LIMITS OF COMPUTABILITY

1

Decidable problems

- Recall: A decision problem is *decidable* if there is a decision algorithm.
- We can now make this more precise.
- A language L ⊆ Σ* is (Turing-) decidable if it is recognized by some Turing-decider, that is a Turing acceptor that terminates for every input.
- A decision problem is Turing-decidable if its textual representation is.
- Given the Turing-Church Thesis we

identify informal algorithms with Turing acceptors!

Decision problems about computing devices

• ε -ACCEPTANCE:

Given acceptor M does M accept ε ?

• NON-EMPTINESS:

Given acceptor M, does it accept some string?

• TOTALITY:

Given acceptor M does M accept every string?

• ACCEPTANCE:

Given acceptor M and string w, does M accept w?

• HALTING:

Given a Turing transducer M and string w, does M terminate on input w?.

Decidability preseved under set operations

- Let \mathcal{P} and \mathcal{Q} be problems referring to the same instances, decided by algorithms A_P and A_Q respectively.
- The *complement* of \mathcal{P} is decidable: to decide $w \in \overline{\mathcal{P}}$ run A_P on input wand flip the answer.
- The *intersection* of \mathcal{P} and \mathcal{Q} is decidable: to decide $w \in \mathcal{P} \cap \mathcal{Q}$
 - Run A_P on w, if it rejects, reject; if it accepts:
 - ▶ run A_Q on w, if it rejects, reject; if it accepts accept.
- The union of the problems is also decidable, by a similar argument.

4

REDUCTIONS BETWEEN PROBLEMS

Using other problems's solution

- We often fulfill tasks using tools developed for other tasks.
- Examples:
 - 1. To match two decks of card, first sort them.
 - To use biased coins when a fair coin is needed use a biased coin in double-rounds: take HT as "head," TH as "tail," discard HH and TT.
 - 3. Use calculator whose multiplication works only for squaring. Use:

 $x \cdot y = (x + y)^2 - (x - y)^2 /2 /2$

In engineering a problem is "reduced" when broken up.
 In computing "reduction" means solving problem *P* by mapping its instances to those of a problem *Q*.

The intended lesson is that \mathcal{Q} is at least as informative as \mathcal{P} .

F22

• INTEGER-PARTITION:

Instances: Finite $S \subseteq \mathbb{N}$

Property: Exists $P \subset S$ s.t. $\Sigma P = \Sigma S/2$.

• EXACT-SUM:

Instances: Finite $S \subset \mathbb{N}$ and a target $t \in \mathbb{N}$ Property: Exists $P \subset S$ s.t. $\Sigma P = t$

• Reduction *p*:

Map instance S if **INTEGER-PARTITION** to $(S, (\Sigma S)/2)$

Example: CLIQUE reduces to INDEPENDENT SET

- A *clique* in graph $\mathcal{G} = (V, E)$ is a set of vertices all adjacent to each other.
- CLIQUE: Given $t \in \mathbb{N}$ is there a clique of size t in \mathcal{G} .
- An *independent set* in $\mathcal{G} = (V, E)$ is a set of vertices all non-adjacent to each other.
- INDEP-SET: Given $t \in \mathbb{N}$ is there an independent-set of size t in \mathcal{G} .
- CLIQUE reduces to ind-set by a "reverse-video" mapping:

Missing edges are in pink {A,B,D} a clique of size 3

A red graph Missing edges are in blue {A,B,D} an ind set of size 3

• A *reduction* of a decision-problem \mathcal{P} to a problem \mathcal{Q} is a function

 $\rho: \{ \text{Instances of } \mathcal{P} \} \rightarrow \{ \text{Instances of } \mathcal{Q} \}$

such that $X \in \mathcal{P}$ iff $\rho(X) \in \mathcal{Q}$. That is, if $X \in \mathcal{P}$ then $\rho(X) \in \mathcal{Q}$ and if $X \notin \mathcal{P}$ then $\rho(X) \notin \mathcal{Q}$.

