every set with 0 elements has 2’ =1 subsets’

Indeed () has one subset.

— Step. Assume P(n).
To prove P(n+1) let S be a set with n+1 elements.
Choose a € S andlet S~ =5 —{a}.
By IH S~ has 2" subsets Aj,..., Aon.
The subsets of S are A, ..., Asm, Ay U{a},..., Am U {a},
which are all different.

So S has 2" + 2" = 2"*! subsets.
— By Induction on N P(z) holds for all z € N.

4.501-2023

23

23

Induction on strings

« Let P(x) be a property of X-strings.

24

Induction on strings

« Let P(x) be a property of X-strings.
» Assume:

» Base. P(e)

» Steps. Foreach c € ¥ and w e ¥*
P(w) implies P(ow)

24

Induction on strings

« Let P(x) be a property of X-strings.
» Assume:

» Base. P(e)

» Steps. Foreach c € ¥ and w e ¥*
P(w) implies P(ow)

« Conclude: P(w) forall we X",

4.501-2023 24

24

Example: Swapping

« For we {0,1}* let «~(w) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) “A(w(w))=w

25

Example: Swapping

« For we {0,1}* let «~(w) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) “A(w(w))=w

 The proof is by induction on {0,1}*.

25

Example: Swapping

« For we {0,1}* let «~(w) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) “A(w(w))=w

 The proof is by induction on {0,1}*.

» Basis. «~(«(g)) =w(e)=¢

25

Example: Swapping

« For we {0,1}* let «~(w) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) “A(w(w))=w
 The proof is by induction on {0,1}*.

» Basis. «(«(g)) =(e)=¢
» Step for 0. If «((2)) =
then «(~(0z)) = (m(x))

= 0((z))

= Oz (IH)
Step for 1 is similar.

25

Example: Swapping

« For we {0,1}* let «~(w) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) “A(w(w))=w
 The proof is by induction on {0,1}*.
» Basis. «~(«(g)) =w(e)=¢

» Step for 0. If «(~(z)) =2
then «~(~(0z)) = (m(x))

= 0 (n(z))
= Oz (IH)
Step for 1 is similar.

By induction on {0,1}* (%) forall w e {0,1}*.

4.501-2023 25

25

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX*).

26

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

» Problem: This is a property of a pair of strings!

26

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX*).
» Solution: Read it as a property of one z:

|z -u| =|z|+|u] forall ueX*

26

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX*).
» Solution: Read it as a property of one z:

|z -u| =|z|+|u] forall ueX*

» Basis: z =c¢.
le-ul = |u since c-u=u
lel + [ul = 0+ |u| = |u|

26

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").
» Solution: Read it as a property of one z:

|z -u| =|z|+|u| forall ueX*

» Basis: z =¢.
le-ul = |u since e-u=u
lel + [ul = 0+ |u| = |u|
» Step: Assume (%) for z =w .
For x = ow we have forall u € *
low-u| = |o(w-u)
= 1+ |w-uy|
= 1+ |w|+ |u| (IH)
= (low]) + |ul

26

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX*).

» Solution: Read it as a property of one z:
|z -u| =|z|+|u] forall ueX*
» Basis: 2z =c¢.
le-ul = |u since c-u=u
lel +|ul = 0+ |u| = |u|

» Step: Assume (%) for z =w .

For x =ow we haveforall ue X" |ow-u|=|ow|+ |u

By induction on ¥* conclude (%) for all = € ¥*.

26

4.501-2023 26

Unambiguous PBT'’s

« APBT ¢ is|unambiguous | if it is exactly one of:

» Ooril

» Atgty or Viygt; for some unique terms t, and t; .

27

Unambiguous PBT'’s

« APBT ¢ is|unambiguous | if it is exactly one of:

» Ooril

» Atgty or Viygt; for some unique terms t, and t; .

« Thatis: ¢t can't be both Atyt; and Atyt]
unless t; =1, and t) =t;.

27

Unambiguous PBT'’s

« APBT ¢ is|unambiguous | if it is exactly one of:

» Oori

» Atgty or Viygt; for some unique terms t, and t; .

« Thatis: ¢t can't be both Atyt; and Atyt]
unless t; =1, and t) =t;.

 Theorem: Every PBT is unambiguous

27

Unambiguous PBT'’s

« APBT ¢ is|unambiguous | if it is exactly one of:

» Oori

» Atgty or Viygt; for some unique terms t, and t; .

« Thatis: ¢ can't be both Atyt; and At)t]
unless t; =1, and t) =t;.

