
DECISION PROBLEMS

F23

What are decision problems

• A decision problem, or problem for short, consists of

1. A set III of finite and discrete objects,

called the problem’s instances ; and

What are decision problems

• A decision problem, or problem for short, consists of

1. A set III of finite and discrete objects,

called the problem’s instances ; and

2. A property PPP that instances may satisfy or not.

What are decision problems

• A decision problem, or problem for short, consists of

1. A set III of finite and discrete objects,

called the problem’s instances ; and

2. A property PPP that instances may satisfy or not.

• A problem’s algorithmic solution, or solution for short,

is an algorithm that, given an instance www as input

outputs the answer as to whether or not

www satisfies the property PPP .

What are decision problems

• A decision problem, or problem for short, consists of

1. A set III of finite and discrete objects,

called the problem’s instances ; and

2. A property PPP that instances may satisfy or not.

• A problem’s algorithmic solution, or solution for short,

is an algorithm that, given an instance www as input

outputs the answer as to whether or not

www satisfies the property PPP .

• A problem is decidable if it has an algorithmic solution,

and undecidable otherwise.

F23

Examples of decision problems

1. Primality.

III is the set of positive integers,

PPP the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

Examples of decision problems

1. Primality.

III is the set of positive integers,

PPP the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

III is the set of finite undirected graphs,

PPP is the property of being connected.

Examples of decision problems

1. Primality.

III is the set of positive integers,

PPP the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

III is the set of finite undirected graphs,

PPP is the property of being connected.

3. Substring.

III consists of pairs (x, w)(x, w)(x, w) of binary strings.

PPP is “xxx is a substring of www.”

Examples of decision problems

1. Primality.

III is the set of positive integers,

PPP the property of being a prime number.

A solution to the problem is an algorithm deciding primality.

2. Graph connectivity.

III is the set of finite undirected graphs,

PPP is the property of being connected.

3. Substring.

III consists of pairs (x, w)(x, w)(x, w) of binary strings.

PPP is “xxx is a substring of www.”

4. Termination. III consists of the programs ppp (in Python say).

PPP is “ppp terminates for all legal inputs.”

F23

A mystery problem: Integer Partition

• Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.

Here is a problem for which there is a solution

but we don’t know if there is an efficient one.

A mystery problem: Integer Partition

• Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.

Here is a problem for which there is a solution

but we don’t know if there is an efficient one.

• Given a finite set SSS of positive integers,

is there a set P ⊆ SP ⊆ SP ⊆ S that adds up to half of
∑

S
∑

S
∑

S.

• That is,

◮ Instances: Finite sets SSS of positive integers

◮ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)

A mystery problem: Integer Partition

• Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.

Here is a problem for which there is a solution

but we don’t know if there is an efficient one.

• Given a finite set SSS of positive integers,

is there a set P ⊆ SP ⊆ SP ⊆ S that adds up to half of
∑

S
∑

S
∑

S.

• That is,

◮ Instances: Finite sets SSS of positive integers

◮ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)

• Instances are implicitly assumed to be given textually,

e.g. list of binary numerals with a separator:

{2, 4, 5}{2, 4, 5}{2, 4, 5} given as 10#100#10110#100#10110#100#101.

A mystery problem: Integer Partition

• Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.

Here is a problem for which there is a solution

but we don’t know if there is an efficient one.

• Given a finite set SSS of positive integers,

is there a set P ⊆ SP ⊆ SP ⊆ S that adds up to half of
∑

S
∑

S
∑

S.

• That is,

◮ Instances: Finite sets SSS of positive integers

◮ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)

• Instances are implicitly assumed to be given textually,

e.g. list of binary numerals with a separator:

{2, 4, 5}{2, 4, 5}{2, 4, 5} given as 10#100#10110#100#10110#100#101.

• Examples.

⋆ For {2, 3, 4, 5}{2, 3, 4, 5}{2, 3, 4, 5}: yes.

⋆ For {2, 3, 4, 6}{2, 3, 4, 6}{2, 3, 4, 6}: no, since the total is odd.

⋆ For {2, 3, 4, 7}{2, 3, 4, 7}{2, 3, 4, 7}: no

A mystery problem: Integer Partition

• Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.

Here is a problem for which there is a solution

but we don’t know if there is an efficient one.

• Given a finite set SSS of positive integers,

is there a set P ⊆ SP ⊆ SP ⊆ S that adds up to half of
∑

S
∑

S
∑

S.

• That is,

◮ Instances: Finite sets SSS of positive integers

◮ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)

• Instances are implicitly assumed to be given textually,

e.g. list of binary numerals with a separator:

{2, 4, 5}{2, 4, 5}{2, 4, 5} given as 10#100#10110#100#10110#100#101.

• Examples.