- We write then $\rho: \mathcal{P} \leq \mathcal{Q}$.
- Such ρ is valuable when it easier to compute $\rho(X)$ than to decide $X \in \mathcal{P}$.
- When ρ is computable we write $\rho : \mathcal{P} \leq_{c} \mathcal{Q}$ and say that \mathcal{P} **computably-reduces** to \mathcal{Q} .

- Define ρ : HALTING \leq_c ACCEPTANCE
- *ρ* maps (*M*, *w*) to (*M'*, *w*)
 where *M'* on input *w* simulates *M* on *w* but accepts if and when *M* halts.
- This is a reduction:
 - If M halts on w then M' accepts w.
 - If *M* diverges on *w* then so does *M*', so it does not accept.
- ρ merely tinkers with transitions, so it is computable.

ACCEPTANCE computably-reduces to HALTING

- ACCEPTANCE: Given M & w, does M accept w?
- HALTING: Given M & w, does M halt on w?
- Define ρ: ACCEPTANCE ≤_c HALTING
 ρ maps (M, w) to (M', w)
 where M' is like M with rejection converted to looping:
 M' on input w simulates M but
 enters a vacuous loop when M terminates without accepting.

Accept: If M accepts w then M' halts (and accepts) w.

Reject: If M halts without accepting then M' does not halt.

Diverge: If M diverges then so does M'.

• The reduction merely tinkers with transitions, so it is computable.

- Define a computable reduction ρ : ϵ -ACCEPT \leq_c TOTALITY.
- Map instance M of ε -ACCEPT to instance M' of TOTALITY so that M accepts ε iff M' accepts every string.
- Define M' to be the acceptor that runs M on ε and accepts x if and when M accepts ε .
- If M accepts ε then M' accepts every string. Otherwise M' accepts no string.
- I.e. M accepts ε iff $\rho(M')$ is total.
- The reduction ρ is computable, because it consists in a simple syntactic construction of an algorithm M' from an algorithm M and a string w.

Example: ACCEPTANCE \leq_c TOTALITY & ε -ACCEPT

- Define a computable reduction ρ : **ACCEPTANCE** \leq_c **TOTALITY**.
- Map instance (M, w) of **ACCEPTANCE** to instance M' of **TOTALITY** so that M accepts w iff M' accepts every string.
- Define M' to be the acceptor that on input x
 runs M on w, and accepts x if and when M accepts w.
- If *M* accepts *w* then *M'* accepts every string.
 Otherwise *M'* accepts no string.
- I.e. *M* accepts *w* iff $\rho(M')$ is total. We also have that *M* accepts *w* iff $\rho(M')$ accepts ε .
- The reduction ρ is computable, because it consists in a simple syntactic construction of an algorithm M' from an algorithm M and a string w.

Composing reductions

- If functions $f, g: \Sigma^* \to \Sigma^*$ are computable, the so is $f \circ g$.
- **Proof.** The output of f is fed to g as input.
- Theorem

If $\rho : \mathcal{P} \leq_c \mathcal{Q}$ and $\rho' : \mathcal{Q} \leq_c \mathcal{R}$ then $\rho \circ \rho' : \mathcal{P} \leq_c \mathcal{R}$.

• $\rho \circ \rho'$ is computable.

It is a reduction:

 $x \in \mathcal{P}$ IFF $\rho(x) \in \mathcal{Q}$ (since ρ is a reduction) IFF $\rho'(\rho(x)) \in \mathcal{R}$ (since ρ' is a reduction)

- Theorem. Suppose $\rho : \mathcal{P} \leq_c \mathcal{Q}$. If \mathcal{Q} is decidable then so is \mathcal{P} .
- Proof. To decide whether $X \in \mathcal{P}$ compute $\rho(X)$ and run the decider for \mathcal{Q} on $\rho(X)$ as input.
- Consequence: Show that a problem \mathcal{P} is *not decidable* by defining $\rho: \mathcal{Q} \leq_c \mathcal{P}$ for an undecidable \mathcal{Q} .