 Theorem: Every PBT is unambiguous

 How to prove this?

27

Unambiguous PBT'’s

« APBT t is

» Oori

unambiguous

if it is exactly one of:

» Atgty or Viygt; for some unique terms t, and t; .

« Thatis: ¢t can't be both Atyt; and Atyt]
unless t; =1, and t) =t;.

e Theorem:

Every PBT is unambiguous

 How to prove this?

e Induction on terms does not work:
If ¢t = Atyt; what can we possibly conclude from assuming that
to and t; are unambiguous?

27

4.501-2023 27

Pushing induction through

« Maybe induction on strings over ¥ = {0, 1, A, V}

28

Pushing induction through

« Maybe induction on strings over ¥ = {0, 1, A, V}

» But we can’t conclude that At;t, is unambiguous
from the assumption that t,,%, are unambiguous!

28

Pushing induction through

« Maybe induction on strings over ¥ = {0, 1, A, V}

» But we can’t conclude that At;t, is unambiguous
from the assumption that t,,%, are unambiguous!

» And the string tt, is not a term!

28

Pushing induction through

« Maybe induction on strings over ¥ = {0, 1, A, V}

» But we can’t conclude that At;t, is unambiguous
from the assumption that t,,%, are unambiguous!

» And the string tt, is not a term!

 Solution: A broader notion of “non-ambiguity”!
w € ¥* is|unambiguous|if it can’e be read
as a concatenation of terms in more than one way:

28

Pushing induction through

« Maybe induction on strings over ¥ = {0, 1, A, V}

» But we can’t conclude that At;t, is unambiguous
from the assumption that t,,%, are unambiguous!

» And the string tt, is not a term!

 Solution: A broader notion of “non-ambiguity”!

w e Y* s

as a concatenation of terms in more than one way:

unambiguous

° If w:tl...tkzti...t;n
then m =%k and t; =t for i € [1..k]|.

if it can’e be read

28

4.501-2023 28

A generalized non-ambiguity theorem

* Non-ambiguity Theorem. Every w € £* is unambiguous.

» The proof is by induction on %*.

29

A generalized non-ambiguity theorem

* Non-ambiguity Theorem. Every w € £* is unambiguous.
» The proof is by induction on %*.

» Basis. If w is € then it is unambiguous vacuously.

29

A generalized non-ambiguity theorem

 Non-ambiguity Theorem. Every w € ¥* is unambiguous.
» The proof is by induction on %*.

» Basis. If w is € then it is unambiguous vacuously.

» Step: Assume that w is unambiguous and
(%) gw:tl...tkzti...t;n

4.501-2023 29

29

» Step: Assume that w is unambiguous and

(x) ow=ty---ty=1t, -t

30

» Step: Assume that w is unambiguous and

(*) gw:tltkzt'lt/”ﬂ

-~ Case 0 =0. (o=1 issimilar.)
0 is the only term starting with 0.
So ty=t/=0 and w=ty---tp=th---t .

30

» Step: Assume that w is unambiguous and

(*) gw:tltkzt'lt;ﬂ

-~ Case 0 =0. (o=1 issimilar.)
0 is the only term starting with 0.
So t1=t=0 and w=ty-- -t =15---1],.
BylH k—1=m-—1 and t; =t for i =2.k.
So k=m and t; =¢q; for i =1..k.

30

» Step: Assume that w is unambiguous and

(*) gw:tltkzt'lt;ﬂ

-~ Case 0 =0. (o=1 issimilar.)
0 is the only term starting with 0.
So t1=t=0 and w=ty-- -t =15---1],.
BylH k—1=m-—1 and t; =t for i =2.k.
So k=m and t; =¢q; for i =1..k.

- Case o=A. (o0=V issimilar.)
ty =Aqr and t; =Aqg' v forsome q,r, ¢,

30

» Step: Assume that w is unambiguous and

-~ Case 0 =0. (o=1 issimilar.)
0 is the only term starting with 0.
So t1=t=0 and w=ty-- -t =15---1],.
BylH k—1=m-—1 and t; =t for i =2.k.
So k=m and t; =¢q; for i =1..k.

- Case o=A. (o0=V issimilar.)
ty =Aqr and t; =Aqg' v forsome q,r, ¢,

So w=qrty---tp=q¢r'th---t' . BylH k+1=m+1, q=¢,
r=7r" and ti = q; for i1 =2..k.

