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Generative processes

• Virtually every infinite set considered in programming

is generated by a process.

The fundamental example is the set NNN of natural numbers:

◮ Initial object (“base”): The number 000 is in NNN.
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Generative processes

• Virtually every infinite set considered in programming

is generated by a process.

The fundamental example is the set NNN of natural numbers:

◮ Initial object (“base”): The number 000 is in NNN.

Generative step: If n ∈ Nn ∈ Nn ∈ N then “next” of nnn , snsnsn , is ∈ N∈ N∈ N

• Implicit assumptions:

The meanings of 000 and “next” are known and given.
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Generating {0, 1}∗{0, 1}∗{0, 1}∗

◮ Base. The empty string is in {0, 1}∗{0, 1}∗{0, 1}∗.

◮ Generative step.

If w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ then 0 w0 w0 w and 1 w1 w1 w are ∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗
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Generating {0, 1}∗{0, 1}∗{0, 1}∗

◮ Base. The empty string is in {0, 1}∗{0, 1}∗{0, 1}∗.

◮ Generative step.

If w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ then 0 w0 w0 w and 1 w1 w1 w are ∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Implicit assumptions:

The meanings of the empty string

and of juxtaposition are known.

• Note: We generate strings here “from the head”;

This conforms with the general use of constructors,

and relflected in the functions head and tail .

• But numerals are in fact generated from the tail:

[7654321]10 = 1 + 10 · [765432]10[7654321]10 = 1 + 10 · [765432]10[7654321]10 = 1 + 10 · [765432]10
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Format of generative definitions

• Two parts in a generative dfn of set SSS:

◮ Base:

Particular known objects are in SSS.

4



Format of generative definitions

• Two parts in a generative dfn of set SSS:

◮ Base:

Particular known objects are in SSS.

◮ Generative steps:

If certain objects are in SSS

then so are vertain objects obtained from those.

4.501-2023 4

4



Another example: Binary trees

◮ Binary tree means here a

finite, ordered, unlabeled binary tree

Base: The singleton tree ••• is in BTBTBT.

Generative step:

If t0, t1t0, t1t0, t1 are binary trees then so is

tt0 1

Implicit assumptions:

We know what a singleton tree and

juncture of trees mean.
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Try this...

• Generate the set EEE of even natural numbers.
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Try this...

• Generate the set EEE of even natural numbers.

◮ Base: 000

◮ Generative step: If n ∈ En ∈ En ∈ E then n−2 ∈ En−2 ∈ En−2 ∈ E.
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Boolean terms

• Two ways to define boolean terms (closed ones: no variables):
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Boolean terms

• Two ways to define boolean terms (closed ones: no variables):

• IBT: Infix boolean terms:

◮ 000 and 111 are in IBT

◮ If t, t′ ∈ IBTt, t′ ∈ IBTt, t′ ∈ IBT then (t) ∧ (t′) ∈ IBT(t) ∧ (t′) ∈ IBT(t) ∧ (t′) ∈ IBT and (t) ∨ (t′) ∈ IBT(t) ∨ (t′) ∈ IBT(t) ∨ (t′) ∈ IBT

• PBT: Prefix boolean terms:

◮ 000 and 111 are in PBT

◮ If t, t′ ∈ PBTt, t′ ∈ PBTt, t′ ∈ PBT then ∧ t t′ ∈ PBT∧ t t′ ∈ PBT∧ t t′ ∈ PBT and ∨ t t′ ∈ PBT∨ t t′ ∈ PBT∨ t t′ ∈ PBT

• Main difference between IBT and PBT:

No parentheses in PBT !
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• Fix a textual coding of NNN, say binary numerals.
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Lists of natural numbers

• Generate L(N)L(N)L(N) the lists of natural numbers .

• Fix a textual coding of NNN, say binary numerals.

◮ ��� is a list of naturals.

◮ If ℓℓℓ is a list and kkk a numeral then k : ℓk : ℓk : ℓ is a list.