⋆ For {2, 3, 4, 5}{2, 3, 4, 5}{2, 3, 4, 5}: yes.

⋆ For {2, 3, 4, 6}{2, 3, 4, 6}{2, 3, 4, 6}: no, since the total is odd.

⋆ For {2, 3, 4, 7}{2, 3, 4, 7}{2, 3, 4, 7}: no

• What algorithm is a solution?

A mystery problem: Integer Partition

• Primality, Connectivity and Substring have each an efficient solution.

Termination does not have any solution.

Here is a problem for which there is a solution

but we don’t know if there is an efficient one.

• Given a finite set SSS of positive integers,

is there a set P ⊆ SP ⊆ SP ⊆ S that adds up to half of
∑

S
∑

S
∑

S.

• That is,

◮ Instances: Finite sets SSS of positive integers

◮ Property: Exists P ⊆ SP ⊆ SP ⊆ S such that
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)
∑

P =
∑

(S − P)

• Instances are implicitly assumed to be given textually,

e.g. list of binary numerals with a separator:

{2, 4, 5}{2, 4, 5}{2, 4, 5} given as 10#100#10110#100#10110#100#101.

• Examples.

⋆ For {2, 3, 4, 5}{2, 3, 4, 5}{2, 3, 4, 5}: yes.

⋆ For {2, 3, 4, 6}{2, 3, 4, 6}{2, 3, 4, 6}: no, since the total is odd.

⋆ For {2, 3, 4, 7}{2, 3, 4, 7}{2, 3, 4, 7}: no

• What algorithm is a solution?

What’s wrong with it?

F23

LANGUAGES

F23

Language = set of strings

• Given an alphabet ΣΣΣ a ΣΣΣ-language

(or language over ΣΣΣ) is a set of ΣΣΣ-strings.

• Don’t confuse strings and languages:

Languages are sets, and can be finite or infinite.

Strings are data-objects, and are finite by defnition.

F23

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

◮ The empty language.

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

◮ The empty language.

◮ The alphabet ΣΣΣ itself (each string is a single symbol).

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

◮ The empty language.

◮ The alphabet ΣΣΣ itself (each string is a single symbol).

◮ {a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

◮ The empty language.

◮ The alphabet ΣΣΣ itself (each string is a single symbol).

◮ {a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}

◮ The decimal numerals for prime numbers:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.

Examples

◮ The set of all strings over ΣΣΣ , denoted Σ∗Σ∗Σ∗.

◮ {a, b, ab, bb}{a, b, ab, bb}{a, b, ab, bb}

◮ The empty language.

◮ The alphabet ΣΣΣ itself (each string is a single symbol).

◮ {a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}{a, aa, aaa, aaaa,...}

◮ The decimal numerals for prime numbers:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.{2, 3, 5, 7, 11, 13, 17, 19, 23, 29 . . . }.

◮ The binary numerals for prime numbers:

{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, . . . }.{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, . . . }.{10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, . . . }.

F23

More examples

◮ The single-sylable English words

More examples

◮ The single-sylable English words

◮ The passwords used at IUB

More examples

◮ The single-sylable English words

◮ The passwords used at IUB

◮ The books in the Library of Congress (each book is a string!)

More examples

◮ The single-sylable English words

◮ The passwords used at IUB

◮ The books in the Library of Congress (each book is a string!)

◮ The syntactically correct JavaScript programs

More examples

◮ The single-sylable English words

◮ The passwords used at IUB

◮ The books in the Library of Congress (each book is a string!)

◮ The syntactically correct JavaScript programs

◮ The Python programs that terminate for all input

F23

TEXTUAL DECISION PROBLEMS

F23

Each language is a decision problem

• Each language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is a decision problem:

◮ Instances: w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

◮ Property: w ∈ Lw ∈ Lw ∈ L

F23

Conversely: Each decision problem is a language

• The instances of a decision problem PPP are finite and discrete,

so they are codable as text.

Conversely: Each decision problem is a language

• The instances of a decision problem PPP are finite and discrete,

so they are codable as text.

• The codes of the instances satisfying PPP form a language!

Conversely: Each decision problem is a language

• The instances of a decision problem PPP are finite and discrete,

so they are codable as text.

• The codes of the instances satisfying PPP form a language!

• Example: Using binary numerals the Primality problem

becomes the language 10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011,

Conversely: Each decision problem is a language

• The instances of a decision problem PPP are finite and discrete,

so they are codable as text.

• The codes of the instances satisfying PPP form a language!

• Example: Using binary numerals the Primality problem

becomes the language 10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011, . . .10, 11, 101, 111, 1011,

• Once we set a coding method,

we write a#a#a# for the code of aaa

(at least when distinguishing between aaa and a#a#a# matters).

