DECISION PROBLEMS

What are decision problems

- A decision problem, or problem for short, consists of 1. A set I of finite and discrete objects, called the problem's instances; and

What are decision problems

- A decision problem, or problem for short, consists of 1. A set I of finite and discrete objects, called the problem's instances; and

2. A property P that instances may satisfy or not.

What are decision problems

- A decision problem, or problem for short, consists of

1. A set I of finite and discrete objects, called the problem's instances; and
2. A property P that instances may satisfy or not.

- A problem's algorithmic solution, or solution for short, is an algorithm that, given an instance w as input outputs the answer as to whether or not w satisfies the property P.

What are decision problems

- A decision problem, or problem for short, consists of

1. A set I of finite and discrete objects, called the problem's instances; and
2. A property P that instances may satisfy or not.

- A problem's algorithmic solution, or solution for short, is an algorithm that, given an instance w as input outputs the answer as to whether or not w satisfies the property P.
- A problem is decidable if it has an algorithmic solution, and undecidable otherwise.

Examples of decision problems

1. Primality.

I is the set of positive integers,
P the property of being a prime number.
A solution to the problem is an algorithm deciding primality.

Examples of decision problems

1. Primality.

I is the set of positive integers,
P the property of being a prime number.
A solution to the problem is an algorithm deciding primality.
2. Graph connectivity.
I is the set of finite undirected graphs, P is the property of being connected.

Examples of decision problems

1. Primality.

I is the set of positive integers,
P the property of being a prime number.
A solution to the problem is an algorithm deciding primality.
2. Graph connectivity.
I is the set of finite undirected graphs, P is the property of being connected.
3. Substring.
I consists of pairs (x, w) of binary strings. P is " x is a substring of w."

Examples of decision problems

1. Primality.

I is the set of positive integers,
P the property of being a prime number.
A solution to the problem is an algorithm deciding primality.
2. Graph connectivity.
I is the set of finite undirected graphs, P is the property of being connected.
3. Substring.
I consists of pairs (x, w) of binary strings. P is " x is a substring of w."
4. Termination. I consists of the programs p (in Python say). P is " p terminates for all legal inputs."

A mystery problem: Integer Partition

- Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.

A mystery problem: Integer Partition

- Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.
Here is a problem for which there is a solution but we don't know if there is an efficient one.

- Given a finite set S of positive integers, is there a set $P \subseteq S$ that adds up to half of ΣS.
- That is,
- Instances: Finite sets S of positive integers
- Property: Exists $P \subseteq S$ such that $\Sigma P=\Sigma(S-P)$

A mystery problem: Integer Partition

- Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.
Here is a problem for which there is a solution but we don't know if there is an efficient one.

- Given a finite set S of positive integers, is there a set $P \subseteq S$ that adds up to half of ΣS.
- That is,
- Instances: Finite sets S of positive integers
- Property: Exists $P \subseteq S$ such that $\Sigma P=\Sigma(S-P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator:
$\{2,4,5\}$ given as 10\#100\#101.

A mystery problem: Integer Partition

- Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.
Here is a problem for which there is a solution
but we don't know if there is an efficient one.

- Given a finite set S of positive integers, is there a set $P \subseteq S$ that adds up to half of ΣS.
- That is,
- Instances: Finite sets S of positive integers
- Property: Exists $P \subseteq S$ such that $\Sigma P=\Sigma(S-P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator:
$\{2,4,5\}$ given as 10\#100\#101.
- Examples.
* For $\{2,3,4,5\}$: yes.
\star For $\{2,3,4,6\}$: no, since the total is odd.
* For $\{2,3,4,7\}$: по

A mystery problem: Integer Partition

- Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.
Here is a problem for which there is a solution
but we don't know if there is an efficient one.

- Given a finite set S of positive integers, is there a set $P \subseteq S$ that adds up to half of ΣS.
- That is,
- Instances: Finite sets S of positive integers
- Property: Exists $P \subseteq S$ such that $\Sigma P=\Sigma(S-P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator:
$\{2,4,5\}$ given as 10\#100\#101.
- Examples.
* For $\{2,3,4,5\}$: yes.
\star For $\{2,3,4,6\}$: no, since the total is odd.
* For $\{2,3,4,7\}$: по
-What algorithm is a solution?