• Examples: 1 : �1 : �1 : �, 0 : 101 : 10011 : 10 : �0 : 101 : 10011 : 10 : �0 : 101 : 10011 : 10 : �.
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REASONING ABOUT

INDUCTIVE DATA
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Infinite sets, finite minds

• NNN is infinite. {0, 1}∗{0, 1}∗{0, 1}∗ is infinite.

But our minds and our proofs are finite.
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Infinite sets, finite minds

• NNN is infinite. {0, 1}∗{0, 1}∗{0, 1}∗ is infinite.

But our minds and our proofs are finite.

• So how can we prove anything about NNN?

• Trying many cases is never sufficient.

Example: “For all nnn at least one of 2n + 12n + 12n + 1 and 2n − 12n − 12n − 1 is prime.”

2, 3, 5, 7, 17, 312, 3, 5, 7, 17, 312, 3, 5, 7, 17, 31 Hooray!

Oops: Both 636363 and 656565 are composite.

• Another try (Fermat): All numbers 22n

+ 122n

+ 122n

+ 1 are prime

3, 5, 17, 257, 655373, 5, 17, 257, 655373, 5, 17, 257, 65537 . Yahoo!

Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

• So how can we hope to prove

that all natural numbers are such-and-such ?
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Finitely generated infinities!

• The secret is that inductive data is generated by finite rules.

• Therefore we have a finite tool for proving that all

generated objects satisfy certain properties.

4.501-2023 11

11



Following the process

• Suppose we generate NNN using a green pen.
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Following the process

• Suppose we generate NNN using a green pen.

◮ 000 is a green natural.

◮ If xxx is a green natural, then so is its successor.

000 111 222 333 444

• They all come out green:

As we generate NNN we make sure that we start with green,

and that each step maintains green-ness.

• Green-ness is here the process’ invariant:

True at the outset, and preserved by the steps.
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The principle of induction for NNN

• Suppose P (x)P (x)P (x) is a property of natural numbers xxx.

P (x)P (x)P (x) abbreviates here “xxx has the property PPP ”
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The principle of induction for NNN

• Suppose P (x)P (x)P (x) is a property of natural numbers xxx.

P (x)P (x)P (x) abbreviates here “xxx has the property PPP ”

• Assume:

◮ Base. P (0)P (0)P (0) and

◮ Step. For all n ∈ Nn ∈ Nn ∈ N , P (n)P (n)P (n) implies P (n+1)P (n+1)P (n+1).

• Conclude: P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N.

• As natural numbers are being generated,

they all come out satisfying PPP .

• A property of natural numbers that holds for zero

and is invariant under successor

is true of every natural number.

• The premise of the STEP is often called the “induction assumption”

or the Induction Hypothesis (IH).
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Example

• Show that 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N. What is the property?
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Example

• Show that 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N. What is the property?

• If we know that

◮ 2x < 2x+12x < 2x+12x < 2x+1 is true for x = 0x = 0x = 0; and

◮ 2x < 2x+12x < 2x+12x < 2x+1 for x = nx = nx = n

implies that 2x < 2x+12x < 2x+12x < 2x+1 for x = n + 1x = n + 1x = n + 1

• then 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N.

• But we do have

◮ Base: 20 = 1 < 2 = 20+120 = 1 < 2 = 20+120 = 1 < 2 = 20+1

◮ Step: If 2n < 2n+12n < 2n+12n < 2n+1 (P (x)P (x)P (x) for x = nx = nx = n) then

2n+1 = 2n + 2n < 2n+1 + 2n+1 = 2n+22n+1 = 2n + 2n < 2n+1 + 2n+1 = 2n+22n+1 = 2n + 2n < 2n+1 + 2n+1 = 2n+2 nextt (P (x)P (x)P (x) for x = n+1x = n+1x = n+1)

• By Induction, 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N.
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Try this...

• Prove by induction on NNN that x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.

We are given that exponentiation is an increasing function.

• By Induction x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.
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Try this...

• Prove by induction on NNN that x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.

We are given that exponentiation is an increasing function.

◮ Base: For x = 0x = 0x = 0 we have x2 = 0 < 1 = 2xx2 = 0 < 1 = 2xx2 = 0 < 1 = 2x.

