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• A decision problem, or problem for short, consists of

1. A set III of finite and discrete objects,

called the problem’s instances ; and

2. A property PPP that instances may satisfy or not.

• A problem’s algorithmic solution, or solution for short,

is an algorithm that, given an instance www as input

outputs the answer as to whether or not

www satisfies the property PPP .

• A problem is decidable if it has an algorithmic solution,

and undecidable otherwise.
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Examples of decision problems

1. Primality.

III is the set of positive integers,

PPP the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

III is the set of finite undirected graphs,

PPP is the property of being connected.

3. Substring.

III consists of pairs (x, w)(x, w)(x, w) of binary strings.

PPP is “xxx is a substring of www.”

4. Termination. III consists of the programs ppp (in Python say).

PPP is “ppp terminates for all legal inputs.”
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• Examples.

⋆ For {2, 3, 4, 5}{2, 3, 4, 5}{2, 3, 4, 5}: yes.

⋆ For {2, 3, 4, 6}{2, 3, 4, 6}{2, 3, 4, 6}: no, since the total is odd.

⋆ For {2, 3, 4, 7}{2, 3, 4, 7}{2, 3, 4, 7}: no

• What algorithm is a solution?

What’s wrong with it?
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Language = set of strings

• Given an alphabet ΣΣΣ a ΣΣΣ-language

(or language over ΣΣΣ) is a set of ΣΣΣ-strings.

• Don’t confuse strings and languages:

Languages are sets, and can be finite or infinite.

Strings are data-objects, and are finite by defnition.
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◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

◮ The empty language.

◮ The alphabet ΣΣΣ itself (each string is a single symbol).

◮ {a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}

◮ The decimal numerals for prime numbers:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.

◮ The binary numerals for prime numbers:

{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, . . . }.{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, . . . }.{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, . . . }.
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More examples

◮ The single-sylable English words

◮ The passwords used at IUB

◮ The books in the Library of Congress (each book is a string!)

◮ The syntactically correct JavaScript programs

◮ The Python programs that terminate for all input
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Each language is a decision problem

• Each language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is a decision problem:

◮ Instances: w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

◮ Property: w ∈ Lw ∈ Lw ∈ L
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Conversely: Each decision problem is a language

• The instances of a decision problem PPP are finite and discrete,

so they are codable as text.

• The codes of the instances satisfying PPP form a language!

• Example: Using binary numerals the Primality problem

becomes the language 10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011, . . ..

• Once we set a coding method,

we write a#a#a# for the code of aaa

(at least when distinguishing between aaa and a#a#a# matters).
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Operations on languages

• If LLL and MMM are languages then

we obtain new languages by basic set operations, such as

union (L ∪ ML ∪ ML ∪ M ), intersection (L ∩ ML ∩ ML ∩ M ), and difference (L − ML − ML − M ).

• Those operations work for any sets.

We consider next operations that are specific to languages.
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The concatenation of languages L, ML, ML, M is
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• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}
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LLL

So {ε}{ε}{ε} is the unit of language concatenation,

just as 0, 10, 10, 1 and εεε are the units

of addition, multiplication, and string concatenation.

• Σ · Σ =Σ · Σ =Σ · Σ =

The ΣΣΣ-strings of length 2.

F23



• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ?



• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ? p × qp × qp × q



• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ? p × qp × qp × q

• Is it possible that L · KL · KL · K have fewer

than p × qp × qp × q strings?



• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ? p × qp × qp × q

• Is it possible that L · KL · KL · K have fewer

than p × qp × qp × q strings?

{1, 11} · {1, 11} = {1, 11, 111}{1, 11} · {1, 11} = {1, 11, 111}{1, 11} · {1, 11} = {1, 11, 111}
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Associativity

L · (K · M)L · (K · M)L · (K · M) === {x · (y · z) | x ∈ L, y ∈ K, z ∈ M}{x · (y · z) | x ∈ L, y ∈ K, z ∈ M}{x · (y · z) | x ∈ L, y ∈ K, z ∈ M}

=== {(x · y) · z | x ∈ L, y ∈ K, z ∈ M}{(x · y) · z | x ∈ L, y ∈ K, z ∈ M}{(x · y) · z | x ∈ L, y ∈ K, z ∈ M}

=== (L · K) · M(L · K) · M(L · K) · M
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Self-concatenation

• Notation: L2L2L2 for L · LL · LL · L.

• Can L2 be the same as L?

Yes: E.g. the language EEE of strings of even length:

E ⊆ E · EE ⊆ E · EE ⊆ E · E because ε ∈ Eε ∈ Eε ∈ E

E · E ⊆E · E ⊆E · E ⊆ because the sum of even numbers is even.

