DECISION PROBLEMS

- A decision problem, or problem for short, consists of
 - A set *I* of finite and discrete objects, called the problem's *instances*; and

- A decision problem, or problem for short, consists of
 - A set *I* of finite and discrete objects, called the problem's *instances*; and
 - 2. A **property P** that instances may satisfy or not.

- A decision problem, or problem for short, consists of
 - 1. A set *I* of finite and discrete objects, called the problem's *instances*; and
 - 2. A **property P** that instances may satisfy or not.
- A problem's *algorithmic solution*, or *solution* for short, is an algorithm that, given an instance *w* as input outputs the answer as to whether or not
 - w satisfies the property P.

- A decision problem, or problem for short, consists of
 - 1. A set *I* of finite and discrete objects, called the problem's *instances*; and
 - 2. A **property P** that instances may satisfy or not.
- A problem's *algorithmic solution*, or *solution* for short, is an algorithm that, given an instance *w* as input outputs the answer as to whether or not *w* satisfies the property *P*.
- A problem is *decidable* if it has an algorithmic solution, and *undecidable* otherwise.

1. Primality.

- *I* is the set of positive integers,
 - *P* the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

1. Primality.

- *I* is the set of positive integers,
 - *P* the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

- *I* is the set of finite undirected graphs,
 - *P* is the property of being connected.

1. Primality.

- *I* is the set of positive integers,
 - *P* the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

- *I* is the set of finite undirected graphs,
 - *P* is the property of being connected.

3. Substring.

- I consists of pairs (x, w) of binary strings.
 - P is "x is a substring of w."

1. Primality.

- *I* is the set of positive integers,
 - *P* the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

- *I* is the set of finite undirected graphs,
 - *P* is the property of being connected.

3. Substring.

- I consists of pairs (x, w) of binary strings.
 - **P** is " \boldsymbol{x} is a substring of \boldsymbol{w} ."

4. *Termination.* I consists of the programs p (in Python say).

P is "p terminates for all legal inputs."

 Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.

- Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.
- Given a finite set S of positive integers,
 is there a set P ⊆ S that adds up to half of ΣS.
- That is,
 - Instances: Finite sets S of positive integers
 - Property: Exists $P \subseteq S$ such that $\Sigma P = \Sigma (S P)$

- Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.
- Given a finite set S of positive integers,
 is there a set P ⊆ S that adds up to half of ΣS.
- That is,
 - Instances: Finite sets S of positive integers
 - Property: Exists $P \subseteq S$ such that $\Sigma P = \Sigma(S P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator: {2,4,5} given as 10#100#101.

- Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.
- Given a finite set S of positive integers,
 is there a set P ⊆ S that adds up to half of ΣS.
- That is,
 - Instances: Finite sets S of positive integers
 - Property: Exists $P \subseteq S$ such that $\Sigma P = \Sigma(S P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator: {2,4,5} given as 10#100#101.
- Examples.
 - * For {2, 3, 4, 5}: *yes.*
 - \star For $\{2, 3, 4, 6\}$: *no*, since the total is odd.
 - * For $\{2, 3, 4, 7\}$: no

- Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.
- Given a finite set S of positive integers,
 is there a set P ⊆ S that adds up to half of ΣS.
- That is,
 - Instances: Finite sets S of positive integers
 - Property: Exists $P \subseteq S$ such that $\Sigma P = \Sigma(S P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator: {2,4,5} given as 10#100#101.
- Examples.
 - \star For $\{2, 3, 4, 5\}$: yes.
 - \star For $\{2, 3, 4, 6\}$: *no*, since the total is odd.
 - * For $\{2, 3, 4, 7\}$: no
- What algorithm is a solution?