◮ Step: Assume n 6 2nn 6 2nn 6 2n. Then

n + 1n + 1n + 1 666 2n + 12n + 12n + 1 (IH)

=== 2n + 202n + 202n + 20

666 2n + 2n2n + 2n2n + 2n (exponentiation is increasing)

=== 2n+12n+12n+1

• By Induction x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.
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Example: Divisibility

• P (x) : x3 + 2xP (x) : x3 + 2xP (x) : x3 + 2x is divisible by 3.

• By Induction:
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x3 + 2xx3 + 2xx3 + 2x is the sum of numbers divisible by 3,

and is therefore divisible by 3.

• By Induction x3 + 2xx3 + 2xx3 + 2x is divisible by 3, for all x ∈ Nx ∈ Nx ∈ N.
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• By Induction:

◮ Base. For x = 0x = 0x = 0

x3 + 2x = 03 + 2 · 0 = 0x3 + 2x = 03 + 2 · 0 = 0x3 + 2x = 03 + 2 · 0 = 0 which is divisible by 3.

◮ Step. Assume P (n)P (n)P (n) (IH). Then for x = n+1x = n+1x = n+1

x3 + 2xx3 + 2xx3 + 2x === (n + 1)3 + (2n + 2)(n + 1)3 + (2n + 2)(n + 1)3 + (2n + 2)

=== (n3 + 3n2 + 3n + 1) + (2n + 2)(n3 + 3n2 + 3n + 1) + (2n + 2)(n3 + 3n2 + 3n + 1) + (2n + 2)

=== (n3 + 2n) + 3(n2 + n + 1)(n3 + 2n) + 3(n2 + n + 1)(n3 + 2n) + 3(n2 + n + 1)

x3 + 2xx3 + 2xx3 + 2x is the sum of numbers divisible by 3,

and is therefore divisible by 3.

• By Induction x3 + 2xx3 + 2xx3 + 2x is divisible by 3, for all x ∈ Nx ∈ Nx ∈ N.
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Iterated summation

(⋆) 0 + 1 + 2 + · · · + x = x(x + 1)/20 + 1 + 2 + · · · + x = x(x + 1)/20 + 1 + 2 + · · · + x = x(x + 1)/2

• By Induction :
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• By Induction :

◮ Base. (⋆) is true for x = 0x = 0x = 0: 0 = 0 · (0 + 1)/20 = 0 · (0 + 1)/20 = 0 · (0 + 1)/2.
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(⋆) 0 + 1 + 2 + · · · + x = x(x + 1)/20 + 1 + 2 + · · · + x = x(x + 1)/20 + 1 + 2 + · · · + x = x(x + 1)/2

• By Induction :

◮ Base. (⋆) is true for x = 0x = 0x = 0: 0 = 0 · (0 + 1)/20 = 0 · (0 + 1)/20 = 0 · (0 + 1)/2.
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2 + (n+1)n(n+1)
2 + (n+1)n(n+1)
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2(n+1)(n + 2)1
2(n+1)(n + 2)

=== 1
2x(x + 1)1
2x(x + 1)1
2x(x + 1)

That is, (⋆) for x = n+1x = n+1x = n+1.
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Iterated summation

(⋆) 0 + 1 + 2 + · · · + x = x(x + 1)/20 + 1 + 2 + · · · + x = x(x + 1)/20 + 1 + 2 + · · · + x = x(x + 1)/2

• By Induction :

◮ Base. (⋆) is true for x = 0x = 0x = 0: 0 = 0 · (0 + 1)/20 = 0 · (0 + 1)/20 = 0 · (0 + 1)/2.

◮ Step. Assume (⋆) for x = nx = nx = n . Then for x = n+1x = n+1x = n+1

0 + 1 + · · · + x0 + 1 + · · · + x0 + 1 + · · · + x === 0 + 1 + · · · + n + (n+1)0 + 1 + · · · + n + (n+1)0 + 1 + · · · + n + (n+1)

=== n(n+1)
2 + (n+1)n(n+1)
2 + (n+1)n(n+1)
2 + (n+1) (IH)

=== (n + 1)(1
2n + 1)(n + 1)(1
2n + 1)(n + 1)(1
2n + 1)

=== 1
2(n+1)(n + 2)1
2(n+1)(n + 2)1
2(n+1)(n + 2)

=== 1
2x(x + 1)1
2x(x + 1)1
2x(x + 1)

That is, (⋆) for x = n+1x = n+1x = n+1.

