DECISION PROBLEMS

F23

What are decision problems

» A| decision problem, | or problem for short, consists of

1. A set I of finite and discrete objects,
called the problem’s | instances|; and

What are decision problems

» A| decision problem, | or problem for short, consists of

1. A set I of finite and discrete objects,

called the problem’s

instances

and

2. A | property| P that instances may satisfy or not.

What are decision problems

» A | decision problem,

or problem for short, consists of

1. A set I of finite and discrete objects,
called the problem’s | instances|; and

2. A | property| P that instances may satisfy or not.

» A problem’s | algorithmic solution, | or solution for short,

is an algorithm that, given an instance w as input
outputs the answer as to whether or not
w satisfies the property P.

What are decision problems

F23

» A| decision problem,

or problem for short, consists of

1. A set I of finite and discrete objects,
called the problem’s | instances|; and

2. A | property| P that instances may satisfy or not.

» A problem’s | algorithmic solution, | or solution for short,

is an algorithm that, given an instance w as input
outputs the answer as to whether or not
w satisfies the property P.

» A problem is | decidable | if it has an algorithmic solution,

and | undecidable | otherwise.

Examples of decision problems

1. Primality.
I is the set of positive integers,
P the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

Examples of decision problems

1. Primality.
I is the set of positive integers,
P the property of being a prime number.

A solution to the problem is an algorithm deciding primality.
2. Graph connectivity.

I is the set of finite undirected graphs,
P is the property of being connected.

Examples of decision problems

1. Primality.
I is the set of positive integers,
P the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.
I is the set of finite undirected graphs,
P is the property of being connected.

3. Substring.
I consists of pairs (z,w) of binary strings.
P is “x is a substring of w.”

Examples of decision problems

1. Primality.
I is the set of positive integers,
P the property of being a prime number.

A solution to the problem is an algorithm deciding primality.
2. Graph connectivity.

I is the set of finite undirected graphs,
P is the property of being connected.

3. Substring.
I consists of pairs (z,w) of binary strings.
P is “x is a substring of w.”

4. Termination. I consists of the programs p (in Python say).
P is “p terminates for all legal inputs.”

F23

A mystery problem: Integer Partition

 Primality, Connectivity and Substring have each an efficient solution.
Termination does not have any solution.
Here is a problem for which there is a solution
but we don’t know if there is an efficient one.

A mystery problem: Integer Partition

 Primality, Connectivity and Substring have each an efficient solution.
Termination does not have any solution.
Here is a problem for which there is a solution
but we don’t know if there is an efficient one.

 Given a finite set S of positive integers,
is there a set P C S that adds up to half of £5.

e That is,

» Instances: Finite sets S of positive integers
» Property: Exists P C S such that =P = (S — P)

A mystery problem: Integer Partition

 Primality, Connectivity and Substring have each an efficient solution.
Termination does not have any solution.
Here is a problem for which there is a solution
but we don’t know if there is an efficient one.

 Given a finite set S of positive integers,
is there a set P C S that adds up to half of £5.

e That is,

» Instances: Finite sets S of positive integers
» Property: Exists P C S such that =P = (S — P)
* Instances are implicitly assumed to be given textually,

e.g. list of binary numerals with a separator:
{2,4,5} given as 10#100#101.

A mystery problem: Integer Partition

 Primality, Connectivity and Substring have each an efficient solution.
Termination does not have any solution.
Here is a problem for which there is a solution
but we don’t know if there is an efficient one.

 Given a finite set S of positive integers,
is there a set P C S that adds up to half of £5.

e That is,

» Instances: Finite sets S of positive integers
» Property: Exists P C S such that =P = (S — P)
* Instances are implicitly assumed to be given textually,

e.g. list of binary numerals with a separator:
{2,4,5} given as 10#100#101.

« Examples.
x For {2,3,4,5}: yes.
x For {2,3,4,6}: no, since the total is odd.
* For {2,3,4,7}: no

A mystery problem: Integer Partition

 Primality, Connectivity and Substring have each an efficient solution.
Termination does not have any solution.
Here is a problem for which there is a solution
but we don’t know if there is an efficient one.

 Given a finite set S of positive integers,
is there a set P C S that adds up to half of £5.

e That is,

» Instances: Finite sets S of positive integers
» Property: Exists P C S such that =P = (S — P)

* Instances are implicitly assumed to be given textually,
e.g. list of binary numerals with a separator:
{2,4,5} given as 10#100#101.