F23

DELINEATING LANGUAGES

F23

Operations on languages

• If LLL and MMM are languages then

we obtain new languages by basic set operations, such as

union (L ∪ ML ∪ ML ∪ M), intersection (L ∩ ML ∩ ML ∩ M), and difference (L − ML − ML − M).

• Those operations work for any sets.

We consider next operations that are specific to languages.

F23

String operations applied pointwise

• Let rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗ be the function that reverses its input.

Example: rev(ab123) = 321barev(ab123) = 321barev(ab123) = 321ba.

String operations applied pointwise

• Let rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗ be the function that reverses its input.

Example: rev(ab123) = 321barev(ab123) = 321barev(ab123) = 321ba.

• Applying revrevrev to each string in a language LLL

we obtain a new language { rev(w) | w ∈ L }{ rev(w) | w ∈ L }{ rev(w) | w ∈ L }.

String operations applied pointwise

• Let rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗ be the function that reverses its input.

Example: rev(ab123) = 321barev(ab123) = 321barev(ab123) = 321ba.

• Applying revrevrev to each string in a language LLL

we obtain a new language { rev(w) | w ∈ L }{ rev(w) | w ∈ L }{ rev(w) | w ∈ L }.

From function revrevrev over strings

we obtain a function over languages:

r̂ev(L) = { rev(w) | w ∈ L }r̂ev(L) = { rev(w) | w ∈ L }r̂ev(L) = { rev(w) | w ∈ L }

String operations applied pointwise

• Let rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗rev : Σ∗ → Σ∗ be the function that reverses its input.

Example: rev(ab123) = 321barev(ab123) = 321barev(ab123) = 321ba.

• Applying revrevrev to each string in a language LLL

we obtain a new language { rev(w) | w ∈ L }{ rev(w) | w ∈ L }{ rev(w) | w ∈ L }.

From function revrevrev over strings

we obtain a function over languages:

r̂ev(L) = { rev(w) | w ∈ L }r̂ev(L) = { rev(w) | w ∈ L }r̂ev(L) = { rev(w) | w ∈ L }

• Generally, a function f : Σ∗ → Σ∗f : Σ∗ → Σ∗f : Σ∗ → Σ∗

induces a function f̂̂f̂f on ΣΣΣ-languages:

f̂(L) = {f(w) | w ∈ L}f̂(L) = {f(w) | w ∈ L}f̂ (L) = {f(w) | w ∈ L}

Language concatenation

• From concatenation on strings

we get a concatenation operation on languages:

The concatenation of languages L, ML, ML, M is

L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}

Language concatenation

• From concatenation on strings

we get a concatenation operation on languages:

The concatenation of languages L, ML, ML, M is

L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}

• Examples:

◮ {a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}

Language concatenation

• From concatenation on strings

we get a concatenation operation on languages:

The concatenation of languages L, ML, ML, M is

L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}

• Examples:

◮ {a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}

◮ {1, 11} · {1, 11} = {11, 111, 1111}{1, 11} · {1, 11} = {11, 111, 1111}{1, 11} · {1, 11} = {11, 111, 1111}

Language concatenation

• From concatenation on strings

we get a concatenation operation on languages:

The concatenation of languages L, ML, ML, M is

L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}

• Examples:

◮ {a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}

◮ {1, 11} · {1, 11} = {11, 111, 1111}{1, 11} · {1, 11} = {11, 111, 1111}{1, 11} · {1, 11} = {11, 111, 1111}

◮ {play, dress} · {er, ing}{play, dress} · {er, ing}{play, dress} · {er, ing}

= {player, playing, dresser, dressing}= {player, playing, dresser, dressing}= {player, playing, dresser, dressing}

Language concatenation

• From concatenation on strings

we get a concatenation operation on languages:

The concatenation of languages L, ML, ML, M is

L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}L · M =df {u · v | u ∈ L, v ∈ M}

• Examples:

◮ {a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}{a, b} · {b, c} = {ab, ac, bb, bc}

◮ {1, 11} · {1, 11} = {11, 111, 1111}{1, 11} · {1, 11} = {11, 111, 1111}{1, 11} · {1, 11} = {11, 111, 1111}

◮ {play, dress} · {er, ing}{play, dress} · {er, ing}{play, dress} · {er, ing}

= {player, playing, dresser, dressing}= {player, playing, dresser, dressing}= {player, playing, dresser, dressing}

◮ Σ∗ · Σ∗ = Σ∗Σ∗ · Σ∗ = Σ∗Σ∗ · Σ∗ = Σ∗

F23

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} =

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

• L · ∅ =L · ∅ =L · ∅ =

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

• L · ∅ =L · ∅ =L · ∅ =

∅∅∅

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

• L · ∅ =L · ∅ =L · ∅ =

∅∅∅

• L · {ε} =L · {ε} =L · {ε} =

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

• L · ∅ =L · ∅ =L · ∅ =

∅∅∅

• L · {ε} =L · {ε} =L · {ε} =

LLL

So {ε}{ε}{ε} is the unit of language concatenation,

just as 0, 10, 10, 1 and εεε are the units

of addition, multiplication, and string concatenation.