• Conclude: (⋆) holds for every x ∈ Nx ∈ Nx ∈ N.
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Involving other data

• A property of natural numbers may refer to non-numeric data!

(⋆) Every set with xxx elements has 2x2x2x subsets

• By Induction.
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• By Induction.

◮ Base. x = 0x = 0x = 0. The only set with 000 elements is ∅∅∅ ,

which has just 20 = 120 = 120 = 1 subset, namely ∅∅∅ itself.

◮ Step. Assume P (n)P (n)P (n) (IH).

For x = n+1x = n+1x = n+1 let SSS be a set with n+1n+1n+1 elements.

Choose a ∈ Sa ∈ Sa ∈ S (SSS can’t be empty!) and let S− =df S − {a}S− =df S − {a}S− =df S − {a}.
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Choose a ∈ Sa ∈ Sa ∈ S (SSS can’t be empty!) and let S− =df S − {a}S− =df S − {a}S− =df S − {a}.
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Subsets of SSS : A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}

which are all different. So SSS has 2n + 2n = 2n+12n + 2n = 2n+12n + 2n = 2n+1 subsets.
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Involving other data

• A property of natural numbers may refer to non-numeric data!

(⋆) Every set with xxx elements has 2x2x2x subsets

• By Induction.

◮ Base. x = 0x = 0x = 0. The only set with 000 elements is ∅∅∅ ,

which has just 20 = 120 = 120 = 1 subset, namely ∅∅∅ itself.

◮ Step. Assume P (n)P (n)P (n) (IH).

For x = n+1x = n+1x = n+1 let SSS be a set with n+1n+1n+1 elements.

Choose a ∈ Sa ∈ Sa ∈ S (SSS can’t be empty!) and let S− =df S − {a}S− =df S − {a}S− =df S − {a}.

By IH S−S−S− has 2n2n2n subsets A1, . . . , A2nA1, . . . , A2nA1, . . . , A2n.

Subsets of SSS : A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}

which are all different. So SSS has 2n + 2n = 2n+12n + 2n = 2n+12n + 2n = 2n+1 subsets.

• By Induction (⋆) for all x ∈ Nx ∈ Nx ∈ N.
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Starting Induction elsewhere

• Show x2 > xx2 > xx2 > x for all x > 1x > 1x > 1.

• We wish to start induction from 2.
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Starting Induction elsewhere

• Show x2 > xx2 > xx2 > x for all x > 1x > 1x > 1.

• We wish to start induction from 2.

But that’s the same as Induction for the property

(x + 2)2 > (x + 2)(x + 2)2 > (x + 2)(x + 2)2 > (x + 2) !

• We refer to this as Shifted Induction:

◮ Base. 22 = 4 > 222 = 4 > 222 = 4 > 2

◮ Step. n2 > nn2 > nn2 > n implies

(n + 1)2(n + 1)2(n + 1)2 === n2 + 2n + 1n2 + 2n + 1n2 + 2n + 1

>>> n + 2n + 1n + 2n + 1n + 2n + 1 (IH)

>>> n + 1n + 1n + 1 since n > 0)n > 0)n > 0)
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Starting Induction elsewhere

• Show x2 > xx2 > xx2 > x for all x > 1x > 1x > 1.

• We wish to start induction from 2.

But that’s the same as Induction for the property

(x + 2)2 > (x + 2)(x + 2)2 > (x + 2)(x + 2)2 > (x + 2) !