A mystery problem: Integer Partition

- Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.
Here is a problem for which there is a solution
but we don't know if there is an efficient one.

- Given a finite set S of positive integers, is there a set $P \subseteq S$ that adds up to half of ΣS.
- That is,
- Instances: Finite sets S of positive integers
- Property: Exists $P \subseteq S$ such that $\Sigma P=\Sigma(S-P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator:
$\{2,4,5\}$ given as 10\#100\#101.
- Examples.
* For $\{2,3,4,5\}$: yes.
\star For $\{2,3,4,6\}$: no, since the total is odd.
* For $\{2,3,4,7\}$: по
-What algorithm is a solution?
What's wrong with it?

LANGUAGES

Language = set of strings

- Given an alphabet Σ a Σ-language (or language over Σ) is a set of Σ-strings.
- Don't confuse strings and languages:

Languages are sets, and can be finite or infinite. Strings are data-objects, and are finite by defnition.

Examples

- The set of all strings over Σ, denoted Σ^{*}.

Examples

- The set of all strings over Σ, denoted Σ^{*}.
- $\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{bb}\}$

Examples

- The set of all strings over Σ, denoted Σ^{*}.
- $\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{bb}\}$
- The empty language.

Examples

- The set of all strings over Σ, denoted Σ^{*}.
- $\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{bb}\}$
- The empty language.
- The alphabet Σ itself (each string is a single symbol).

Examples

- The set of all strings over Σ, denoted Σ^{*}.
- $\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{bb}\}$
- The empty language.
- The alphabet Σ itself (each string is a single symbol).
- $\{\mathrm{a}$, aa, aaa, aaaa,...\}

Examples

- The set of all strings over Σ, denoted Σ^{*}.
- $\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{bb}\}$
- The empty language.
- The alphabet Σ itself (each string is a single symbol).
- $\{\mathrm{a}$, aa, aaa, aaaa,...\}
- The decimal numerals for prime numbers:
$\{2,3,5,7,11,13,17,19,23,29 \ldots\}$.

Examples

- The set of all strings over Σ, denoted Σ^{*}.
- $\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{bb}\}$
- The empty language.
- The alphabet Σ itself (each string is a single symbol).
- $\{\mathrm{a}$, aa, aaa, aaaa,... $\}$
- The decimal numerals for prime numbers:
$\{2,3,5,7,11,13,17,19,23,29 \ldots\}$.
- The binary numerals for prime numbers:
$\{10,11,101,111,1011,1101,10001,10011,10111,11101, \ldots\}$.

More examples

- The single-sylable English words

More examples

- The single-sylable English words
- The passwords used at IUB

More examples

- The single-sylable English words
- The passwords used at IUB
- The books in the Library of Congress (each book is a string!)

More examples

- The single-sylable English words
- The passwords used at IUB
- The books in the Library of Congress (each book is a string!)
- The syntactically correct JavaScript programs

More examples

- The single-sylable English words
- The passwords used at IUB
- The books in the Library of Congress (each book is a string!)
- The syntactically correct JavaScript programs
- The Python programs that terminate for all input

TEXTUAL DECISION PROBLEMS

Each language is a decision problem

- Each language $L \subseteq \Sigma^{*}$ is a decision problem:
- Instances: $w \in \Sigma^{*}$
- Property: $w \in L$

Conversely: Each decision problem is a language

- The instances of a decision problem P are finite and discrete, so they are codable as text.

Conversely: Each decision problem is a language

- The instances of a decision problem P are finite and discrete, so they are codable as text.
- The codes of the instances satisfying P form a language!

Conversely: Each decision problem is a language

- The instances of a decision problem P are finite and discrete, so they are codable as text.
- The codes of the instances satisfying P form a language!
- Example: Using binary numerals the Primality problem becomes the language $10,11,101,111,1011, \ldots$.