« Examples.

x For {2,3,4,5}: yes.
x For {2,3,4,6}: no, since the total is odd.
* For {2,3,4,7}: no

« What algorithm is a solution?

A mystery problem: Integer Partition

 Primality, Connectivity and Substring have each an efficient solution.
Termination does not have any solution.
Here is a problem for which there is a solution
but we don’t know if there is an efficient one.

 Given a finite set S of positive integers,
is there a set P C S that adds up to half of £5.

e That is,

» Instances: Finite sets S of positive integers
» Property: Exists P C S such that =P = (S — P)

* Instances are implicitly assumed to be given textually,
e.g. list of binary numerals with a separator:
{2,4,5} given as 10#100#101.

« Examples.

x For {2,3,4,5}: yes.
x For {2,3,4,6}: no, since the total is odd.
* For {2,3,4,7}: no

« What algorithm is a solution?
What'’s wrong with it?

F23

LANGUAGES

F23

Language = set of strings

» Given an alphabet ¥ a| X-language
(or language over %)) is a set of X-strings.

» Don’t confuse strings and languages:
Languages are sets, and can be finite or infinite.
Strings are data-objects, and are finite by defnition.

F23

Examples

» The set of all strings over ¥, denoted X*.

Examples

» The set of all strings over ¥, denoted X*.

» {a,b,ab,bb}

Examples

» The set of all strings over ¥, denoted X*.
» {a,b,ab,bb}

» The empty language.

Examples

» The set of all strings over ¥, denoted X*.
» {a,b,ab,bb}
» The empty language.

» The alphabet ¥ itself (each string is a single symbol).

Examples

» The set of all strings over ¥, denoted X*.

» {a,b,ab,bb}

» The empty language.

» The alphabet ¥ itself (each string is a single symbol).

» {a,aa, aaa, aaaa,...}

Examples

» The set of all strings over ¥, denoted X*.

» {a,b,ab,bb}

» The empty language.

» The alphabet ¥ itself (each string is a single symbol).
» {a,aa, aaa, aaaa,...}

» The decimal numerals for prime numbers:
{2,3,5,7,11,13,17,19,23,29 ... }.

Examples

F23

» The set of all strings over ¥, denoted X*.

» {a,b,ab,bb}

» The empty language.

» The alphabet ¥ itself (each string is a single symbol).
» {a,aa, aaa, aaaa,...}

» The decimal numerals for prime numbers:
{2,3,5,7,11,13,17,19,23,29 ... }.

» The binary numerals for prime numbers:

{10,11,101,111,1011,1101,10001,10011,10111,11101, ...

More examples

» The single-sylable English words

More examples

» The single-sylable English words

» The passwords used at IUB

More examples

» The single-sylable English words
» The passwords used at IUB

» The books in the Library of Congress (each book is a string!)

More examples

» The single-sylable English words
» The passwords used at IUB
» The books in the Library of Congress (each book is a string!)

» The syntactically correct JavaScript programs

More examples

» The single-sylable English words

» The passwords used at IUB

» The books in the Library of Congress (each book is a string!)
» The syntactically correct JavaScript programs

» The Python programs that terminate for all input

F23

TEXTUAL DECISION PROBLEMS

F23

Each language is a decision problem

« Each language L C ¥* is a decision problem:

» Instances: w € ¥*

» Property: we L

F23

Conversely: Each decision problem is a language

» The instances of a decision problem P are finite and discrete,
so they are codable as texi.

Conversely: Each decision problem is a language

» The instances of a decision problem P are finite and discrete,
so they are codable as texi.

» The codes of the instances satisfying P form a language!

Conversely: Each decision problem is a language

» The instances of a decision problem P are finite and discrete,
so they are codable as texi.

» The codes of the instances satisfying P form a language!

« Example: Using binary numerals the Primality problem
becomes the language 10,11,101,111,1011,....

Conversely: Each decision problem is a language

» The instances of a decision problem P are finite and discrete,
so they are codable as texi.

» The codes of the instances satisfying P form a language!

« Example: Using binary numerals the Primality problem
becomes the language 10,11,101,111,1011,....

» Once we set a coding method,
we write a” for the code of a
(at least when distinguishing between a and o matters).