UNDECIDABILITY

A non-recognized problem

- The problem "Self non-accept" (SNA) is: Instances: Turing-acceptors M Property: M does not accept M[#].
- We show that **SNA** is not recognized, let alone decidable.
- Suppose we had an acceptor D recognizing SNA, that is:
 - **D** accepts $M^{\#}$ IFF M does not accept $M^{\#}$
- Taking for M the particular acceptor D:
 - **D** accepts $D^{\#}$ IFF **D** does not accept $D^{\#}$
- Contradiction! So no acceptor *D* for SNA can exist!

Analogy with Russell's Paradox

Recall Russell's Paradox:

Define $\mathcal{R} =_{\mathrm{df}} \{x \mid x \text{ a set}, x \notin x\}$

That is: for any set $z \qquad z \in \mathcal{R}$ IFF $z \notin z$.

- In particular taking \mathcal{R} for z: $\mathcal{R} \in \mathcal{R}$ IFF $\mathcal{R} \notin \mathcal{R}$
- *R* is a collection of sets, which cannot be admitted as a "set."
 Root of the problem:

Objects \boldsymbol{x} are both objects and sets.

SNA is a set of acceptors, which cannot be recognized by an acceptor.
 Root of the problem:

An acceptor M is both a string $M^{\#}$ and a language $\mathcal{L}(M)$.

F22

ACCEPTANCE *is undecidable*

• SNA is a contrived decision problem,

designed to bootstrap our exploration of undecidability.

- ACCEPTANCE is a natural and important problem: Instances: Pairs (M, w), M an acceptor, w a string. Property: M accepts w.
- **THEOREM:** ACCEPTANCE is undecidable.
- **PROOF:** We have **SNA** \leq_c **NON-ACCEPTANCE**: Map instance M of **SNA** to instance $(M, M^{\#})$ of **NON-ACCEPTANCE**.
- If **ACCEPTANCE** were decidable,

then so would be its complement **NON-ACCEPTANCE**, and therefor also **NSA**.

SEMI-DECIDABILITY

• ACCEPTANCE is undecidable,

but it is *recognized* by an acceptor: the *universal interpreter!*

- That's more than we can say about NSA!
- A problem is *semi-decidable (SD)* if it is recognized (as a language) by a Turing-acceptor.
- A *decision* algorithm for problem *P* identifies correctly both *yes* and *no* instances.
 - A *recognition* (semi-decision) algorithm for \mathcal{P}
 - identifies correctly the yes instances,
 - but might loop for the *no* instances.

• INTEGER POLYNOMIALS

Given a polynomial $P(\vec{x})$ with integer coefficients, does it have an integer zero: $P(\vec{n}) = 0$.

• Semi-decision algorithm:

Exhaustive Search: Try successively all tuples \vec{n} , accept P if and when such a solution is found.

Certificates for semi-decidability

Many decision problems are of the form

Given an instance X is there an object c such that ... ?

- Examples:
 - (a) Given a graph X, is there a cycle c visiting each vertex once?
 - (b) Given a natural number X, does it have a divisor c > 1.
- We say that c is a **certificate** for $X \in \mathcal{P}$.

The cycle is a certificate for (a), a divisor is a certificate for (b).

• If the object *c* is provided by some benevolent power,

it only remains to check that it actually works:

the suggested list of vertices for (a) is indeed a cycle in the graph,

the suggested divisor for (b) is in fact a divisor of the given integer.