Conversely: Each decision problem is a language

- The instances of a decision problem P are finite and discrete, so they are codable as text.
- The codes of the instances satisfying P form a language!
- Example: Using binary numerals the Primality problem becomes the language $10,11,101,111,1011, \ldots$.
- Once we set a coding method, we write $a^{\#}$ for the code of a (at least when distinguishing between a and $a^{\#}$ matters).

DELINEATING LANGUAGES

Operations on languages

- If L and M are languages then we obtain new languages by basic set operations, such as union $(L \cup M)$, intersection $(L \cap M)$, and difference ($L-M$).
- Those operations work for any sets.

We consider next operations that are specific to languages.

String operations applied pointwise

- Let rev: $\Sigma^{*} \rightarrow \Sigma^{*}$ be the function that reverses its input. Example: $\operatorname{rev}(\mathrm{ab} 123)=321 \mathrm{ba}$.

String operations applied pointwise

- Let rev: $\Sigma^{*} \rightarrow \Sigma^{*}$ be the function that reverses its input. Example: $\operatorname{rev}(\mathrm{ab} 123)=321 \mathrm{ba}$.
- Applying rev to each string in a language L we obtain a new language $\{\operatorname{rev}(w) \mid w \in L\}$.

String operations applied pointwise

- Let rev: $\Sigma^{*} \rightarrow \Sigma^{*}$ be the function that reverses its input. Example: $\operatorname{rev}(\mathrm{ab} 123)=321 \mathrm{ba}$.
- Applying rev to each string in a language L we obtain a new language $\quad\{\operatorname{rev}(w) \mid w \in L\}$.
From function rev over strings we obtain a function over languages:

$$
\widehat{\operatorname{rev}}(L)=\{\operatorname{rev}(\boldsymbol{w}) \mid w \in L\}
$$

String operations applied pointwise

- Let rev: $\Sigma^{*} \rightarrow \Sigma^{*}$ be the function that reverses its input. Example: $\operatorname{rev}(\mathrm{ab} 123)=321 \mathrm{ba}$.
- Applying rev to each string in a language L we obtain a new language $\{\operatorname{rev}(w) \mid w \in L\}$.
From function rev over strings
we obtain a function over languages:

$$
\widehat{\operatorname{rev}}(L)=\{\operatorname{rev}(w) \mid w \in L\}
$$

- Generally, a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ induces a function \hat{f} on Σ-languages:

$$
\hat{f}(L)=\{f(w) \mid w \in L\}
$$

Language concatenation

- From concatenation on strings we get a concatenation operation on languages: The concatenation of languages L, M is

$$
L \cdot M==_{\mathrm{df}}\{u \cdot v \mid u \in L, v \in M\}
$$

Language concatenation

- From concatenation on strings we get a concatenation operation on languages:
The concatenation of languages L, M is

$$
L \cdot M==_{\mathrm{df}}\{u \cdot v \mid u \in L, v \in M\}
$$

- Examples:
- $\{\mathrm{a}, \mathrm{b}\} \cdot\{\mathrm{b}, \mathrm{c}\}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{bb}, \mathrm{bc}\}$

Language concatenation

- From concatenation on strings we get a concatenation operation on languages:
The concatenation of languages L, M is

$$
L \cdot M==_{\mathrm{df}}\{u \cdot v \mid u \in L, v \in M\}
$$

- Examples:
- $\{\mathrm{a}, \mathrm{b}\} \cdot\{\mathrm{b}, \mathrm{c}\}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{bb}, \mathrm{bc}\}$
- $\{1,11\} \cdot\{1,11\}=\{11,111,1111\}$

Language concatenation

- From concatenation on strings we get a concatenation operation on languages:
The concatenation of languages L, M is

$$
L \cdot M==_{\mathrm{df}}\{u \cdot v \mid u \in L, v \in M\}
$$

- Examples:
- $\{\mathrm{a}, \mathrm{b}\} \cdot\{\mathrm{b}, \mathrm{c}\}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{bb}, \mathrm{bc}\}$
- $\{1,11\} \cdot\{1,11\}=\{11,111,1111\}$
- \{play, dress $\}$ • \{er, ing $\}$
$=\{$ player, playing, dresser, dressing $\}$