- Primality, Connectivity and Substring have each an efficient solution. Termination does not have any solution. Here is a problem for which there is a solution but we don't know if there is an efficient one.
- Given a finite set S of positive integers,
 is there a set P ⊆ S that adds up to half of ΣS.
- That is,
 - Instances: Finite sets S of positive integers
 - Property: Exists $P \subseteq S$ such that $\Sigma P = \Sigma(S P)$
- Instances are implicitly assumed to be given textually, e.g. list of binary numerals with a separator: {2,4,5} given as 10#100#101.
- Examples.
 - * For {2, 3, 4, 5}: *yes.*
 - \star For $\{2, 3, 4, 6\}$: *no*, since the total is odd.
 - * For $\{2, 3, 4, 7\}$: no
- What algorithm is a solution?
 What's wrong with it?

LANGUAGES

Language = set of strings

- Given an alphabet Σ a Σ-language
 (or language over Σ) is a set of Σ-strings.
- Don't confuse strings and languages: Languages are sets, and can be finite or infinite. Strings are data-objects, and are finite by defnition.

• The set of all strings over Σ , denoted Σ^* .

- The set of all strings over Σ , denoted Σ^* .
- ▶ {a,b,ab,bb}

- The set of all strings over Σ , denoted Σ^* .
- ▶ {a,b,ab,bb}
- ► The empty language.

- The set of all strings over Σ , denoted Σ^* .
- {a, b, ab, bb}
- ► The empty language.
- The alphabet Σ itself (each string is a single symbol).

- The set of all strings over Σ , denoted Σ^* .
- {a, b, ab, bb}
- ► The empty language.
- The alphabet Σ itself (each string is a single symbol).
- ▶ {a, aa, aaa, aaaa,...}

- The set of all strings over Σ , denoted Σ^* .
- {a, b, ab, bb}
- ► The empty language.
- The alphabet Σ itself (each string is a single symbol).
- ▶ {a, aa, aaa, aaaa,...}
- The decimal numerals for prime numbers:
 {2,3,5,7,11,13,17,19,23,29 ... }.

- The set of all strings over Σ , denoted Σ^* .
- {a, b, ab, bb}
- ► The empty language.
- The alphabet Σ itself (each string is a single symbol).
- ▶ {a, aa, aaa, aaaa,...}
- ► The decimal numerals for prime numbers: {2,3,5,7,11,13,17,19,23,29 ... }.
- The binary numerals for prime numbers:
 {10, 11, 101, 111, 1011, 10001, 10011, 10111, 11101, ... }.

The single-sylable English words

- The single-sylable English words
- The passwords used at IUB

- ► The single-sylable English words
- The passwords used at IUB
- The books in the Library of Congress (each book is a string!)

- The single-sylable English words
- ► The passwords used at IUB
- ► The books in the Library of Congress (each book is a string!)
- The syntactically correct JavaScript programs

- The single-sylable English words
- ► The passwords used at IUB
- ► The books in the Library of Congress (each book is a string!)
- The syntactically correct JavaScript programs
- ► The Python programs that terminate for all input

TEXTUAL DECISION PROBLEMS

- Each language $L \subseteq \Sigma^*$ is a decision problem:
 - ▶ Instances: $w \in \Sigma^*$
 - Property: $w \in L$

• The instances of a decision problem *P* are finite and discrete, so they are codable as text.

- The instances of a decision problem *P* are finite and discrete, so they are codable as text.
- The codes of the instances satisfying P form a language!

- The instances of a decision problem *P* are finite and discrete, so they are codable as text.
- The codes of the instances satisfying P form a language!
- Example: Using binary numerals the Primality problem becomes the language 10, 11, 101, 111, 1011,

- The instances of a decision problem *P* are finite and discrete, so they are codable as text.
- The codes of the instances satisfying P form a language!
- Example: Using binary numerals the Primality problem becomes the language 10, 11, 101, 111, 1011,
- Once we set a coding method, we write a[#] for the code of a (at least when distinguishing between a and a[#] matters).

DELINEATING LANGUAGES
Operations on languages

- If *L* and *M* are languages then we obtain new languages by basic set operations, such as union (*L* ∪ *M*), intersection (*L* ∩ *M*), and difference (*L* − *M*).
- Those operations work for any sets. We consider next operations that are specific to languages.