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

• L · ∅ =L · ∅ =L · ∅ =

∅∅∅

• L · {ε} =L · {ε} =L · {ε} =

LLL

So {ε}{ε}{ε} is the unit of language concatenation,

just as 0, 10, 10, 1 and εεε are the units

of addition, multiplication, and string concatenation.

• Σ · Σ =Σ · Σ =Σ · Σ =

Puzzles

• {A, B, C} · {1, 2} ={A, B, C} · {1, 2} ={A, B, C} · {1, 2} = {A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}{A1, A2, B1, B2, C1, C2}

• L · ∅ =L · ∅ =L · ∅ =

∅∅∅

• L · {ε} =L · {ε} =L · {ε} =

LLL

So {ε}{ε}{ε} is the unit of language concatenation,

just as 0, 10, 10, 1 and εεε are the units

of addition, multiplication, and string concatenation.

• Σ · Σ =Σ · Σ =Σ · Σ =

The ΣΣΣ-strings of length 2.

F23

• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ?

• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ? p × qp × qp × q

• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ? p × qp × qp × q

• Is it possible that L · KL · KL · K have fewer

than p × qp × qp × q strings?

• Suppose LLL has ppp strings and KKK has qqq.

What is the maximal number of strings in L · KL · KL · K ? p × qp × qp × q

• Is it possible that L · KL · KL · K have fewer

than p × qp × qp × q strings?

{1, 11} · {1, 11} = {1, 11, 111}{1, 11} · {1, 11} = {1, 11, 111}{1, 11} · {1, 11} = {1, 11, 111}

F23

Associativity

L · (K · M)L · (K · M)L · (K · M) === {x · (y · z) | x ∈ L, y ∈ K, z ∈ M}{x · (y · z) | x ∈ L, y ∈ K, z ∈ M}{x · (y · z) | x ∈ L, y ∈ K, z ∈ M}

=== {(x · y) · z | x ∈ L, y ∈ K, z ∈ M}{(x · y) · z | x ∈ L, y ∈ K, z ∈ M}{(x · y) · z | x ∈ L, y ∈ K, z ∈ M}

=== (L · K) · M(L · K) · M(L · K) · M

F23

Self-concatenation

• Notation: L2L2L2 for L · LL · LL · L.

Self-concatenation

• Notation: L2L2L2 for L · LL · LL · L.

• Can L2 be the same as L?

Self-concatenation

• Notation: L2L2L2 for L · LL · LL · L.

• Can L2 be the same as L?

Yes: E.g. the language EEE of strings of even length:

E ⊆ E · EE ⊆ E · EE ⊆ E · E because ε ∈ Eε ∈ Eε ∈ E

E · E ⊆E · E ⊆E · E ⊆ because the sum of even numbers is even.

Self-concatenation

• Notation: L2L2L2 for L · LL · LL · L.

• Can L2 be the same as L?

Yes: E.g. the language EEE of strings of even length:

E ⊆ E · EE ⊆ E · EE ⊆ E · E because ε ∈ Eε ∈ Eε ∈ E

E · E ⊆E · E ⊆E · E ⊆ because the sum of even numbers is even.

Also: ∅∅∅, {ε}{ε}{ε}

F23

Repeated concatenation

• Define, for n > 1n > 1n > 1 ,

LnLnLn === L · · · · · LL · · · · · LL · · · · · L (LLL repeated nnn times)

Repeated concatenation

• Define, for n > 1n > 1n > 1 ,

LnLnLn === L · · · · · LL · · · · · LL · · · · · L (LLL repeated nnn times)

• We have Ln · Lk = Ln+kLn · Lk = Ln+kLn · Lk = Ln+k for n, k > 1n, k > 1n, k > 1 .

To make this true for k = 0k = 0k = 0 : Ln · L0 = Ln+0Ln · L0 = Ln+0Ln · L0 = Ln+0

define L0L0L0 to be

Repeated concatenation

• Define, for n > 1n > 1n > 1 ,

LnLnLn === L · · · · · LL · · · · · LL · · · · · L (LLL repeated nnn times)

• We have Ln · Lk = Ln+kLn · Lk = Ln+kLn · Lk = Ln+k for n, k > 1n, k > 1n, k > 1 .