Language concatenation

- From concatenation on strings we get a concatenation operation on languages:
The concatenation of languages L, M is

$$
L \cdot M==_{\mathrm{df}}\{u \cdot v \mid u \in L, v \in M\}
$$

- Examples:
- $\{\mathrm{a}, \mathrm{b}\} \cdot\{\mathrm{b}, \mathrm{c}\}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{bb}, \mathrm{bc}\}$
- $\{1,11\} \cdot\{1,11\}=\{11,111,1111\}$
- \{play, dress $\}$ • \{er, ing $\}$
$=\{$ player, playing, dresser, dressing $\}$
- $\Sigma^{*} \cdot \Sigma^{*}=\Sigma^{*}$

Puzzles

- $\{A, B, C\} \cdot\{1,2\}=$

Puzzles

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \cdot\{1,2\}=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2\}$

Puzzles

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \cdot\{1,2\}=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2\}$
- $L \cdot \emptyset=$

Puzzles

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \cdot\{1,2\}=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2\}$
- $L \cdot \emptyset=$
\emptyset

Puzzles

- $\{A, B, C\} \cdot\{1,2\}=\{A 1, A 2, B 1, B 2, C 1, C 2\}$
- $L \cdot \emptyset=$
\emptyset
- $L \cdot\{\varepsilon\}=$

Puzzles

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \cdot\{1,2\}=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2\}$
- $L \cdot \emptyset=$ \emptyset
- $L \cdot\{\varepsilon\}=$

L
So $\{\varepsilon\}$ is the unit of language concatenation, just as 0,1 and ε are the units of addition, multiplication, and string concatenation.

Puzzles

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \cdot\{1,2\}=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2\}$
- $L \cdot \emptyset=$ \emptyset
- $L \cdot\{\varepsilon\}=$

L
So $\{\varepsilon\}$ is the unit of language concatenation, just as 0,1 and ε are the units of addition, multiplication, and string concatenation.

- $\Sigma \cdot \Sigma=$

Puzzles

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \cdot\{1,2\}=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2\}$
- $L \cdot \emptyset=$ \emptyset
- $L \cdot\{\varepsilon\}=$

L
So $\{\varepsilon\}$ is the unit of language concatenation, just as 0,1 and ε are the units of addition, multiplication, and string concatenation.

- $\Sigma \cdot \Sigma=$

The Σ-strings of length 2.

- Suppose L has p strings and K has q. What is the maximal number of strings in $L \cdot K$?
- Suppose L has p strings and K has q. What is the maximal number of strings in $L \cdot K ? p \times q$
- Suppose L has p strings and K has q. What is the maximal number of strings in $L \cdot K ? p \times q$
- Is it possible that $L \cdot K$ have fewer than $p \times q$ strings?
- Suppose L has p strings and K has q. What is the maximal number of strings in $L \cdot K ? p \times q$
- Is it possible that $L \cdot K$ have fewer than $p \times q$ strings?

$$
\{1,11\} \cdot\{1,11\}=\{1,11,111\}
$$

Associativity

$$
\begin{aligned}
L \cdot(K \cdot M) & =\{x \cdot(y \cdot z) \mid x \in L, y \in K, z \in M\} \\
& =\{(x \cdot y) \cdot z \mid x \in L, y \in K, z \in M\} \\
& =(L \cdot K) \cdot M
\end{aligned}
$$

Self-concatenation

- Notation: L^{2} for $L \cdot L$.

Self-concatenation

- Notation: L^{2} for $L \cdot L$.
- Can L^{2} be the same as L ?

Self-concatenation

- Notation: L^{2} for $L \cdot L$.
- Can L^{2} be the same as L ?

Yes: E.g. the language E of strings of even length:
$E \subseteq E \cdot E$ because $\varepsilon \in E$
$E \cdot E \subseteq$ because the sum of even numbers is even.

Self-concatenation

- Notation: L^{2} for $L \cdot L$.
- Can L^{2} be the same as L ?