30

» Step: Assume that w is unambiguous and

-~ Case 0 =0. (o=1 issimilar.)
0 is the only term starting with 0.
So t1=t=0 and w=ty-- -t =15---1],.
BylH k—1=m-—1 and t; =t for i =2.k.
So k=m and t; =¢q; for i =1..k.

- Case o=A. (o0=V issimilar.)
ty =Aqr and t; =Aqg' v forsome q,r, ¢,

So w=qrty---tp=q¢r'th---t' . BylH k+1=m+1, q=¢,
r=7r" and ti = q; for i1 =2..k.

So k=m and t; =t for i=1..k.

4.501-2023 30

30

A generalized non-ambiguity theorem

 Non-ambiguity Theorem. Every w € ¥* is unambiguous.
» The proof is by induction on %*.

» Basis. If w is € then it is unambiguous vacuously.

» Step: Assume that w is unambiguous and

O‘wztl‘..tkztil‘.‘t;n

31

A generalized non-ambiguity theorem

 Non-ambiguity Theorem. Every w € ¥* is unambiguous.
» The proof is by induction on %*.

» Basis. If w is € then it is unambiguous vacuously.

» Step: Assume that w is unambiguous and
O‘wztl‘..tkztil..‘t;n
We concluded that k =m and t; =t for i =1..k.

31

A generalized non-ambiguity theorem

 Non-ambiguity Theorem. Every w € ¥* is unambiguous.
» The proof is by induction on %*.

» Basis. If w is € then it is unambiguous vacuously.

» Step: Assume that w is unambiguous and

/

ow=ty -ty =t)--t

By induction on ¥* we conclude that
every w € ¥* is unambiguous.

31

A generalized non-ambiguity theorem

 Non-ambiguity Theorem. Every w € ¥* is unambiguous.
» The proof is by induction on %*.

» Basis. If w is € then it is unambiguous vacuously.
» Step: Assume that w is unambiguous and

aw:tl‘..tkzt,l..‘t;n

By induction on ¥* we conclude that
every w € ¥* is unambiguous.

* In particular, every PBT t is a concatenation of 1 string,
and therefore must be unambiguous as a term.

4.501-2023

31

31

Induction over binary trees

* Recall that the set of binary trees is generated

from a base tree e by juncture:
t,

if £y, t; are binary trees then so is \/

» Let P(x) be a property that makes sense for any binary tree t.
* If we can show that

» Base: P(e) ;and

» Step: If both P(ty) and P(t)
then P(t) forthe juncture t above of ¢, and t;

then P(t) is true for all binary trees t.

4.501-2023 32

32

Example: Odd size of binary trees

e Can a binary tree have an even number of nodes?

33

Example: Odd size of binary trees

 Every binary tree has an odd number of nodes.

33

Example: Odd size of binary trees

 Every binary tree has an odd number of nodes.

« Let P(t) be the property

“t has an odd number of nodes”

33

Example: Odd size of binary trees

 Every binary tree has an odd number of nodes.

« Let P(t) be the property

“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

33

Example: Odd size of binary trees

 Every binary tree has an odd number of nodes.
« Let P(t) be the property
“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

» Step: Suppose t,,t; are trees of odd sizes ny and n;.
Let ¢ be obtained from ¢, and t¢;. thenthesizeof t is ng+n; +1
which is again odd.

33

Example: Odd size of binary trees

 Every binary tree has an odd number of nodes.

« Let P(t) be the property

“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

» Step: Suppose t,,t; are trees of odd sizes ny and n;.
Let ¢ be obtained from ¢, and t¢;. thenthesizeof t is ng+n; +1
which is again odd.

By induction on binary tree we conclude that
P(t) for all binary trees t.

4.501-2023 33

33

The mother of all inductions

» The Induction principle applies to all inductively generated sets.

 But induction on N is the one usually invoked.

34

The mother of all inductions

» The Induction principle applies to all inductively generated sets.
 But induction on N is the one usually invoked. Why?
 Take generated set G, P(x) apropertyof x € G.

« Obtain induction over xz € G for property P(x)
as induction over n € N for the property:

P(n) is true for all x € G generated in < n steps

34

The mother of all inductions

» The Induction principle applies to all inductively generated sets.
 But induction on N is the one usually invoked.
 Take generated set G, P(x) apropertyof x € G.

« Obtain induction over xz € G for property P(x)
as induction over n € N for the property:

P(n) is true for all x € G generated in < n steps

* Note that N is the simplest infinite generated set:
one initial object, one generative rule, involving one premise!

4.501-2023 34

34