F23

DELINEATING LANGUAGES

F23

Operations on languages

« If L and M are languages then
we obtain new languages by basic set operations, such as
union (L U M), intersection (L N M), and difference (L — M).

» Those operations work for any sets.
We consider next operations that are specific to languages.

F23

String operations applied pointwise

«Let rev: ¥* — ¥* be the function that reverses its input.
Example: rev(ab123) = 321ba.

String operations applied pointwise

«Let rev: ¥* — ¥* be the function that reverses its input.
Example: rev(ab123) = 321ba.

» Applying rev to each string in a language L
we obtain a new language { rev(w) | w € L }.

String operations applied pointwise

«Let rev: ¥* — ¥* be the function that reverses its input.
Example: rev(ab123) = 321ba.

» Applying rev to each string in a language L
we obtain a new language { rev(w) | w € L }.

From function rev over strings
we obtain a function over languages:

rev(L) ={rev(w) | we L}

String operations applied pointwise

«Let rev: ¥* — ¥* be the function that reverses its input.
Example: rev(ab123) = 321ba.

» Applying rev to each string in a language L
we obtain a new language { rev(w) | w € L }.

From function rev over strings
we obtain a function over languages:

rev(L) ={rev(w) | we L}

« Generally, a function f: ¥* — ¥*
induces a function f on -languages:

f(D) ={f(w) | we L}

Language concatenation

» From concatenation on strings
we get a concatenation operation on languages:

The

concatenation

of languages L, M is

L-M =4 {u-v|uelL,ve M}

Language concatenation

» From concatenation on strings
we get a concatenation operation on languages:
The | concatenation | of languages L, M s

L-M =4 {u-v|uelL,ve M}

« Examples:

» {a,b}-{b,c} = {ab,ac,bb,bc}

Language concatenation

» From concatenation on strings
we get a concatenation operation on languages:
The | concatenation | of languages L, M s

L-M =4 {u-v|uelL,ve M}

« Examples:

» {a,b}-{b,c} = {ab,ac,bb,bc}
> {1,11}-{1,11} = {11,111, 1111}

Language concatenation

» From concatenation on strings
we get a concatenation operation on languages:
The | concatenation | of languages L, M s

L-M =4 {u-v|uelL,ve M}

« Examples:
» {a,b}-{b,c} = {ab,ac,bb,bc}
» {1,11}-{1,11} = {11,111, 1111}

» {play, dress} - {er, ing}
= {player, playing, dresser, dressing}

Language concatenation

» From concatenation on strings
we get a concatenation operation on languages:
The | concatenation | of languages L, M s

L-M =4 {u-v|uelL,ve M}

« Examples:
» {a,b}-{b,c} = {ab,ac,bb,bc}
» {1,11}-{1,11} = {11,111, 1111}

» {play, dress} - {er, ing}
= {player, playing, dresser, dressing}
> 2* . 2* — 2*

F23

Puzzles

. {A,B,C} - {1,2} =

Puzzles

- {A,B,C} - {1,2} = {A1,A2,B1,B2,C1,C2}

Puzzles

- {A,B,C} - {1,2} = {A1,A2,B1,B2,C1,C2}
e L0 =

Puzzles

- {A,B,C} - {1,2} = {A1,A2,B1,B2,C1,C2}
e L0 =
0

Puzzles

- {A,B,C} - {1,2} = {A1,A2,B1,B2,C1,C2}
e L0 =

0
e L-{e} =

Puzzles

- {A,B,C}- {1,2} = {A1,A2,B1,B2,C1,C2}
e L0 =
0
o L-{e} =
L
So {e} is the unit of language concatenation,

justas 0,1 and ¢ are the units
of addition, multiplication, and string concatenation.

Puzzles

- {A,B,C}- {1,2} = {A1,A2,B1,B2,C1,C2}
e L0 =
0
o L-{e} =
L
So {e} is the unit of language concatenation,

justas 0,1 and ¢ are the units
of addition, multiplication, and string concatenation.

eY.Y =

Puzzles

- {A,B,C}- {1,2} = {A1,A2,B1,B2,C1,C2}
e L0 =
0
o L-{e} =
L
So {e} is the unit of language concatenation,

justas 0,1 and ¢ are the units
of addition, multiplication, and string concatenation.

V.Y =
The X-strings of length 2.

F23

» Suppose L has p strings and K has g.
What is the maximal number of stringsin L- K ?