Yes: E.g. the language E of strings of even length:
$E \subseteq E \cdot E$ because $\varepsilon \in E$
$E \cdot E \subseteq$ because the sum of even numbers is even.
Also: $\emptyset,\{\varepsilon\}$

Repeated concatenation

- Define, for $n \geqslant 1$,

$$
\left.L^{n}=L \cdots \cdot L \text { (} L \text { repeated } n \text { times }\right)
$$

Repeated concatenation

- Define, for $n \geqslant 1$,

$$
\left.L^{n}=L \cdots \cdot L \text { (} L \text { repeated } n \text { times }\right)
$$

- We have $L^{n} \cdot L^{k}=L^{n+k}$ for $n, k>1$. To make this true for $k=0: \quad L^{n} \cdot L^{0}=L^{n+0}$ define L^{0} to be

Repeated concatenation

- Define, for $n \geqslant 1$,

$$
\left.L^{n}=L \cdots \cdot L \text { (} L \text { repeated } n \text { times }\right)
$$

- We have $L^{n} \cdot L^{k}=L^{n+k}$ for $n, k>1$.

To make this true for $k=0: \quad L^{n} \cdot L^{0}=L^{n+0}$ define L^{0} to be $\{\varepsilon\}$, the neutral language for concatenation

Iterated concatenation

- We've generated the set Σ^{*} of all Σ-strings:
- $\varepsilon \in \Sigma^{*}$
- If $\sigma \in \Sigma$ and $w \in \Sigma^{*}$ then $\sigma w \in \Sigma^{*}$.

Iterated concatenation

- We've generated the set Σ^{*} of all Σ-strings:
- $\varepsilon \in \Sigma^{*}$
- If $\sigma \in \Sigma$ and $w \in \Sigma^{*}$ then $\sigma w \in \Sigma^{*}$.
- Generalizing this from Σ
to a generic language L we get:
- $\varepsilon \in L^{*}$
- If $x \in L$ and $w \in L^{*}$ then $x \cdot w \in L^{*}$.

Iterated concatenation

- We've generated the set Σ^{*} of all Σ-strings:
- $\varepsilon \in \Sigma^{*}$
- If $\sigma \in \Sigma$ and $w \in \Sigma^{*}$ then $\sigma w \in \Sigma^{*}$.
- Generalizing this from Σ
to a generic language L we get:
- $\varepsilon \in L^{*}$
- If $x \in L$ and $w \in L^{*}$ then $x \cdot w \in L^{*}$.
- So

$$
\begin{aligned}
L^{*} & =\left\{w_{1} \cdots \cdots w_{k} \mid k \geqslant 0, w_{i} \in L\right\} \\
& =\cup_{k \geqslant 0} L^{k}
\end{aligned}
$$

Iterated concatenation

- We've generated the set Σ^{*} of all Σ-strings:
- $\varepsilon \in \Sigma^{*}$
- If $\sigma \in \Sigma$ and $w \in \Sigma^{*}$ then $\sigma w \in \Sigma^{*}$.
- Generalizing this from Σ
to a generic language L we get:
- $\varepsilon \in L^{*}$
- If $x \in L$ and $w \in L^{*}$ then $x \cdot w \in L^{*}$.
- So

$$
\begin{aligned}
L^{*} & =\left\{w_{1} \cdots \cdots w_{k} \mid k \geqslant 0, w_{i} \in L\right\} \\
& =\cup_{k \geqslant 0} L^{k}
\end{aligned}
$$

- This is the (Kleene) star of L.

$$
x \in L^{*} \text { iff } x=\varepsilon \text { or } x=w_{1} \cdot w_{2} \cdots w_{n} \text { for some } w_{i} \in L .
$$

Some properties of star

- L^{*} is the smallest language containing L and ε and closed under concatenation.

Some properties of star

- L^{*} is the smallest language containing L and ε and closed under concatenation.
- $L^{*} \cdot L^{*} \subseteq L^{*}:$

If $\quad u=x_{1} \cdots x_{p} \quad$ and $v=y_{1} \cdots y_{m}$, where $x_{i}, y_{j} \in L$,
then $u \cdot v=x_{1} \cdots x_{p} \cdot y_{1} \cdots y_{m} \in L^{*}$
(concatenation is associative!)