• We refer to this as Shifted Induction:

◮ Base. 22 = 4 > 222 = 4 > 222 = 4 > 2

◮ Step. n2 > nn2 > nn2 > n implies

(n + 1)2(n + 1)2(n + 1)2 === n2 + 2n + 1n2 + 2n + 1n2 + 2n + 1

>>> n + 2n + 1n + 2n + 1n + 2n + 1 (IH)

>>> n + 1n + 1n + 1 since n > 0)n > 0)n > 0)

• Conclusion: x2 > xx2 > xx2 > x for all integers x > 1x > 1x > 1 .
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Shifted Induction

• The template for such reasoning is Shifted Induction

• Given a property P (x)P (x)P (x) of natural numbers, and b ∈ Nb ∈ Nb ∈ N,

• Assume: ◮ Shifted Base. PPP true of bbb; and

◮ Shifted Step. For all n > bn > bn > b,

P (n)P (n)P (n) implies P (n+1)P (n+1)P (n+1)

• Conclude: P (x)P (x)P (x) for all x > bx > bx > b .

• Induction is a special case, with b = 0b = 0b = 0.
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Another example

• 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n for all n > 4n > 4n > 4.

• By Shifted Induction with initial value 444.
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Another example

• 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n for all n > 4n > 4n > 4.

• By Shifted Induction with initial value 444.

◮ Basis. 34 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 24
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Another example

• 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n for all n > 4n > 4n > 4.

• By Shifted Induction with initial value 444.

◮ Basis. 34 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 24

◮ Step. If 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n then

3n+13n+13n+1 === 3 · 3n3 · 3n3 · 3n

>>> 3 · (5 · 2n)3 · (5 · 2n)3 · (5 · 2n) (IH)

>>> 2 · 5 · 2n2 · 5 · 2n2 · 5 · 2n

=== 5 · 2n+15 · 2n+15 · 2n+1
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Inductive reasoning in general

• The principle of inductive reasoning applies

to any inductively generated set SSS, not just NNN.

• If P (x)P (x)P (x) makes sense for x ∈ Sx ∈ Sx ∈ S,

is true for every base element of SSS

and remains true under the generative steps for SSS,

then P (x)P (x)P (x) is true for all x ∈ Sx ∈ Sx ∈ S.
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Inductive reasoning in general

• The principle of inductive reasoning applies

to any inductively generated set SSS, not just NNN.

• If P (x)P (x)P (x) makes sense for x ∈ Sx ∈ Sx ∈ S,

is true for every base element of SSS

and remains true under the generative steps for SSS,

then P (x)P (x)P (x) is true for all x ∈ Sx ∈ Sx ∈ S.

• The underlying reason is the same as for N:

as the elements of SSS are generated,

the property PPP invariantly holds.
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Involving non-numeric data

• P (x)P (x)P (x) may mention also non-numeric data.

• Example: Take “Every set with xxx elements has 2x2x2x subsets”
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– Base. P (0)P (0)P (0) : “Every set with 000 elements has 20 = 120 = 120 = 1 subsets”.

Indeed ∅∅∅ has one subset.
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• We prove by Induction on NNN that P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N.

– Base. P (0)P (0)P (0) : “Every set with 000 elements has 20 = 120 = 120 = 1 subsets”.

Indeed ∅∅∅ has one subset.

– Step. Assume P (n)P (n)P (n) .

To prove P (n + 1)P (n + 1)P (n + 1) let SSS be a set with n+1n+1n+1 elements.

Choose a ∈ Sa ∈ Sa ∈ S and let S− = S − {a}S− = S − {a}S− = S − {a}.
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Involving non-numeric data

• P (x)P (x)P (x) may mention also non-numeric data.

• Example: Take “Every set with xxx elements has 2x2x2x subsets”

• We prove by Induction on NNN that P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N.

– Base. P (0)P (0)P (0) : “Every set with 000 elements has 20 = 120 = 120 = 1 subsets”.

Indeed ∅∅∅ has one subset.

– Step. Assume P (n)P (n)P (n) .

To prove P (n + 1)P (n + 1)P (n + 1) let SSS be a set with n+1n+1n+1 elements.

Choose a ∈ Sa ∈ Sa ∈ S and let S− = S − {a}S− = S − {a}S− = S − {a}.

By IH S−S−S− has 2n2n2n subsets A1, . . . , A2nA1, . . . , A2nA1, . . . , A2n.