• Let $rev: \Sigma^* \to \Sigma^*$ be the function that reverses its input. Example: rev(ab123) = 321ba.

- Let $rev: \Sigma^* \to \Sigma^*$ be the function that reverses its input. Example: rev(ab123) = 321ba.
- Applying rev to each string in a language Lwe obtain a new language $\{ rev(w) \mid w \in L \}$.

- Let $rev: \Sigma^* \to \Sigma^*$ be the function that reverses its input. Example: rev(ab123) = 321ba.
- Applying rev to each string in a language Lwe obtain a new language $\{ rev(w) \mid w \in L \}$.

From function *rev* over strings we obtain a function over languages:

 $\widehat{rev}(L) = \{ rev(w) \mid w \in L \}$

- Let $rev: \Sigma^* \to \Sigma^*$ be the function that reverses its input. Example: rev(ab123) = 321ba.
- Applying rev to each string in a language Lwe obtain a new language $\{rev(w) \mid w \in L\}$.

From function *rev* over strings we obtain a function over languages:

 $\widehat{rev}(L) = \{ \ rev(w) \ \mid \ w \in L \}$

• Generally, a function $f: \Sigma^* \to \Sigma^*$ induces a function \hat{f} on Σ -languages:

 $\hat{f}(L) = \{f(w) \mid w \in L\}$

we get a concatenation operation on languages:

The **concatenation** of languages L, M is

```
L \cdot M =_{\mathrm{df}} \{ u \cdot v \mid u \in L, v \in M \}
```

we get a concatenation operation on languages:

The **concatenation** of languages L, M is

 $L \cdot M =_{\mathrm{df}} \{ u \cdot v \mid u \in L, v \in M \}$

- Examples:
 - ► {a,b} · {b,c} = {ab, ac, bb, bc}

we get a concatenation operation on languages:

The **concatenation** of languages L, M is

 $L \cdot M =_{\mathrm{df}} \{u \cdot v \mid u \in L, v \in M\}$

- Examples:
 - ${a,b} \cdot {b,c} = {ab,ac,bb,bc}$
 - $\{1, 11\} \cdot \{1, 11\} = \{11, 111, 1111\}$

we get a concatenation operation on languages:

The **concatenation** of languages L, M is

 $L \cdot M =_{\mathrm{df}} \{ u \cdot v \mid u \in L, \ v \in M \}$

- Examples:
 - ${a,b} \cdot {b,c} = {ab,ac,bb,bc}$
 - $\blacktriangleright \ \{1,11\} \cdot \{1,11\} = \{11,111,1111\}$
 - {play, dress} · {er, ing}
 = {player, playing, dresser, dressing}

we get a concatenation operation on languages:

The **concatenation** of languages L, M is

 $L \cdot M =_{\mathrm{df}} \{u \cdot v \mid u \in L, v \in M\}$

- Examples:
 - ${a,b} \cdot {b,c} = {ab,ac,bb,bc}$
 - $\blacktriangleright \ \{1,11\} \cdot \{1,11\} = \{11,111,1111\}$
 - {play, dress} · {er, ing}
 = {player, playing, dresser, dressing}

$$\blacktriangleright \quad \Sigma^* \cdot \Sigma^* = \Sigma^*$$

• $\{A, B, C\} \cdot \{1, 2\} =$

• $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$

- $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$
- $L \cdot \emptyset =$

- $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$
- $L \cdot \emptyset =$
 - Ø

- $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$
- $L \cdot \emptyset =$
- Ø
- $L \cdot \{\varepsilon\} =$

- $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$
- $L \cdot \emptyset =$

Ø

• $L \cdot \{\varepsilon\} =$

L

So $\{\varepsilon\}$ is the unit of language concatenation,

just as 0, 1 and ε are the units

of addition, multiplication, and string concatenation.

- $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$
- $L \cdot \emptyset =$

Ø

• $L \cdot \{\varepsilon\} =$

L

So $\{\varepsilon\}$ is the unit of language concatenation, just as 0,1 and ε are the units

of addition, multiplication, and string concatenation.