Formal definition of certification

- Let $\mathcal{L}(P)$ be a problem.
 - A certification for P is a mapping \vdash_{P}

from finite discrete objects (coded as strings) to instances of $\ensuremath{\mathcal{P}}$ such that

 $X \in \mathcal{P}$ IFF $c \vdash_{\mathcal{P}} X$ for some c

Formal definition of certification

- Let $\mathcal{L}(P)$ be a problem.
 - A <u>certification for P</u> is a mapping $\vdash_{\mathcal{P}}$ from finite discrete objects (coded as strings) to instances of \mathcal{P} such that

 $X \in \mathcal{P}$ IFF $c \vdash_{\mathcal{P}} X$ for some c

The subscript in ⊢_𝒫 is omitted when 𝒫 is evident.

Examples

• COMPOSITENESS:

A certificate for "n is composite" is a divisor of n.

Examples

• COMPOSITENESS:

A certificate for "n is composite" is a divisor of n.

• INTEGER POLYNOMIALS:

A certificate for $P[\vec{x}]$ is a vector \vec{n} of integers such that $P[\vec{n}] = 0$.

Examples

• COMPOSITENESS:

A certificate for "n is composite" is a divisor of n.

• INTEGER POLYNOMIALS:

A certificate for $P[\vec{x}]$ is a vector \vec{n} of integers such that $P[\vec{n}] = 0$.

• INTEGER PARTITION:

A certificate for a finite $S \subset \mathbb{N}$

is a set $P \subseteq S$ satisfying $\Sigma P = (\Sigma S)/2$.

Decidable certifications

A certification ⊢ for a problem *P* is *decidable* if it is decidable as a set:
 There is an algorithm deciding, given string *c* and instance *X* whether *c* ⊢ *X*.

- A certification ⊢ for a problem *P* is *decidable* if it is decidable as a set:
 There is an algorithm deciding, given string *c* and instance *X* whether *c* ⊢ *X*.
- Example: ACCEPTANCE has the certification $c \vdash (M, w)$ where c is an accepting trace of M for input w.

- A certification ⊢ for a problem *P* is *decidable* if it is decidable as a set:
 There is an algorithm deciding, given string *c* and instance *X* whether *c* ⊢ *X*.
- Example: ACCEPTANCE has the certification $c \vdash (M, w)$ where c is an accepting trace of M for input w.
- This certification is decidable:
 given string *c* and instance (*M*[#], *w*) of ACCEPTANCE
 it is easy to check that *c* is an accepting trace of *M*

for input *w*.

• THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.

- THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.
 - Proof of \Rightarrow :

Suppose $L = \mathcal{L}(M)$.

Let $c \vdash w$ iff c is a trace of M that accepts w.

- THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.
 - Proof of \Rightarrow :

Suppose $L = \mathcal{L}(M)$.

Let $c \vdash w$ iff c is a trace of M that accepts w.

• \vdash is a certification for *L*, since *M* recognizes *L*.

- THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.
 - Proof of \Rightarrow :

Suppose $L = \mathcal{L}(M)$.

Let $c \vdash w$ iff c is a trace of M that accepts w.

- If is a certification for L, since M recognizes L.
- ► Is decidable:

Check *c*'s frst cfg is *M*'s initial cfg for input *w*. Check that successive transitions in *c* is correct for *M*. Check *c*'s last cfg is accepting for *M*. • THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.

Proof of \Leftarrow :

Suppose \vdash is a decidable certification for *L*. Here is an algorithm that recognizes *L*:
- THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.
 - Proof of \Leftarrow :

Suppose \vdash is a decidable certification for L. Here is an algorithm that recognizes L:

• Given $w \in L$ check successive strings c(under size+lexicographic order) whether $c \vdash w$. • THEOREM. *L* is recognized by an acceptor iff quad iff it has a decidable certification.

Proof of \Leftarrow :

Suppose \vdash is a decidable certification for *L*. Here is an algorithm that recognizes *L*:

- Given $w \in L$ check successive strings c(under size+lexicographic order) whether $c \vdash w$.
- Accept w if and when such a c is found.