» Suppose L has p strings and K has g.
What is the maximal number of stringsin L- K ? pxq

» Suppose L has p strings and K has g.
What is the maximal number of stringsin L- K ? pxq

* Is it possible that L - K have fewer
than p x ¢ strings?

» Suppose L has p strings and K has g.
What is the maximal number of stringsin L- K ? pxq

* Is it possible that L - K have fewer
than p x ¢ strings?

{1,11} - {1,11} = {1,11, 111}

F23

Associativity

L-(K-M) = {z-(y-2)|z€eL,ye K, z€ M}
= {(z-y)-z|zeL,yeK, z€ M}
= (L-K)-M

F23

Self-concatenation

 Notation: L? for L- L.

Self-concatenation

 Notation: L? for L- L.

e Can IL? be the same as L?

Self-concatenation

 Notation: L? for L- L.

e Can IL? be the same as L?

Yes: E.g. the language E' of strings of even length:
FECFE-FE because c e FE
E - E C because the sum of even numbers is even.

Self-concatenation

 Notation: L? for L- L.

e Can IL? be the same as L?

Yes: E.g. the language E' of strings of even length:
FECFE-FE because c e FE
E - E C because the sum of even numbers is even.

Also: 0, {e}

F23

Repeated concatenation

* Define,forn > 1,
L = L----. L (L repeated n times)

Repeated concatenation

e Define, for n > 1,
L = L----. L (L repeated n times)
« We have L". LF=L""* for n,k>1.

To make this true for k=0: L*. L% = [0
define LY to be

Repeated concatenation

e Define, for n > 1,
L = L----. L (L repeated n times)
« We have L". LF=L""* for n,k>1.
To make this true for k=0: L".L°=["*0

define L° tobe {e},
the neutral language for concatenation

F23

Iterated concatenation

« We've generated the set £* of all £-strings:

» ce X
» If ceX and w e X" then ocw € X*.

Iterated concatenation

« We've generated the set £* of all £-strings:

» ce X
» If ceX and w e X" then ocw € X*.

» Generalizing this from X
to a generic language L we get:

» c€ L*
» If re L and we L* then z-w e L*.

Iterated concatenation

« We've generated the set £* of all £-strings:
» e Xt
» If c€X and w e ¥* then ow € ¥*.

» Generalizing this from X
to a generic language L we get:

» c€ L*

» If e L and we L* then z-w € L*.

* So
L* = {wy----- wp | k>0, w; € L}

|
C
£
VvV
o
uy/

£

Iterated concatenation

« We've generated the set £* of all £-strings:

» ceX”

» If c€X and w e ¥* then ow € ¥*.
» Generalizing this from X

to a generic language L we get:

» e L*

» If xre L and we L* then z-w € L*,
« SO

L* = {w----- wr | k>0, w; € L}
= Uz LF

» This is the | (Kleene) star|of L.
rel* iff x=¢ or x=wy-wy---w, forsome w; € L.

F23

Some properties of star

« L* is the smallest language containing L and ¢
and closed under concatenation.

Some properties of star

« L* is the smallest language containing L and ¢
and closed under concatenation.

o L*-L*CL*:
If w=2zy---2, and v=y, - -yn, Wwhere z;,y; € L,
then w-v=z---2p-y1--ym € L*
(concatenation is associative!)

Some properties of star

« L* is the smallest language containing L and ¢
and closed under concatenation.

o L*-L*CL*:
If w=2zy---2, and v=y, - -yn, Wwhere z;,y; € L,
then w-v=z---2p-y1--ym € L*
(concatenation is associative!)

A proof by inductionon « € L* thatforall y € L* we have z-y € L* :

Some properties of star

« L* is the smallest language containing L and ¢
and closed under concatenation.

o L*-L*CL*:
If w=2zy---2, and v=y, - -yn, Wwhere z;,y; € L,
then w-v=z---2p-y1--ym € L*
(concatenation is associative!)

A proof by inductionon « € L* thatforall y € L* we have z-y € L* :

» Basis: If ye€ L* then z-y=¢c-y=ye€ L*.

Some properties of star

« L* is the smallest language containing L and ¢
and closed under concatenation.
e [*.L*C L*:
If w=2zy---2, and v=y, - -yn, Wwhere z;,y; € L,
then w-v=z---2p-y1--ym € L*
(concatenation is associative!)