To make this true for k = 0k = 0k = 0 : Ln · L0 = Ln+0Ln · L0 = Ln+0Ln · L0 = Ln+0

define L0L0L0 to be {ε}{ε}{ε},

the neutral language for concatenation

F23

Iterated concatenation

• We’ve generated the set Σ∗Σ∗Σ∗ of all ΣΣΣ-strings:

◮ ε ∈ Σ∗ε ∈ Σ∗ε ∈ Σ∗

◮ If σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ then σw ∈ Σ∗σw ∈ Σ∗σw ∈ Σ∗.

Iterated concatenation

• We’ve generated the set Σ∗Σ∗Σ∗ of all ΣΣΣ-strings:

◮ ε ∈ Σ∗ε ∈ Σ∗ε ∈ Σ∗

◮ If σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ then σw ∈ Σ∗σw ∈ Σ∗σw ∈ Σ∗.

• Generalizing this from ΣΣΣ

to a generic language LLL we get:

◮ ε ∈ L∗ε ∈ L∗ε ∈ L∗

◮ If x ∈ Lx ∈ Lx ∈ L and w ∈ L∗w ∈ L∗w ∈ L∗ then x · w ∈ L∗x · w ∈ L∗x · w ∈ L∗.

Iterated concatenation

• We’ve generated the set Σ∗Σ∗Σ∗ of all ΣΣΣ-strings:

◮ ε ∈ Σ∗ε ∈ Σ∗ε ∈ Σ∗

◮ If σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ then σw ∈ Σ∗σw ∈ Σ∗σw ∈ Σ∗.

• Generalizing this from ΣΣΣ

to a generic language LLL we get:

◮ ε ∈ L∗ε ∈ L∗ε ∈ L∗

◮ If x ∈ Lx ∈ Lx ∈ L and w ∈ L∗w ∈ L∗w ∈ L∗ then x · w ∈ L∗x · w ∈ L∗x · w ∈ L∗.

• So

L∗L∗L∗ === {w1 · · · · · wk | k > 0, wi ∈ L}{w1 · · · · · wk | k > 0, wi ∈ L}{w1 · · · · · wk | k > 0, wi ∈ L}

=== ∪k>0 Lk∪k>0 Lk∪k>0 Lk

Iterated concatenation

• We’ve generated the set Σ∗Σ∗Σ∗ of all ΣΣΣ-strings:

◮ ε ∈ Σ∗ε ∈ Σ∗ε ∈ Σ∗

◮ If σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ then σw ∈ Σ∗σw ∈ Σ∗σw ∈ Σ∗.

• Generalizing this from ΣΣΣ

to a generic language LLL we get:

◮ ε ∈ L∗ε ∈ L∗ε ∈ L∗

◮ If x ∈ Lx ∈ Lx ∈ L and w ∈ L∗w ∈ L∗w ∈ L∗ then x · w ∈ L∗x · w ∈ L∗x · w ∈ L∗.

• So

L∗L∗L∗ === {w1 · · · · · wk | k > 0, wi ∈ L}{w1 · · · · · wk | k > 0, wi ∈ L}{w1 · · · · · wk | k > 0, wi ∈ L}

=== ∪k>0 Lk∪k>0 Lk∪k>0 Lk

• This is the (Kleene) star of LLL .

x ∈ L∗x ∈ L∗x ∈ L∗ iff x = εx = εx = ε or x = w1 · w2 · · · wnx = w1 · w2 · · · wnx = w1 · w2 · · · wn for some wi ∈ Lwi ∈ Lwi ∈ L.

F23

Some properties of star

• L∗L∗L∗ is the smallest language containing LLL and εεε

and closed under concatenation.

Some properties of star

• L∗L∗L∗ is the smallest language containing LLL and εεε

and closed under concatenation.

• L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗ :

If u = x1 · · · xpu = x1 · · · xpu = x1 · · · xp and v = y1 · · · ymv = y1 · · · ymv = y1 · · · ym, where xi, yj ∈ Lxi, yj ∈ Lxi, yj ∈ L,

then u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗

(concatenation is associative!)

Some properties of star

• L∗L∗L∗ is the smallest language containing LLL and εεε

and closed under concatenation.

• L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗ :

If u = x1 · · · xpu = x1 · · · xpu = x1 · · · xp and v = y1 · · · ymv = y1 · · · ymv = y1 · · · ym, where xi, yj ∈ Lxi, yj ∈ Lxi, yj ∈ L,

then u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗

(concatenation is associative!)

• A proof by induction on x ∈ L∗x ∈ L∗x ∈ L∗ that for all y ∈ L∗y ∈ L∗y ∈ L∗ we have x · y ∈ L∗x · y ∈ L∗x · y ∈ L∗ :

Some properties of star

• L∗L∗L∗ is the smallest language containing LLL and εεε

and closed under concatenation.