Also: ∅∅∅, {ε}{ε}{ε}
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Repeated concatenation

• Define, for n > 1n > 1n > 1 ,

LnLnLn === L · · · · · LL · · · · · LL · · · · · L (LLL repeated nnn times)

• We have Ln · Lk = Ln+kLn · Lk = Ln+kLn · Lk = Ln+k for n, k > 1n, k > 1n, k > 1 .

To make this true for k = 0k = 0k = 0 : Ln · L0 = Ln+0Ln · L0 = Ln+0Ln · L0 = Ln+0

define L0L0L0 to be {ε}{ε}{ε},

the neutral language for concatenation
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Iterated concatenation

• We’ve generated the set Σ∗Σ∗Σ∗ of all ΣΣΣ-strings:

◮ ε ∈ Σ∗ε ∈ Σ∗ε ∈ Σ∗

◮ If σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ then σw ∈ Σ∗σw ∈ Σ∗σw ∈ Σ∗.

• Generalizing this from ΣΣΣ

to a generic language LLL we get:

◮ ε ∈ L∗ε ∈ L∗ε ∈ L∗

◮ If x ∈ Lx ∈ Lx ∈ L and w ∈ L∗w ∈ L∗w ∈ L∗ then x · w ∈ L∗x · w ∈ L∗x · w ∈ L∗.

• So

L∗L∗L∗ === {w1 · · · · · wk | k > 0, wi ∈ L}{w1 · · · · · wk | k > 0, wi ∈ L}{w1 · · · · · wk | k > 0, wi ∈ L}

=== ∪k>0 Lk∪k>0 Lk∪k>0 Lk

• This is the (Kleene) star of LLL .

x ∈ L∗x ∈ L∗x ∈ L∗ iff x = εx = εx = ε or x = w1 · w2 · · · wnx = w1 · w2 · · · wnx = w1 · w2 · · · wn for some wi ∈ Lwi ∈ Lwi ∈ L.
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Some properties of star

• L∗L∗L∗ is the smallest language containing LLL and εεε

and closed under concatenation.

• L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗ :

If u = x1 · · · xpu = x1 · · · xpu = x1 · · · xp and v = y1 · · · ymv = y1 · · · ymv = y1 · · · ym, where xi, yj ∈ Lxi, yj ∈ Lxi, yj ∈ L,

then u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗

(concatenation is associative!)

• A proof by induction on x ∈ L∗x ∈ L∗x ∈ L∗ that for all y ∈ L∗y ∈ L∗y ∈ L∗ we have x · y ∈ L∗x · y ∈ L∗x · y ∈ L∗ :

◮ Basis: If y ∈ L∗y ∈ L∗y ∈ L∗ then x · y = ε · y = y ∈ L∗x · y = ε · y = y ∈ L∗x · y = ε · y = y ∈ L∗ .

◮ Step: Assume x · y ∈ L∗x · y ∈ L∗x · y ∈ L∗ for all y ∈ L∗y ∈ L∗y ∈ L∗.

Then for v ∈ Lv ∈ Lv ∈ L (v · x) · y = v · (x · y)(v · x) · y = v · (x · y)(v · x) · y = v · (x · y) which is in L∗L∗L∗ by definition

L∗L∗L∗.
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Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

• ∅∗ =∅∗ =∅∗ = {ε}{ε}{ε}
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Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

• ∅∗ =∅∗ =∅∗ = {ε}{ε}{ε}

• {00}∗ ={00}∗ ={00}∗ = {02n | n > 0}{02n | n > 0}{02n | n > 0}
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Acceptable complements

• Given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

consider the strings in LLL of the form w · xw · xw · x,

i.e. that start with www .

• For example if LLL consists of English words

and www is conconcon then we look at words

that start with conconcon, such as

considerconsiderconsider, contrarycontrarycontrary, condensecondensecondense, and conconcon itself.
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Acceptable complements

• Given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

consider the strings in LLL of the form w · xw · xw · x,

i.e. that start with www .

• For example if LLL consists of English words

and www is conconcon then we look at words

that start with conconcon, such as

considerconsiderconsider, contrarycontrarycontrary, condensecondensecondense, and conconcon itself.

• Here are the remainders (the xxx in w · xw · xw · x)) of the above:

sidersidersider, raryraryrary, densedensedense, and εεε.

I.e. the strings that complement conconcon to an English word.

• The resulting language is the residue of the English language over conconcon

conconcon itself is the trunk of that residue.

• In general, given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

the residue of LLL over www is the language L/w = {x | w · x ∈ L}L/w = {x | w · x ∈ L}L/w = {x | w · x ∈ L}
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• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.
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Examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since inventinventinvent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

• Take L = {ab}L = {ab}L = {ab}, a singleton language.

We have L/ε = {ab}L/ε = {ab}L/ε = {ab}, L/a = {b}L/a = {b}L/a = {b} , and L/ab = εL/ab = εL/ab = ε.