The subsets of SSS are A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a},

which are all different.

So SSS has 2n + 2n = 2n+12n + 2n = 2n+12n + 2n = 2n+1 subsets.

– By Induction on NNN P (x)P (x)P (x) holds for all x ∈ Nx ∈ Nx ∈ N .
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Induction on strings

• Let P (x)P (x)P (x) be a property of ΣΣΣ-strings.
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Induction on strings

• Let P (x)P (x)P (x) be a property of ΣΣΣ-strings.

• Assume:

◮ Base. P (ε)P (ε)P (ε)

◮ Steps. For each σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

P (w)P (w)P (w) implies P (σw)P (σw)P (σw)
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Induction on strings

• Let P (x)P (x)P (x) be a property of ΣΣΣ-strings.

• Assume:

◮ Base. P (ε)P (ε)P (ε)

◮ Steps. For each σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

P (w)P (w)P (w) implies P (σw)P (σw)P (σw)

• Conclude: P (w)P (w)P (w) for all w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗.
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Example: Swapping

• For w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ let ∽(w)∽(w)∽(w) (“swap www”) be

www with 000 and 111 interchanged: ∽001 = 110∽001 = 110∽001 = 110.

We show (⋆) ∽(∽(w)) = w∽(∽(w)) = w∽(∽(w)) = w
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• For w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ let ∽(w)∽(w)∽(w) (“swap www”) be

www with 000 and 111 interchanged: ∽001 = 110∽001 = 110∽001 = 110.

We show (⋆) ∽(∽(w)) = w∽(∽(w)) = w∽(∽(w)) = w

• The proof is by induction on {0, 1}∗{0, 1}∗{0, 1}∗ .

◮ Basis. ∽(∽(ε)) = ∽(ε) = ε∽(∽(ε)) = ∽(ε) = ε∽(∽(ε)) = ∽(ε) = ε

◮ Step for 000. If ∽(∽(x)) = x∽(∽(x)) = x∽(∽(x)) = x

then ∽(∽(0x))∽(∽(0x))∽(∽(0x)) === ∽(1∽(x))∽(1∽(x))∽(1∽(x))

=== 0∽(∽(x))0∽(∽(x))0∽(∽(x))

=== 0x0x0x (IH)

Step for 111 is similar.
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Example: Swapping

• For w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ let ∽(w)∽(w)∽(w) (“swap www”) be

www with 000 and 111 interchanged: ∽001 = 110∽001 = 110∽001 = 110.

We show (⋆) ∽(∽(w)) = w∽(∽(w)) = w∽(∽(w)) = w

• The proof is by induction on {0, 1}∗{0, 1}∗{0, 1}∗ .

◮ Basis. ∽(∽(ε)) = ∽(ε) = ε∽(∽(ε)) = ∽(ε) = ε∽(∽(ε)) = ∽(ε) = ε

◮ Step for 000. If ∽(∽(x)) = x∽(∽(x)) = x∽(∽(x)) = x

then ∽(∽(0x))∽(∽(0x))∽(∽(0x)) === ∽(1∽(x))∽(1∽(x))∽(1∽(x))

=== 0∽(∽(x))0∽(∽(x))0∽(∽(x))

=== 0x0x0x (IH)

Step for 111 is similar.

• By induction on {0, 1}∗{0, 1}∗{0, 1}∗ (⋆) for all w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗.
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Dealing with several inputs

• Prove |x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| ( x, u ∈ Σ∗x, u ∈ Σ∗x, u ∈ Σ∗ ).
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• Problem: This is a property of a pair of strings!
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• Solution: Read it as a property of one xxx:

|x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| for all u ∈ Σ∗u ∈ Σ∗u ∈ Σ∗ (⋆)

◮ Basis: x = εx = εx = ε.

|ε · u||ε · u||ε · u| === |u||u||u| since ε · u = uε · u = uε · u = u

|ε| + |u||ε| + |u||ε| + |u| === 0 + |u| = |u|0 + |u| = |u|0 + |u| = |u|
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Dealing with several inputs

• Prove |x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| ( x, u ∈ Σ∗x, u ∈ Σ∗x, u ∈ Σ∗ ).
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|x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| for all u ∈ Σ∗u ∈ Σ∗u ∈ Σ∗ (⋆)

◮ Basis: x = εx = εx = ε.

|ε · u||ε · u||ε · u| === |u||u||u| since ε · u = uε · u = uε · u = u

|ε| + |u||ε| + |u||ε| + |u| === 0 + |u| = |u|0 + |u| = |u|0 + |u| = |u|

◮ Step: Assume (⋆) for x = wx = wx = w .