• L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗ :

If u = x1 · · · xpu = x1 · · · xpu = x1 · · · xp and v = y1 · · · ymv = y1 · · · ymv = y1 · · · ym, where xi, yj ∈ Lxi, yj ∈ Lxi, yj ∈ L,

then u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗

(concatenation is associative!)

• A proof by induction on x ∈ L∗x ∈ L∗x ∈ L∗ that for all y ∈ L∗y ∈ L∗y ∈ L∗ we have x · y ∈ L∗x · y ∈ L∗x · y ∈ L∗ :

◮ Basis: If y ∈ L∗y ∈ L∗y ∈ L∗ then x · y = ε · y = y ∈ L∗x · y = ε · y = y ∈ L∗x · y = ε · y = y ∈ L∗ .

Some properties of star

• L∗L∗L∗ is the smallest language containing LLL and εεε

and closed under concatenation.

• L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗L∗ · L∗ ⊆ L∗ :

If u = x1 · · · xpu = x1 · · · xpu = x1 · · · xp and v = y1 · · · ymv = y1 · · · ymv = y1 · · · ym, where xi, yj ∈ Lxi, yj ∈ Lxi, yj ∈ L,

then u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗u · v = x1 · · · xp · y1 · · · ym ∈ L∗

(concatenation is associative!)

• A proof by induction on x ∈ L∗x ∈ L∗x ∈ L∗ that for all y ∈ L∗y ∈ L∗y ∈ L∗ we have x · y ∈ L∗x · y ∈ L∗x · y ∈ L∗ :

◮ Basis: If y ∈ L∗y ∈ L∗y ∈ L∗ then x · y = ε · y = y ∈ L∗x · y = ε · y = y ∈ L∗x · y = ε · y = y ∈ L∗ .

◮ Step: Assume x · y ∈ L∗x · y ∈ L∗x · y ∈ L∗ for all y ∈ L∗y ∈ L∗y ∈ L∗.

Then for v ∈ Lv ∈ Lv ∈ L (v · x) · y = v · (x · y)(v · x) · y = v · (x · y)(v · x) · y = v · (x · y) which is in L∗L∗L∗ by definition

L∗L∗L∗.

F23

Some examples

• {0}∗ ={0}∗ ={0}∗ =

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ =

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

• ∅∗ =∅∗ =∅∗ =

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

• ∅∗ =∅∗ =∅∗ = {ε}{ε}{ε}

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

• ∅∗ =∅∗ =∅∗ = {ε}{ε}{ε}

• {00}∗ ={00}∗ ={00}∗ =

Some examples

• {0}∗ ={0}∗ ={0}∗ = {ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}{ε, 0, 00, 000, . . . , 0n, . . .}

• {ε}∗ ={ε}∗ ={ε}∗ = {ε}{ε}{ε}

• ∅∗ =∅∗ =∅∗ = {ε}{ε}{ε}

• {00}∗ ={00}∗ ={00}∗ = {02n | n > 0}{02n | n > 0}{02n | n > 0}

F23

LANGUAGE RESIDUES

F23

Acceptable complements

• Given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

consider the strings in LLL of the form w · xw · xw · x,

i.e. that start with www .

• For example if LLL consists of English words

and www is conconcon then we look at words

that start with conconcon, such as

considerconsiderconsider, contrarycontrarycontrary, condensecondensecondense, and conconcon itself.

Acceptable complements

• Given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

consider the strings in LLL of the form w · xw · xw · x,

i.e. that start with www .

• For example if LLL consists of English words

and www is conconcon then we look at words

that start with conconcon, such as

considerconsiderconsider, contrarycontrarycontrary, condensecondensecondense, and conconcon itself.

• Here are the remainders (the xxx in w · xw · xw · x)) of the above:

sidersidersider, raryraryrary, densedensedense, and εεε.

I.e. the strings that complement conconcon to an English word.

Acceptable complements

• Given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

consider the strings in LLL of the form w · xw · xw · x,

i.e. that start with www .

• For example if LLL consists of English words

and www is conconcon then we look at words

that start with conconcon, such as

considerconsiderconsider, contrarycontrarycontrary, condensecondensecondense, and conconcon itself.

• Here are the remainders (the xxx in w · xw · xw · x)) of the above:

sidersidersider, raryraryrary, densedensedense, and εεε.

I.e. the strings that complement conconcon to an English word.

• The resulting language is the residue of the English language over conconcon

conconcon itself is the trunk of that residue.

Acceptable complements

• Given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

consider the strings in LLL of the form w · xw · xw · x,

i.e. that start with www .

• For example if LLL consists of English words

and www is conconcon then we look at words

that start with conconcon, such as

considerconsiderconsider, contrarycontrarycontrary, condensecondensecondense, and conconcon itself.

• Here are the remainders (the xxx in w · xw · xw · x)) of the above:

sidersidersider, raryraryrary, densedensedense, and εεε.