Some properties of star

- L^{*} is the smallest language containing L and ε and closed under concatenation.
- $L^{*} \cdot L^{*} \subseteq L^{*}$:

If $\quad u=x_{1} \cdots x_{p} \quad$ and $v=y_{1} \cdots y_{m}$, where $x_{i}, y_{j} \in L$,
then $\quad u \cdot v=x_{1} \cdots x_{p} \cdot y_{1} \cdots y_{m} \in L^{*}$
(concatenation is associative!)

- A proof by induction on $x \in L^{*}$ that for all $y \in L^{*}$ we have $x \cdot y \in L^{*}$:

Some properties of star

- L^{*} is the smallest language containing L and ε and closed under concatenation.
- $L^{*} \cdot L^{*} \subseteq L^{*}$:

If $\quad u=x_{1} \cdots x_{p} \quad$ and $v=y_{1} \cdots y_{m}$, where $x_{i}, y_{j} \in L$,
then $u \cdot v=x_{1} \cdots x_{p} \cdot y_{1} \cdots y_{m} \in L^{*}$
(concatenation is associative!)

- A proof by induction on $x \in L^{*}$ that for all $y \in L^{*}$ we have $x \cdot y \in L^{*}$:
- Basis: If $y \in L^{*}$ then $x \cdot y=\varepsilon \cdot y=y \in L^{*}$.

Some properties of star

- L^{*} is the smallest language containing L and ε and closed under concatenation.
- $L^{*} \cdot L^{*} \subseteq L^{*}$:

If $\quad u=x_{1} \cdots x_{p} \quad$ and $v=y_{1} \cdots y_{m}$, where $x_{i}, y_{j} \in L$,
then $\quad u \cdot v=x_{1} \cdots x_{p} \cdot y_{1} \cdots y_{m} \in L^{*}$
(concatenation is associative!)

- A proof by induction on $x \in L^{*}$ that for all $y \in L^{*}$ we have $x \cdot y \in L^{*}$:
- Basis: If $y \in L^{*}$ then $x \cdot y=\varepsilon \cdot y=y \in L^{*}$.
- Step: Assume $x \cdot y \in L^{*}$ for all $y \in L^{*}$.

Then for $v \in L \quad(v \cdot x) \cdot y=v \cdot(x \cdot y)$ which is in L^{*} by definitio L^{*}.

Some examples

- $\{0\}^{*}=$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$
- $\{\varepsilon\}^{*}=$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$
- $\{\varepsilon\}^{*}=\{\varepsilon\}$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$
- $\{\varepsilon\}^{*}=\{\varepsilon\}$
- $\emptyset^{*}=$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$
- $\{\varepsilon\}^{*}=\{\varepsilon\}$
- $\emptyset^{*}=\{\varepsilon\}$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$
- $\{\varepsilon\}^{*}=\{\varepsilon\}$
- $\emptyset^{*}=\{\varepsilon\}$
- $\{00\}^{*}=$

Some examples

- $\{0\}^{*}=\left\{\varepsilon, 0,00,000, \ldots, 0^{n}, \ldots\right\}$
- $\{\varepsilon\}^{*}=\{\varepsilon\}$
- $\emptyset^{*}=\{\varepsilon\}$
- $\{00\}^{*}=\left\{0^{2 n} \mid n \geqslant 0\right\}$

LANGUAGE RESIDUES

Acceptable complements

- Given $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$ consider the strings in L of the form $w \cdot x$, i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.

Acceptable complements

- Given $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$ consider the strings in L of the form $w \cdot x$,
i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.
- Here are the remainders (the x in $w \cdot x)$) of the above:
sider, rary, dense, and ε.
I.e. the strings that complement con to an English word.

Acceptable complements

- Given $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$ consider the strings in L of the form $w \cdot x$,
i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.
- Here are the remainders (the x in $w \cdot x)$) of the above: sider, rary, dense, and ε.
I.e. the strings that complement con to an English word.
- The resulting language is the residue of the English language over co con itself is the trunk of that residue.