For any other string www , L/w = ∅L/w = ∅L/w = ∅.

• For any language LLL we have L/ε = LL/ε = LL/ε = L:

w ∈ Lw ∈ Lw ∈ L iff ε ∈ L/wε ∈ L/wε ∈ L/w.
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Another example

• L = {0, 00, 010}L = {0, 00, 010}L = {0, 00, 010}

L/εL/εL/ε === LLL

L/0L/0L/0 === {ε, 1, 0}{ε, 1, 0}{ε, 1, 0}

L/00L/00L/00 === {ε}{ε}{ε}

L/01L/01L/01 === {0}{0}{0}

L/010L/010L/010 === {ε}{ε}{ε}

L/wL/wL/w === ∅∅∅ for any other www

• L/00 = L/010L/00 = L/010L/00 = L/010, so there are five distinct residues.
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The regular languages

• The basic ΣΣΣ-languages are generated

from the finite ΣΣΣ-languages and Σ∗Σ∗Σ∗ by the clauses

◮ the set operations of union, intersection, and difference; and

◮ the language operations of concatenation, plus and star.



The regular languages

• The basic ΣΣΣ-languages are generated

from the finite ΣΣΣ-languages and Σ∗Σ∗Σ∗ by the clauses

◮ the set operations of union, intersection, and difference; and

◮ the language operations of concatenation, plus and star.

• That is:

– Σ∗Σ∗Σ∗ and the Finite languages are basic.

– If L, ML, ML, M are basic then so are L ∩ M, L ∪ ML ∩ M, L ∪ ML ∩ M, L ∪ M and L − ML − ML − M .

– If LLL is basic then so are L+L+L+ and L∗L∗L∗ .
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• The regular ΣΣΣ-languages are generated:

◮ The finite ΣΣΣ-languages are regular.

◮ The union, intersection, and difference of regular languages are regu-

lar.

◮ The concatenation and star of regular languages are regular.



Regular languages

• The regular ΣΣΣ-languages are generated:

◮ The finite ΣΣΣ-languages are regular.

◮ The union, intersection, and difference of regular languages are regu-

lar.

◮ The concatenation and star of regular languages are regular.

• Rephrased:

– The finite languages are regular.

– If L, ML, ML, M are regular then so are L ∩ M, L ∪ ML ∩ M, L ∪ ML ∩ M, L ∪ M and L − ML − ML − M .

– If LLL is regular then so is L∗L∗L∗ .
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Strictly-regular languages

• A formally narrower definition:

◮ ∅, {ε}∅, {ε}∅, {ε} and {σ}{σ}{σ} (for every σ ∈ Σ)σ ∈ Σ)σ ∈ Σ) are strictly-regular.

◮ If L, ML, ML, M are regular then so is L ∪ ML ∪ ML ∪ M .

◮ If L, ML, ML, M are regular then so are L · ML · ML · M and L∗L∗L∗.

• Every strictly-regular language is regular.

• We shall prove the coverse later.
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Regular expressions

• Regular expressions (RegExp’s) over ΣΣΣ are notations for strictly-regular

languages:

each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

• L(α)L(α)L(α) is the language denoted by a RegExp ααα.

• For the initial strictly-regular languages we use the following names:

– ∅∅∅ is denoted by ∅∅∅∅∅∅∅∅∅ ,

– {ε}{ε}{ε} by εεε , and

– for each σ ∈ Σσ ∈ Σσ ∈ Σ the singleton language {σ}{σ}{σ} is denoted by σσσ.

• Suppose language LLL is denoted by ααα and KKK by βββ . Then

– L ∪ KL ∪ KL ∪ K is denoted by (α) U (α)(α) U (α)(α) U (α),

– L · KL · KL · K by (α) • (β)(α) • (β)(α) • (β), and

– L∗L∗L∗ by (α)⋆(α)⋆(α)⋆.
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Examples

◮ {ab}{ab}{ab} is denoted by (a) • (b)(a) • (b)(a) • (b).

◮ {a, b}{a, b}{a, b} is denoted by (a) U (b)(a) U (b)(a) U (b).

◮ {ε, ab}{ε, ab}{ε, ab} is denoted by (ε) U ((a) • (b))(ε) U ((a) • (b))(ε) U ((a) • (b)).



Examples

◮ {ab}{ab}{ab} is denoted by (a) • (b)(a) • (b)(a) • (b).

◮ {a, b}{a, b}{a, b} is denoted by (a) U (b)(a) U (b)(a) U (b).

◮ {ε, ab}{ε, ab}{ε, ab} is denoted by (ε) U ((a) • (b))(ε) U ((a) • (b))(ε) U ((a) • (b)).

◮ {a, b}∗{a, b}∗{a, b}∗ is denoted by ((a) U (b))⋆))((a) U (b))⋆))((a) U (b))⋆)) .
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