I.e. the strings that complement conconcon to an English word.

• The resulting language is the residue of the English language over conconcon

conconcon itself is the trunk of that residue.

• In general, given L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

the residue of LLL over www is the language L/w = {x | w · x ∈ L}L/w = {x | w · x ∈ L}L/w = {x | w · x ∈ L}

F23

Examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

Examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since inventinventinvent is a word.

Examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since inventinventinvent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

Examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since inventinventinvent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

• Take L = {ab}L = {ab}L = {ab}, a singleton language.

We have L/ε = {ab}L/ε = {ab}L/ε = {ab}, L/a = {b}L/a = {b}L/a = {b} , and L/ab = εL/ab = εL/ab = ε.

For any other string www , L/w = ∅L/w = ∅L/w = ∅.

Examples of residues

• Take L =L =L = English words.

L/inventL/inventL/invent contains the strings or, ion, ive, edor, ion, ive, edor, ion, ive, ed and inginging

since inventor, invention, inventiveinventor, invention, inventiveinventor, invention, inventive and inventedinventedinvented are words.

• ǫǫǫǫǫǫǫǫǫ is also in L/inventL/inventL/invent since inventinventinvent is a word.

• The residue L/adL/adL/ad contains the strings vance, apt, opt, d,vance, apt, opt, d,vance, apt, opt, d, and ǫǫǫǫǫǫǫǫǫ.

• Take L = {ab}L = {ab}L = {ab}, a singleton language.

We have L/ε = {ab}L/ε = {ab}L/ε = {ab}, L/a = {b}L/a = {b}L/a = {b} , and L/ab = εL/ab = εL/ab = ε.

For any other string www , L/w = ∅L/w = ∅L/w = ∅.

• For any language LLL we have L/ε = LL/ε = LL/ε = L:

w ∈ Lw ∈ Lw ∈ L iff ε ∈ L/wε ∈ L/wε ∈ L/w.

F23

Another example

• L = {0, 00, 010}L = {0, 00, 010}L = {0, 00, 010}

L/εL/εL/ε === LLL

L/0L/0L/0 === {ε, 1, 0}{ε, 1, 0}{ε, 1, 0}

L/00L/00L/00 === {ε}{ε}{ε}

L/01L/01L/01 === {0}{0}{0}

L/010L/010L/010 === {ε}{ε}{ε}

L/wL/wL/w === ∅∅∅ for any other www

• L/00 = L/010L/00 = L/010L/00 = L/010, so there are five distinct residues.

F23

The regular languages

• The basic ΣΣΣ-languages are generated

from the finite ΣΣΣ-languages and Σ∗Σ∗Σ∗ by the clauses

◮ the set operations of union, intersection, and difference; and

◮ the language operations of concatenation, plus and star.

The regular languages

• The basic ΣΣΣ-languages are generated

from the finite ΣΣΣ-languages and Σ∗Σ∗Σ∗ by the clauses

◮ the set operations of union, intersection, and difference; and

◮ the language operations of concatenation, plus and star.

• That is:

– Σ∗Σ∗Σ∗ and the Finite languages are basic.

– If L, ML, ML, M are basic then so are L ∩ M, L ∪ ML ∩ M, L ∪ ML ∩ M, L ∪ M and L − ML − ML − M .

– If LLL is basic then so are L+L+L+ and L∗L∗L∗ .

F23

Regular languages

• The regular ΣΣΣ-languages are generated:

◮ The finite ΣΣΣ-languages are regular.

◮ The union, intersection, and difference of regular languages are regu-

lar.

◮ The concatenation and star of regular languages are regular.

Regular languages

• The regular ΣΣΣ-languages are generated:

◮ The finite ΣΣΣ-languages are regular.

◮ The union, intersection, and difference of regular languages are regu-

lar.

◮ The concatenation and star of regular languages are regular.

• Rephrased:

– The finite languages are regular.

– If L, ML, ML, M are regular then so are L ∩ M, L ∪ ML ∩ M, L ∪ ML ∩ M, L ∪ M and L − ML − ML − M .

– If LLL is regular then so is L∗L∗L∗ .

F23

Strictly-regular languages

• A formally narrower definition:

◮ ∅, {ε}∅, {ε}∅, {ε} and {σ}{σ}{σ} (for every σ ∈ Σ)σ ∈ Σ)σ ∈ Σ) are strictly-regular.

◮ If L, ML, ML, M are regular then so is L ∪ ML ∪ ML ∪ M .

◮ If L, ML, ML, M are regular then so are L · ML · ML · M and L∗L∗L∗.

• Every strictly-regular language is regular.

• We shall prove the coverse later.