Acceptable complements

- Given $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$
consider the strings in L of the form $w \cdot x$,
i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.
- Here are the remainders (the x in $w \cdot x)$) of the above:
sider, rary, dense, and ε.
I.e. the strings that complement con to an English word.
- The resulting language is the residue of the English language over co con itself is the trunk of that residue.
- In general, given $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$ the residue of L over w is the language $L / w=\{x \mid w \cdot x \in L\}$

Examples of residues

- Take $L=$ English words.
$L /$ invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.

Examples of residues

- Take $L=$ English words.
$L /$ invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.
- ϵ is also in L /invent since invent is a word.

Examples of residues

- Take $L=$ English words.
$L /$ invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.
- ϵ is also in L /invent since invent is a word.
- The residue $L /$ ad contains the strings vance, apt, opt, d , and ϵ.

Examples of residues

- Take $L=$ English words.
$L /$ invent contains the strings or, ion, ive, ed and ing
since inventor, invention, inventive and invented are words.
- ϵ is also in L /invent since invent is a word.
- The residue $L /$ ad contains the strings vance, apt, opt, d , and ϵ.
- Take $L=\{\mathrm{ab}\}$, a singleton language.

We have $L / \varepsilon=\{\mathrm{ab}\}, L / \mathrm{a}=\{\mathrm{b}\}$, and $L / \mathrm{ab}=\varepsilon$.
For any other string $w, L / w=\emptyset$.

Examples of residues

- Take $L=$ English words.
$L /$ invent contains the strings or, ion, ive, ed and ing
since inventor, invention, inventive and invented are words.
- ϵ is also in L /invent since invent is a word.
- The residue $L /$ ad contains the strings vance, apt, opt, d , and ϵ.
- Take $L=\{\mathrm{ab}\}$, a singleton language.

We have $L / \varepsilon=\{\mathrm{ab}\}, L / \mathrm{a}=\{\mathrm{b}\}$, and $L / \mathrm{ab}=\varepsilon$.
For any other string $w, L / w=\emptyset$.

- For any language L we have $L / \varepsilon=L$:
$w \in L \quad$ iff $\quad \varepsilon \in L / w$.

Another example

- $L=\{0,00,010\}$

$$
\begin{aligned}
L / \varepsilon & =L \\
L / 0 & =\{\varepsilon, 1,0\} \\
L / 00 & =\{\varepsilon\} \\
L / 01 & =\{0\} \\
L / 010 & =\{\varepsilon\} \\
L / w & =\emptyset
\end{aligned}
$$

for any other w

- $L / 00=L / 010$, so there are five distinct residues.

The regular languages

- The basic Σ-languages are generated from the finite Σ-languages and Σ^{*} by the clauses
- the set operations of union, intersection, and difference; and
- the language operations of concatenation, plus and star.

The regular languages

- The basic Σ-languages are generated from the finite Σ-languages and Σ^{*} by the clauses
- the set operations of union, intersection, and difference; and
- the language operations of concatenation, plus and star.
- That is:
- Σ^{*} and the Finite languages are basic.
- If L, M are basic then so are $\quad L \cap M, L \cup M$ and $L-M$.
- If L is basic then so are L^{+}and L^{*}.

Regular languages

- The regular Σ-languages are generated:
- The finite Σ-languages are regular.
- The union, intersection, and difference of regular languages are r lar.
- The concatenation and star of regular languages are regular.

Regular languages

- The regular Σ-languages are generated:
- The finite Σ-languages are regular.
- The union, intersection, and difference of regular languages are r lar.
- The concatenation and star of regular languages are regular.
- Rephrased:
- The finite languages are regular.
- If L, M are regular then so are $L \cap M, L \cup M$ and $L-M$.
- If L is regular then so is L^{*}.

Strictly-regular languages

- A formally narrower definition:
- $\emptyset,\{\varepsilon\}$ and $\{\sigma\}$ (for every $\sigma \in \Sigma$) are strictly-regular.
- If L, M are regular then so is $L \cup M$.
- If L, M are regular then so are $L \cdot M$ and L^{*}.
- Every strictly-regular language is regular.
- We shall prove the coverse later.