For x = σwx = σwx = σw we have for all u ∈ Σ∗u ∈ Σ∗u ∈ Σ∗

|σw · u||σw · u||σw · u| === |σ(w · u)||σ(w · u)||σ(w · u)|

=== 1 + |w · u|1 + |w · u|1 + |w · u|

=== 1 + |w| + |u|1 + |w| + |u|1 + |w| + |u| (IH)

=== (|σw|) + |u|(|σw|) + |u|(|σw|) + |u|
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Dealing with several inputs

• Prove |x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| ( x, u ∈ Σ∗x, u ∈ Σ∗x, u ∈ Σ∗ ).

• Solution: Read it as a property of one xxx:

|x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| for all u ∈ Σ∗u ∈ Σ∗u ∈ Σ∗ (⋆)

◮ Basis: x = εx = εx = ε.

|ε · u||ε · u||ε · u| === |u||u||u| since ε · u = uε · u = uε · u = u

|ε| + |u||ε| + |u||ε| + |u| === 0 + |u| = |u|0 + |u| = |u|0 + |u| = |u|

◮ Step: Assume (⋆) for x = wx = wx = w .

For x = σwx = σwx = σw we have for all u ∈ Σ∗u ∈ Σ∗u ∈ Σ∗ |σw · u| = |σw| + |u||σw · u| = |σw| + |u||σw · u| = |σw| + |u|

• By induction on Σ∗Σ∗Σ∗ conclude (⋆) for all x ∈ Σ∗x ∈ Σ∗x ∈ Σ∗.
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Unambiguous PBT’s

• A PBT ttt is unambiguous if it is exactly one of:

◮ 000 or 111

◮ ∧ t0 t1∧ t0 t1∧ t0 t1 or ∨ t0 t1∨ t0 t1∨ t0 t1 for some unique terms t0t0t0 and t1t1t1 .
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• A PBT ttt is unambiguous if it is exactly one of:

◮ 000 or 111

◮ ∧ t0 t1∧ t0 t1∧ t0 t1 or ∨ t0 t1∨ t0 t1∨ t0 t1 for some unique terms t0t0t0 and t1t1t1 .

• That is: ttt can’t be both ∧ t0 t1∧ t0 t1∧ t0 t1 and ∧ t′
0 t′

1∧ t′
0 t′

1∧ t′
0 t′

1

unless t′
0 = t0t′
0 = t0t′
0 = t0 and t′

1 = t1t′
1 = t1t′
1 = t1.

• Theorem: Every PBT is unambiguous

• How to prove this?

• Induction on terms does not work:

If t = ∧ t0 t1t = ∧ t0 t1t = ∧ t0 t1 what can we possibly conclude from assuming that

t0t0t0 and t1t1t1 are unambiguous?
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Pushing induction through

• Maybe induction on strings over Σ = {0, 1, ∧, ∨}Σ = {0, 1, ∧, ∨}Σ = {0, 1, ∧, ∨}
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Pushing induction through

• Maybe induction on strings over Σ = {0, 1, ∧, ∨}Σ = {0, 1, ∧, ∨}Σ = {0, 1, ∧, ∨}

• But we can’t conclude that ∧t1t2∧t1t2∧t1t2 is unambiguous

from the assumption that t1, t2t1, t2t1, t2 are unambiguous!

• And the string t1t2t1t2t1t2 is not a term!