• $\Sigma \cdot \Sigma =$

- $\{A, B, C\} \cdot \{1, 2\} = \{A1, A2, B1, B2, C1, C2\}$
- $L \cdot \emptyset =$

Ø

• $L \cdot \{\varepsilon\} =$

L

So $\{\varepsilon\}$ is the unit of language concatenation,

just as 0, 1 and ε are the units

of addition, multiplication, and string concatenation.

• $\Sigma \cdot \Sigma =$

The Σ -strings of length 2.

• Suppose *L* has *p* strings and *K* has *q*. What is the maximal number of strings in $L \cdot K$? • Suppose *L* has *p* strings and *K* has *q*. What is the maximal number of strings in $L \cdot K ? p \times q$

- Suppose *L* has *p* strings and *K* has *q*. What is the maximal number of strings in $L \cdot K$? $p \times q$
- Is it possible that $L \cdot K$ have fewer than $p \times q$ strings?

- Suppose *L* has *p* strings and *K* has *q*. What is the maximal number of strings in $L \cdot K$? $p \times q$
- Is it possible that $L \cdot K$ have fewer than $p \times q$ strings?

 $\{1, 11\} \cdot \{1, 11\} = \{1, 11, 111\}$

Associativity

• Notation: L^2 for $L \cdot L$.

- Notation: L^2 for $L \cdot L$.
- Can L^2 be the same as L?

- Notation: L^2 for $L \cdot L$.
- Can L^2 be the same as L?

Yes: E.g. the language E of strings of even length:

 $E \subseteq E \cdot E$ because $\varepsilon \in E$

 $E \cdot E \subseteq$ because the sum of even numbers is even.

- Notation: L^2 for $L \cdot L$.
- Can L^2 be the same as L?

Yes: E.g. the language E of strings of even length:

 $E \subseteq E \cdot E$ because $\varepsilon \in E$

 $E \cdot E \subseteq$ because the sum of even numbers is even.

Also: \emptyset , $\{\varepsilon\}$

• Define, for $n \ge 1$,

 $L^n = L \cdots L$ (L repeated n times)

Repeated concatenation

• Define, for $n \ge 1$,

 $L^n = L \cdots L$ (L repeated n times)

• We have $L^n \cdot L^k = L^{n+k}$ for n, k > 1. To make this true for k = 0: $L^n \cdot L^0 = L^{n+0}$ define L^0 to be

Repeated concatenation

• Define, for $n \ge 1$,

 $L^n = L \cdots L$ (L repeated n times)

• We have $L^n \cdot L^k = L^{n+k}$ for n, k > 1. To make this true for k = 0: $L^n \cdot L^0 = L^{n+0}$ define L^0 to be $\{\varepsilon\}$, the neutral language for concatenation

Iterated concatenation

- We've generated the set Σ^* of all Σ -strings:
 - $\blacktriangleright \ \varepsilon \in \Sigma^*$
 - If $\sigma \in \Sigma$ and $w \in \Sigma^*$ then $\sigma w \in \Sigma^*$.

Iterated concatenation

- We've generated the set Σ^* of all Σ -strings:
 - $\blacktriangleright \ \varepsilon \in \Sigma^*$
 - If $\sigma \in \Sigma$ and $w \in \Sigma^*$ then $\sigma w \in \Sigma^*$.
- Generalizing this from Σ

to a generic language L we get:

- ► $\varepsilon \in L^*$
- If $x \in L$ and $w \in L^*$ then $x \cdot w \in L^*$.