Computably enumerated problems

- A problem $L \subseteq \Sigma^*$ is **computably enumerated (CE)** if there is a computable function $f : \mathbb{N} \to \Sigma^*$ with image L.
- A language L ⊆ Σ* is orderly enumerated if there is a computable injection f: N → Σ*, where |f(n)| ≤ |f(n + 1)|, whose image is L.
- That is, $L = \{f(0), f(1), \ldots\}$ is a listing of L without repetition, in non-size-decreasing order.

Enumeration of decidable languages

• THEOREM.

An infinite language is decidable iff it is orderly-enumerated

- \Rightarrow : Suppose *L* is recognized by a decider *M*.
 - Referring to size-lexicographic ordering:
 - *L* is orderly-enumerated by

f(0) = first w accepted by M

f(n+1) = first w after f(n) accepted by M

- *f* is a non-size-decreasing injection by dfn, and is computable since *M* is a decider.
- Since L is infinite, f is total.

• 🗲 :

Suppose *L* is orderly-enumerated by $f: \mathbb{N} \to \Sigma^*$.

1. Then $L = \mathcal{L}(M)$, where M is the following acceptor:

on input w compute f(n) for successive n's,

accept if w is reached, stop and reject if |w| is exceeded.

2. M is a decider because f is

total, injective, and non-size-decreasing.

Computable enumeration = recognition

Theorem. A non-empty problem is recognized (i.e. SD) iff it is finite or computably enumerated.

• **⇒**:

Suppose L is an infinite recognized problem.

- Then it has a decidable certification \vdash .
- Since ⊢ is an infinite decidable set it is order-enumerated:

```
(c_1, w_1), (c_2, w_2), \ldots
```

- So $w_1, w_2...$ is a computable enumeration of L.
- 🗲 :

Suppose *L* is enumerated by a computable $f: \mathbb{N} \to \Sigma^*$.

 L = L(M) where M is the acceptor that on input w calculates f(0), f(1), f(2)... , and accepts w if and when it is obtained as output.

Decidability in terms of semi-decidability

- We characterized SD in terms of decidability:
 - *L* is SD iff it has a decidable certification.
- We now characterize decidability in terms of semi-decidability.
- Motivation: A decision algorithm answers yes/no correctly. A semi-decision algorithm uields just the yes answers.
- Decidability of L is like having two semi-decision algorithms: one for L and the other for \overline{L} .

Theorem. A language $L \subseteq \Sigma^*$ is decidable iff both L and its complement $\overline{L} = \Sigma^* - L$ are SD.

- \Rightarrow : If L is decidable, then so is its complement. Every decidable language is trivially SD, so both L and \overline{L} are SD.
 - *L* is SD, so it is the image of a computable $f^+ : \mathbb{N} \to \Sigma^*$.
 - \overline{L} is also SD, so it too is the image of a computable $f^-: \mathbb{N} \to \Sigma^*$.
 - ► To decide $w \in L$ calculate $f^+(0), f^-(0), f^+(1), f^-(1)...$ until w is obtained as an output.

If it is an output of f^+ then $w \in L$, if of f^- then $w \in \overline{L}$.

A problem whose complement is SD is said to be *co-SD*.
 So the Theorem states that

a problem is decidable iff it is both SD and co-SD.

Summary of characterizations

Let $L \subseteq \Sigma^*$

• The following are equivalent:

(a) *L* is *semi-decidable,* i.e. recognized by an acceptor

- (b) L is computably-enumerated
- (c) L has a decidable certification
- The following are equivalent:

(a) *L* is *decidable*, i.e. recognized by a terminating acceptor

(b) L is orderly-enumerated

(c) L is both SD and co-SD

- (a) are characterizations in terms of machine acceptors,
 - (b) in terms of generators,
 - (c) decidability and decidability in terms of each other.

Set operations on SD problems

- Let $L_0, L_1 \subseteq \Sigma^*$ be SD.
- Claim: $L_0 \cup L_1$ is SD.
- We can't just run the two acceptors sequentially: the first may fail to terminate.
- But since L₀, L₁ are SD, they have decidable certifications, say ⊢₀ for L₀ and ⊢₁ for L₁.