• Solution: A broader notion of “non-ambiguity”!

w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is unambiguous if it can’e be read

as a concatenation of terms in more than one way:

• If w = t1 · · · tk = t′
1 · · · t′

mw = t1 · · · tk = t′
1 · · · t′

mw = t1 · · · tk = t′
1 · · · t′

m

then m = km = km = k and ti = t′
iti = t′
iti = t′
i for i ∈ [1..k]i ∈ [1..k]i ∈ [1..k].
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A generalized non-ambiguity theorem

• Non-ambiguity Theorem. Every w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is unambiguous.

• The proof is by induction on Σ∗Σ∗Σ∗.
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• Non-ambiguity Theorem. Every w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is unambiguous.

• The proof is by induction on Σ∗Σ∗Σ∗.

◮ Basis. If www is εεε then it is unambiguous vacuously.

◮ Step: Assume that www is unambiguous and

(⋆) σw = t1 · · · tk = t′
1 · · · t′

mσw = t1 · · · tk = t′
1 · · · t′

mσw = t1 · · · tk = t′
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m
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r = r′r = r′r = r′ and ti = qiti = qiti = qi for i = 2..ki = 2..ki = 2..k.
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A generalized non-ambiguity theorem

• Non-ambiguity Theorem. Every w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is unambiguous.

• The proof is by induction on Σ∗Σ∗Σ∗.
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m
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We concluded that k = mk = mk = m and ti = t′
iti = t′
iti = t′
i for i = 1..ki = 1..ki = 1..k.
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A generalized non-ambiguity theorem

• Non-ambiguity Theorem. Every w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is unambiguous.

• The proof is by induction on Σ∗Σ∗Σ∗.

◮ Basis. If www is εεε then it is unambiguous vacuously.

◮ Step: Assume that www is unambiguous and

σw = t1 · · · tk = t′
1 · · · t′

mσw = t1 · · · tk = t′
1 · · · t′

mσw = t1 · · · tk = t′
1 · · · t′

m

• By induction on Σ∗Σ∗Σ∗ we conclude that

every w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is unambiguous.

• In particular, every PBT ttt is a concatenation of 1 string,

and therefore must be unambiguous as a term.
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Induction over binary trees

• Recall that the set of binary trees is generated

from a base tree ••• by juncture:

if t0, t1t0, t1t0, t1 are binary trees then so is

tt0 1

• Let P (x)P (x)P (x) be a property that makes sense for any binary tree ttt.

• If we can show that

◮ Base: P (•)P (•)P (•) ; and

◮ Step: If both P (t0)P (t0)P (t0) and P (t1)P (t1)P (t1)

then P (t)P (t)P (t) for the juncture ttt above of t0t0t0 and t1t1t1

then P (t)P (t)P (t) is true for all binary trees ttt.
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Example: Odd size of binary trees

• Can a binary tree have an even number of nodes?
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• Every binary tree has an odd number of nodes.

• Let P (t)P (t)P (t) be the property

“ttt has an odd number of nodes”

Induction on trees:

◮ Basis: P (•)P (•)P (•) (since 1 is odd)

◮ Step: Suppose t0, t1t0, t1t0, t1 are trees of odd sizes n0n0n0 and n1n1n1.

Let ttt be obtained from t0t0t0 and t1t1t1. then the size of ttt is n0 + n1 + 1n0 + n1 + 1n0 + n1 + 1 ,

which is again odd.

• By induction on binary tree we conclude that

P (t)P (t)P (t) for all binary trees ttt.
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The mother of all inductions

• The Induction principle applies to all inductively generated sets.

• But induction on NNN is the one usually invoked. Why?
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The mother of all inductions

• The Induction principle applies to all inductively generated sets.

• But induction on NNN is the one usually invoked. Why?

• Take generated set GGG , P (x)P (x)P (x) a property of x ∈ Gx ∈ Gx ∈ G .

• Obtain induction over x ∈ Gx ∈ Gx ∈ G for property P (x)P (x)P (x)

as induction over n ∈ Nn ∈ Nn ∈ N for the property:

P (n)P (n)P (n) is true for all x ∈ Gx ∈ Gx ∈ G generated in 6 n6 n6 n steps

• Note that NNN is the simplest infinite generated set:

one initial object, one generative rule, involving one premise!
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