Iterated concatenation

- We've generated the set Σ^* of all Σ -strings:
 - $\blacktriangleright \ \varepsilon \in \Sigma^*$
 - If $\sigma \in \Sigma$ and $w \in \Sigma^*$ then $\sigma w \in \Sigma^*$.
- Generalizing this from Σ

to a generic language L we get:

- $\blacktriangleright \ \varepsilon \in L^*$
- If $x \in L$ and $w \in L^*$ then $x \cdot w \in L^*$.
- So

 $L^* = \{w_1 \cdots w_k \mid k \ge 0, w_i \in L\}$ $= \bigcup_{k \ge 0} L^k$

- We've generated the set Σ^* of all Σ -strings:
 - $\blacktriangleright \ \varepsilon \in \Sigma^*$
 - If $\sigma \in \Sigma$ and $w \in \Sigma^*$ then $\sigma w \in \Sigma^*$.
- Generalizing this from Σ

to a generic language L we get:

 $\blacktriangleright \ \varepsilon \in L^*$

• If $x \in L$ and $w \in L^*$ then $x \cdot w \in L^*$.

• So

$$L^* = \{w_1 \cdot \dots \cdot w_k \mid k \ge 0, w_i \in L\}$$
$$= \bigcup_{k \ge 0} L^k$$

• This is the *(Kleene) star* of *L*.

$$x \in L^*$$
 iff $x = \varepsilon$ or $x = w_1 \cdot w_2 \cdots w_n$ for some $w_i \in L$.

Some properties of star

• L^* is the smallest language containing L and ε and closed under concatenation.

Some properties of star

• L^* is the smallest language containing L and ε and closed under concatenation.

```
• L^* \cdot L^* \subseteq L^* :
```

```
If u = x_1 \cdots x_p and v = y_1 \cdots y_m, where x_i, y_j \in L,
then u \cdot v = x_1 \cdots x_p \cdot y_1 \cdots y_m \in L^*
(concatenation is associative!)
```
Some properties of star

- L^* is the smallest language containing L and ε and closed under concatenation.
- $L^* \cdot L^* \subseteq L^*$:

```
If u = x_1 \cdots x_p and v = y_1 \cdots y_m, where x_i, y_j \in L,
then u \cdot v = x_1 \cdots x_p \cdot y_1 \cdots y_m \in L^*
(concatenation is associative!)
```

• A proof by induction on $x \in L^*$ that for all $y \in L^*$ we have $x \cdot y \in L^*$:

Some properties of star

- L^* is the smallest language containing L and ε and closed under concatenation.
- $L^* \cdot L^* \subseteq L^*$:

If $u = x_1 \cdots x_p$ and $v = y_1 \cdots y_m$, where $x_i, y_j \in L$, then $u \cdot v = x_1 \cdots x_p \cdot y_1 \cdots y_m \in L^*$ (concatenation is associative!)

- A proof by induction on $x \in L^*$ that for all $y \in L^*$ we have $x \cdot y \in L^*$:
 - ▶ Basis: If $y \in L^*$ then $x \cdot y = \varepsilon \cdot y = y \in L^*$.

Some properties of star

- L^* is the smallest language containing L and ε and closed under concatenation.
- $L^* \cdot L^* \subseteq L^*$:

If $u = x_1 \cdots x_p$ and $v = y_1 \cdots y_m$, where $x_i, y_j \in L$, then $u \cdot v = x_1 \cdots x_p \cdot y_1 \cdots y_m \in L^*$ (concatenation is associative!)

- A proof by induction on $x \in L^*$ that for all $y \in L^*$ we have $x \cdot y \in L^*$:
 - ▶ Basis: If $y \in L^*$ then $x \cdot y = \varepsilon \cdot y = y \in L^*$.
 - Step: Assume x ⋅ y ∈ L* for all y ∈ L*.
 Then for v ∈ L (v ⋅ x) ⋅ y = v ⋅ (x ⋅ y) which is in L* by definitio
 L*.

Some examples

• {0}* =

• $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$

- $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$
- $\{\varepsilon\}^* =$

- $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$
- $\{\varepsilon\}^* = \{\varepsilon\}$

- $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$
- $\{\varepsilon\}^* = \{\varepsilon\}$
- Ø* =

- $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$
- $\{\varepsilon\}^* = \{\varepsilon\}$
- $\bullet \ \emptyset^* = \{\varepsilon\}$

Some examples

- $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$
- $\{\varepsilon\}^* = \{\varepsilon\}$
- $\bullet \ \emptyset^* = \{\varepsilon\}$
- {00}* =

Some examples

- $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots, 0^n, \dots\}$
- $\{\varepsilon\}^* = \{\varepsilon\}$
- $\bullet \ \emptyset^* = \{\varepsilon\}$
- $\{00\}^* = \{0^{2n} \mid n \ge 0\}$

LANGUAGE RESIDUES

- Given L ⊆ Σ* and w ∈ Σ* consider the strings in L of the form w ⋅ x, i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.