A proof by inductionon « € L* thatforall y € L* we have z-y € L* :

» Basis: If ye€ L* then z-y=¢c-y=ye€ L*.

» Step: Assume z -y € L* forall y € L*.
Thenfor ve L (v-z)-y=wv-(x-y) whichis in L* by definitia
L~

F23

Some examples

- {0y =

Some examples

« {0}* = {¢, 0, 00, 000, ..., 0", ...}

Some examples

« {0}* = {¢, 0, 00, 000, ..., 0", ...}

ey =

Some examples

« {0}* = {¢, 0, 00, 000, ..., 0", ...}

* {e}r = {¢e}

Some examples

« {0}* = {¢, 0, 00, 000, ..., 0", ...}

{e} = (¢}
.« 0 =

Some examples

« {0}* = {¢, 0, 00, 000, ..., 0", ...}

{e} = (¢}
£ 0" = {e}

Some examples

« {0}* = {¢, 0, 00, 000, ..., 0", ...}
e} =1{e)

0" = e}

.« {00}* =

Some examples

« {0}* = {¢, 0, 00, 000, ...

{e} = (¢}
£ 0" = {e}

- {00} = {0*" | n > 0}

F23

n
L on, ...

LANGUAGE RESIDUES

F23

Acceptable complements

e Given LC ¥ and we X"
consider the strings in L of the form w - z,
I.e. that start with w .

» For example if L consists of English words
and w is con then we look at words
that start with con, such as
consider, contrary, condense, and con itself.

Acceptable complements

e Given LC ¥ and we X"
consider the strings in L of the form w - z,
I.e. that start with w .

» For example if L consists of English words
and w is con then we look at words
that start with con, such as
consider, contrary, condense, and con itself.

» Here are the remainders (the = in w - z)) of the above:
sider, rary, dense, and e.
|.e. the strings that complement con to an English word.

Acceptable complements

e Given LC Y and we X*

consider the strings in L of the form w - z,

I.e. that start with w .

» For example if L consists of English words

and w is con then we look at words

that start with con, such as

consider, contrary, condense, and con itself.

» Here are the remainders (the = in w - z)) of the above:

sider, rary, dense, and e.

|.e. the strings that complement con to an English word.

» The resulting language is the

residue

con itself is the trunk of that residue.

of the English language over co

Acceptable complements

e Given LC Y and we X*

consider the strings in L of the form w - z,

I.e. that start with w .

» For example if L consists of English words

and w is con then we look at words
that start with con, such as

consider, contrary, condense, and con itself.

» Here are the remainders (the = in w - z)) of the above:

sider, rary, dense, and e.

|.e. the strings that complement con to an English word.

» The resulting language is the

con itself is the trunk of that residue.

residue

* In general, given L C ¥*and w € ¥*

the | residue of L over w

F23

of the English language over co

isthe language @ L/w={z|w-xz € L}

Examples of residues

» Take L = English words.

L/invent contains the strings or,ion,ive,ed and ing
since inventor,invention, inventive and invented are words.

Examples of residues

» Take L = English words.

L/invent contains the strings or,ion,ive,ed and ing
since inventor,invention, inventive and invented are words.

«€ isalsoin L/invent since invent is a word.

Examples of residues

« Take L = English words.

L/invent contains the strings or,ion,ive,ed and ing
since inventor,invention, inventive and invented are words.

«€ isalsoin L/invent since invent is a word.

« The residue L/ad contains the strings vance, apt, opt,d, and e.

Examples of residues

» Take L = English words.

L/invent contains the strings or,ion,ive,ed and ing
since inventor,invention, inventive and invented are words.

«€ isalsoin L/invent since invent is a word.
« The residue L/ad contains the strings vance, apt, opt,d, and e.

« Take L = {ab}, a singleton language.
We have L/e={ab}, L/a={b},and L/ab=c¢.

For any other string w, L/w = 0.

Examples of residues

» Take L = English words.

L/invent contains the strings or,ion,ive,ed and ing
since inventor,invention, inventive and invented are words.

«€ isalsoin L/invent since invent is a word.
« The residue L/ad contains the strings vance, apt, opt,d, and e.

« Take L = {ab}, a singleton language.
We have L/e={ab}, L/a={b},and L/ab=c¢.

For any other string w, L/w = 0.

 For any language L we have L/z = L:
weL iff e€L/w.