Regular expressions

- Regular expressions (RegExp's) over Σ are notations for strictly-reg languages:
each expression is a road-map, i.e. recipe, notation, for the strictly-regular definition of a language.

Regular expressions

- Regular expressions (RegExp's) over Σ are notations for strictly-reg languages:
each expression is a road-map, i.e. recipe, notation,
for the strictly-regular definition of a language.
- $\mathcal{L}(\alpha)$ is the language denoted by a RegExp α.

Regular expressions

- Regular expressions (RegExp's) over Σ are notations for strictly-reg languages: each expression is a road-map, i.e. recipe, notation, for the strictly-regular definition of a language.
- $\mathcal{L}(\alpha)$ is the language denoted by a RegExp α.
- For the initial strictly-regular languages we use the following names:
- \emptyset is denoted by \emptyset,
- $\{\varepsilon\}$ by ε, and
- for each $\sigma \in \Sigma$ the singleton language $\{\sigma\}$ is denoted by σ.

Regular expressions

- Regular expressions (RegExp's) over Σ are notations for strictly-reg languages:
each expression is a road-map, i.e. recipe, notation, for the strictly-regular definition of a language.
- $\mathcal{L}(\alpha)$ is the language denoted by a RegExp α.
- For the initial strictly-regular languages we use the following names:
- \emptyset is denoted by \emptyset,
- $\{\varepsilon\}$ by ε, and
- for each $\sigma \in \Sigma$ the singleton language $\{\sigma\}$ is denoted by σ.
- Suppose language L is denoted by α and K by β. Then
- $L \cup K$ is denoted by $(\alpha) \mathbf{U}(\alpha)$,
- $L \cdot K$ by $(\alpha) \bullet(\beta)$, and
- L^{*} by $(\alpha)^{\star}$.

Examples

- $\{a b\}$ is denoted by $\quad(\mathrm{a}) \bullet(\mathrm{b})$.

Examples

- $\{a b\}$ is denoted by
(a) • (b).
- $\{a, b\}$ is denoted by (a) $\mathbf{U}(\mathrm{b})$.

Examples

- $\{a b\}$ is denoted by
(a) • (b).
- $\{a, b\}$ is denoted by
(a) $\mathbf{U}(b)$.
- $\{\varepsilon, a b\}$ is denoted by
$(\varepsilon) \mathbf{U}((a) \bullet(b))$.

Examples

- $\{a b\}$ is denoted by
(a) • (b).
- $\{a, b\}$ is denoted by
(a) $\mathbf{U}(b)$.
- $\{\varepsilon, a b\}$ is denoted by $\quad(\varepsilon) \mathbf{U}((a) \bullet(b))$.
- $\{a, b\}^{*}$ is denoted by $\left.\left.((a) \mathbf{U}(b))^{\star}\right)\right)$.

Abbreviation conventions

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.

Abbreviation conventions

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:

Abbreviation conventions

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:

$$
\text { - }\{a\}^{\star} \mathrm{b} \text { for }\left((\mathrm{a})^{\star}\right) \bullet(\mathrm{b}) .
$$

Abbreviation conventions

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:
- $\{a\}^{\star} \mathrm{b}$ for $\left((\mathrm{a})^{\star}\right) \bullet(\mathrm{b})$.
- $\mathrm{a} \bullet \mathrm{b} \mathbf{U} \mathbf{c}$ for $((\mathrm{a}) \bullet(\mathrm{b})) \mathbf{U}(\mathrm{c})$.

Abbreviation conventions

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:
- $\{a\}^{\star} \mathrm{b}$ for $\left((\mathrm{a})^{\star}\right) \bullet(\mathrm{b})$.
- $\mathrm{a} \bullet \mathrm{b} \mathbf{U}$ c for $((a) \bullet(b)) \mathbf{U}(c)$.
- $\left(a^{\star} b\right)^{\star}$ for $\left((a)^{\star}\right) \bullet\left((b)^{\star}\right)$.