- Given L ⊆ Σ* and w ∈ Σ* consider the strings in L of the form w ⋅ x, i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.
- Here are the remainders (the x in $w \cdot x$)) of the above: sider, rary, dense, and ε .

I.e. the strings that complement **con** to an English word.

- Given L ⊆ Σ* and w ∈ Σ* consider the strings in L of the form w ⋅ x, i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.
- Here are the remainders (the *x* in *w* · *x*)) of the above:
 sider, rary, dense, and ε.
 I.e. the strings that complement con to an English word.
- The resulting language is the *residue* of the English language over co con itself is the *trunk* of that residue.

- Given L ⊆ Σ* and w ∈ Σ* consider the strings in L of the form w ⋅ x, i.e. that start with w.
- For example if L consists of English words and w is con then we look at words that start with con, such as consider, contrary, condense, and con itself.
- Here are the remainders (the *x* in *w* · *x*)) of the above:
 sider, rary, dense, and ε.
 I.e. the strings that complement con to an English word.
- The resulting language is the *residue* of the English language over co con itself is the *trunk* of that residue.
- In general, given $L \subseteq \Sigma^*$ and $w \in \Sigma^*$ the *residue of L over w* is the language $L/w = \{x \mid w \cdot x \in L\}$

• Take L = English words.

L/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.

• Take L = English words.

L/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.

• ϵ is also in L/invent since invent is a word.

- Take L = English words.
 - L/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.
- ϵ is also in L/invent since invent is a word.
- The residue L/ad contains the strings vance, apt, opt, d, and ϵ .

- Take L = English words.
 - L/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.
- ϵ is also in L/invent since invent is a word.
- The residue L/ad contains the strings vance, apt, opt, d, and ϵ .
- Take $L = \{ab\}$, a singleton language.

We have $L/\varepsilon = \{ab\}, L/a = \{b\}$, and $L/ab = \varepsilon$.

For any other string w, $L/w = \emptyset$.

- Take L = English words.
 - *L*/invent contains the strings or, ion, ive, ed and ing since inventor, invention, inventive and invented are words.
- ϵ is also in L/invent since invent is a word.
- The residue L/ad contains the strings vance, apt, opt, d, and ϵ .
- Take L = {ab}, a singleton language.
 We have L/ε = {ab}, L/a = {b}, and L/ab = ε.
 For any other string w, L/w = Ø.
- For any language *L* we have $L/\varepsilon = L$:

 $w \in L$ iff $\varepsilon \in L/w$.

• $L = \{0, 00, 010\}$ $L/\varepsilon = L$ $L/0 = \{\varepsilon, 1, 0\}$ $L/00 = \{\varepsilon\}$ $L/01 = \{0\}$ $L/010 = \{\varepsilon\}$ $L/010 = \{\varepsilon\}$ $L/w = \emptyset$ for any other w

• L/00 = L/010, so there are five distinct residues.

The regular languages

- The basic Σ -languages are generated from the finite Σ -languages and Σ^* by the clauses
 - ► the set operations of union, intersection, and difference; and
 - ► the language operations of concatenation, plus and star.

The regular languages

- The basic Σ-languages are generated
 from the finite Σ-languages and Σ* by the clauses
 - ► the set operations of union, intersection, and difference; and
 - ► the language operations of concatenation, plus and star.
- That is:
 - Σ^* and the Finite languages are basic.
 - If L, M are basic then so are $L \cap M, L \cup M$ and L M.
 - If L is basic then so are L^+ and L^* .