F23

Regular expressions

• Regular expressions (RegExp’s) over ΣΣΣ are notations for strictly-regular

languages:

each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

Regular expressions

• Regular expressions (RegExp’s) over ΣΣΣ are notations for strictly-regular

languages:

each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

• L(α)L(α)L(α) is the language denoted by a RegExp ααα.

Regular expressions

• Regular expressions (RegExp’s) over ΣΣΣ are notations for strictly-regular

languages:

each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

• L(α)L(α)L(α) is the language denoted by a RegExp ααα.

• For the initial strictly-regular languages we use the following names:

– ∅∅∅ is denoted by ∅∅∅∅∅∅∅∅∅ ,

– {ε}{ε}{ε} by εεε , and

– for each σ ∈ Σσ ∈ Σσ ∈ Σ the singleton language {σ}{σ}{σ} is denoted by σσσ.

Regular expressions

• Regular expressions (RegExp’s) over ΣΣΣ are notations for strictly-regular

languages:

each expression is a road-map, i.e. recipe, notation,

for the strictly-regular definition of a language.

• L(α)L(α)L(α) is the language denoted by a RegExp ααα.

• For the initial strictly-regular languages we use the following names:

– ∅∅∅ is denoted by ∅∅∅∅∅∅∅∅∅ ,

– {ε}{ε}{ε} by εεε , and

– for each σ ∈ Σσ ∈ Σσ ∈ Σ the singleton language {σ}{σ}{σ} is denoted by σσσ.

• Suppose language LLL is denoted by ααα and KKK by βββ . Then

– L ∪ KL ∪ KL ∪ K is denoted by (α) U (α)(α) U (α)(α) U (α),

– L · KL · KL · K by (α) • (β)(α) • (β)(α) • (β), and

– L∗L∗L∗ by (α)⋆(α)⋆(α)⋆.

F23

Examples

◮ {ab}{ab}{ab} is denoted by (a) • (b)(a) • (b)(a) • (b).

Examples

◮ {ab}{ab}{ab} is denoted by (a) • (b)(a) • (b)(a) • (b).

◮ {a, b}{a, b}{a, b} is denoted by (a) U (b)(a) U (b)(a) U (b).

Examples

◮ {ab}{ab}{ab} is denoted by (a) • (b)(a) • (b)(a) • (b).

◮ {a, b}{a, b}{a, b} is denoted by (a) U (b)(a) U (b)(a) U (b).

◮ {ε, ab}{ε, ab}{ε, ab} is denoted by (ε) U ((a) • (b))(ε) U ((a) • (b))(ε) U ((a) • (b)).

Examples

◮ {ab}{ab}{ab} is denoted by (a) • (b)(a) • (b)(a) • (b).

◮ {a, b}{a, b}{a, b} is denoted by (a) U (b)(a) U (b)(a) U (b).

◮ {ε, ab}{ε, ab}{ε, ab} is denoted by (ε) U ((a) • (b))(ε) U ((a) • (b))(ε) U ((a) • (b)).

◮ {a, b}∗{a, b}∗{a, b}∗ is denoted by ((a) U (b))⋆))((a) U (b))⋆))((a) U (b))⋆)) .

F23

Abbreviation conventions

• The operators used in RegExp are given a decreasing binding priority

omit parentheses and bullets where unambiguous.

Abbreviation conventions

• The operators used in RegExp are given a decreasing binding priority

omit parentheses and bullets where unambiguous.

• Examples:

Abbreviation conventions

• The operators used in RegExp are given a decreasing binding priority

omit parentheses and bullets where unambiguous.

• Examples:

◮ {a}⋆
b{a}⋆
b{a}⋆
b for ((a)⋆) • (b)((a)⋆) • (b)((a)⋆) • (b) .

Abbreviation conventions

• The operators used in RegExp are given a decreasing binding priority

omit parentheses and bullets where unambiguous.

• Examples:

◮ {a}⋆
b{a}⋆
b{a}⋆
b for ((a)⋆) • (b)((a)⋆) • (b)((a)⋆) • (b) .

◮ a•bUca•bUca•bUc for ((a)•(b))U(c)((a)•(b))U(c)((a)•(b))U(c) .

Abbreviation conventions

• The operators used in RegExp are given a decreasing binding priority

omit parentheses and bullets where unambiguous.

• Examples:

◮ {a}⋆
b{a}⋆
b{a}⋆
b for ((a)⋆) • (b)((a)⋆) • (b)((a)⋆) • (b) .

◮ a•bUca•bUca•bUc for ((a)•(b))U(c)((a)•(b))U(c)((a)•(b))U(c) .

◮ (a⋆
b)⋆(a⋆
b)⋆(a⋆
b)⋆ for ((a)⋆)•((b)⋆)((a)⋆)•((b)⋆)((a)⋆)•((b)⋆).