F23

Another example

+ L = {0, 00, 010}

Lie = L
L/o = {e, 1,0}
L/00 = {e}
L/o1 = {0}
L/o10 = {&}
Liw = 0 for any other w

« L /00 = L/010, so there are five distinct residues.

F23

The regular languages

» The | basic ¥X-languages | are generated
from the finite £-languages and £* by the clauses

» the set operations of union, intersection, and difference; and
» the language operations of concatenation, plus and star.

The regular languages

» The | basic ¥X-languages | are generated
from the finite £-languages and £* by the clauses

» the set operations of union, intersection, and difference; and
» the language operations of concatenation, plus and star.

e That is:

— ¥* and the Finite languages are basic.
—If L, M are basicthensoare LNM, LUM and L — M.
— If L is basicthensoare L* and L*.

F23

Regular languages

» The | regular|X-languages are generated:

» The finite £-languages are regular.

» The union, intersection, and difference of regular languages are re
|ar.

» The concatenation and star of regular languages are regular.

Regular languages

» The | regular|X-languages are generated:

» The finite £-languages are regular.

» The union, intersection, and difference of regular languages are re
|ar.

» The concatenation and star of regular languages are regular.

» Rephrased:

— The finite languages are regular.
—If L, M areregularthensoare LNM, LUM and L — M.
— If L isregularthensois L*.

F23

Strictly-regular languages

A formally narrower definition:

» 0,{¢} and {o} (forevery o € ¥) are strictly-regular.
» If L, M areregularthensois LUM .
» If L,M areregularthensoare L-M and L*.

 Every strictly-regular language is regular.

» We shall prove the coverse later.

F23

Regular expressions

* | Regular expressions (RegExp’s)| over ¥ are notations for strictly-rec
languages:
each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

Regular expressions

* | Regular expressions (RegExp’s)| over ¥ are notations for strictly-rec
languages:
each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

« L(a) isthe language denoted by a RegExp «a.

Regular expressions

* | Regular expressions (RegExp’s)| over ¥ are notations for strictly-rec
languages:
each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

« L(a) isthe language denoted by a RegExp «a.
* For the initial strictly-regular languages we use the following names:

— (0 is denoted by 0,
— {¢} by €, and
— foreach o € ¥ the singleton language {c} is denoted by o.

Regular expressions

| Regular expressions (RegExp’s)

languages:

over Y are notations for strictly-rec

each expression is a road-map, i.e. recipe, notation,
for the strictly-regular definition of a language.

« L(a) isthe language denoted by a RegExp «a.

* For the initial strictly-regular languages we use the following names:

— (0 is denoted by 0,
— {¢} by €, and

— foreach o € ¥ the singleton language {c} is denoted by o.

» Suppose language L is denoted by a and K by 3. Then

— LUK isdenoted by (a)U (),

— L-K by (a)e(B),and
— L* by (a).

F23

Examples

» {ab} isdenotedby (a)e(b).

Examples

» {ab} isdenotedby (a)e(b).
» {a,b} isdenotedby (a)U(b).

Examples

» {ab} isdenotedby (a)e(b).
» {a,b} isdenotedby (a)U(b).
» {e, ab} isdenotedby (e)U((a)e(b)).

Examples

» {ab} isdenotedby (a)e(b).

» {a,b} isdenotedby (a)U(b).

» {e, ab} isdenotedby (e)U((a)e(b)).
» {a,b}* isdenoted by ((a)u(b))*)) .

F23

Abbreviation conventions

» The operators used in RegExp are given a decreasing binding priority
omit parentheses and bullets where unambiguous.

Abbreviation conventions

» The operators used in RegExp are given a decreasing binding priority
omit parentheses and bullets where unambiguous.

« Examples:

Abbreviation conventions

» The operators used in RegExp are given a decreasing binding priority
omit parentheses and bullets where unambiguous.

« Examples:

> {a}*o for ((a))e(b) .

Abbreviation conventions

» The operators used in RegExp are given a decreasing binding priority
omit parentheses and bullets where unambiguous.

« Examples:
» {a}*b for ((a)*)e(b) .
» aebUc for ((a)e(b))U(c) .

Abbreviation conventions

» The operators used in RegExp are given a decreasing binding priority
omit parentheses and bullets where unambiguous.

« Examples:
» {a}*b for ((a)*)e(b) .
» aebUc for ((a)e(b))U(c) .
> (a*b)* for ((a))e((b)").