Regular languages

- The **regular** Σ -languages are generated:
 - The finite Σ -languages are regular.
 - The union, intersection, and difference of regular languages are relar.
 - ► The concatenation and star of regular languages are regular.

Regular languages

- The regular Σ -languages are generated:
 - The finite Σ -languages are regular.
 - The union, intersection, and difference of regular languages are related.
 - ► The concatenation and star of regular languages are regular.
- Rephrased:
 - The finite languages are regular.
 - If L, M are regular then so are $L \cap M, L \cup M$ and L M.
 - If L is regular then so is L^* .

- A formally narrower definition:
 - $\emptyset, \{\varepsilon\}$ and $\{\sigma\}$ (for every $\sigma \in \Sigma$) are strictly-regular.
 - If L, M are regular then so is $L \cup M$.
 - If L, M are regular then so are $L \cdot M$ and L^* .
- Every strictly-regular language is regular.
- We shall prove the coverse later.

 Regular expressions (RegExp's) over Σ are notations for strictly-reg languages:

each expression is a *road-map*, i.e. recipe, notation,

for the strictly-regular definition of a language.

- Regular expressions (RegExp's) over ∑ are notations for strictly-reg languages: each expression is a road-map, i.e. recipe, notation, for the strictly-regular definition of a language.
- $\mathcal{L}(\alpha)$ is the language denoted by a RegExp α .

- Regular expressions (RegExp's) over ∑ are notations for strictly-reg languages: each expression is a road-map, i.e. recipe, notation, for the strictly-regular definition of a language.
- $\mathcal{L}(\alpha)$ is the language denoted by a RegExp α .
- For the initial strictly-regular languages we use the following names:
 - \emptyset is denoted by \emptyset ,
 - $\{\varepsilon\}$ by ε , and
 - for each $\sigma \in \Sigma$ the singleton language $\{\sigma\}$ is denoted by σ .

- Regular expressions (RegExp's) over ∑ are notations for strictly-reg languages:
 each expression is a road-map, i.e. recipe, notation,
 - for the strictly-regular definition of a language.
- $\mathcal{L}(\alpha)$ is the language denoted by a RegExp α .
- For the initial strictly-regular languages we use the following names:
 - \emptyset is denoted by \emptyset ,
 - $\{\varepsilon\}$ by ε , and
 - for each $\sigma \in \Sigma$ the singleton language $\{\sigma\}$ is denoted by σ .
- Suppose language L is denoted by α and K by β . Then
 - $L \cup K$ is denoted by $(\alpha) \cup (\alpha)$,
 - $L \cdot K$ by $(\alpha) \bullet (\beta)$, and
 - L^* by $(\alpha)^*$.

• $\{ab\}$ is denoted by $(a) \bullet (b)$.

- $\{ab\}$ is denoted by $(a) \bullet (b)$.
- $\{a, b\}$ is denoted by (a) U(b).

- $\{ab\}$ is denoted by $(a) \bullet (b)$.
- $\{a, b\}$ is denoted by (a) U (b).
- $\{\varepsilon, ab\}$ is denoted by $(\varepsilon) U((a) \bullet (b))$.

- $\{ab\}$ is denoted by $(a) \bullet (b)$.
- $\{a, b\}$ is denoted by (a) U(b).
- $\{\varepsilon, ab\}$ is denoted by $(\varepsilon) U((a) \bullet (b))$.
- $\{a, b\}^*$ is denoted by $((a) \mathbf{U} (b))^*)$.

Abbreviation conventions

 The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:
 - $\{a\}^*$ b for $((a)^*) \bullet (b)$.

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:
 - $\{a\}^*$ b for $((a)^*) \bullet (b)$.
 - ▶ $a \bullet b U c$ for $((a) \bullet (b)) U(c)$.

- The operators used in RegExp are given a decreasing binding priority omit parentheses and bullets where unambiguous.
- Examples:
 - $\{a\}^*$ b for $((a)^*) \bullet (b)$.
 - ▶ $a \bullet b U c$ for $((a) \bullet (b)) U(c)$.
 - ► (a*b)* for ((a)*)●((b)*).