Let $c \vdash w$ just in case $c \vdash_0 w$ or $c \vdash_1 w$ (i.e. \vdash is $(\vdash_0 \cup \vdash_1)$)

- ⊢ is decidable, as the union of decidable sets.
- \vdash is a certification for $L_0 \cup L_1$:

```
x \in L_0 \cup L_1 \quad \text{IFF} \quad x \in L_0 \quad \text{or} \quad x \in L_1

\text{IFF} \quad \text{for some} \quad c \colon c \vdash_0 x \quad \text{or} \quad c \vdash_1 x

\text{IFF} \quad c \vdash x \quad \text{for some} \quad c \quad (\text{dfn of } \vdash)
```

SD is not closed under complement!

- We have seen: acceptance is SD but not decidable.
- If the complement of acceptance were SD, then acceptance would be both SD and co-SD, and therefore decidable, which it is not.

Proving SD via computable reductions

- We know that the problem accept, referring to Turing acceptors, is SD.
- There is an algorithm for transforming Turing acceptors *M* to equivalent general grammars *G*, that is such that (*G*) = *L*(*M*). So the following problem is also SD.
 generate: Given a grammar *G* and a string *w*, does *G* generate *w*.

SCOPE PROPERTIES OF COMPUTING DEVICES

Decidable problems of Turing machines

- Properties of Turing acceptors may be decidable: *Runs more than 4 steps on input* 001
 Has more than 4 states The accept state is the only terminal state
- These refer to the inner workings of the Turing machine not to the language it recognizes.
- The *e*-ACCEPT problem is different:

It is about the language *L* recognized, not the recognizing device.

• The answer yes/no would be the same for any acceptor for *L*.

Scope-properties of machines

• Many important properties of computing devices *M*

are **scope-properties**, in that they are about **what** M does, and not about **how** it does it.

• So a scope-property of *acceptors* M

is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.

 If two acceptors recognize the same language then they share every scope-property.

Scope-properties of machines

Many important properties of computing devices *M*

are **scope-properties**, in that they are about **what** M does, and not about **how** it does it.

• So a scope-property of *acceptors* M

is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.

- If two acceptors recognize the same language then they share every scope-property.
- Similarly, a scope-property of *transducers M* is a property of the partial-function that it computes.
- If two transducers compute the same partial-function then they share every scope-property.

Scope-properties of machines

• Many important properties of computing devices M

are **scope-properties**, in that they are about **what** M does, and not about **how** it does it.

• So a scope-property of *acceptors* M

is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.

- If two acceptors recognize the same language then they share every scope-property.
- Similarly, a scope-property of *transducers M* is a property of the partial-function that it computes.
- If two transducers compute the same partial-function then they share every scope-property.
- Scope-properties are also called by logicians *scope, extensional, index-sets* and *semantical*.

Examples for Turing-acceptors

- $\mathcal{L}(M)$ is finite.
- $\mathcal{L}(M)$ is infinite.
- Accepts at least two strings, i.e. $\mathcal{L}(M) \ge 2$ elements.
- Every string accepted by M has even length.
- $\mathcal{L}(M)$ is a regular language.

This does *not* mean that M is a DFA.

- For some n > 0 *M* accepts every string of length *n*.
- For every $n \ge 0$ *M* accepts some string of length *n*.

Examples for Turing-transducers M.

- Computes a total function.
- Undefined for input ε .
- Define for all input of even length.
- Undefined for all input of even length.
- Constant (same output for all input
- Increasing: If |x| < |y| then |f(x)| < |f(y)|
- Bounded: There is an $n \in \mathbb{N}$ s.t. $|f(x)| \leq n$ for all x.
- Unbounded: For every *n* there is some x s.t. |f(x)| > n.
- Inflationary: $|f(x)| \ge |x|$ for all x.

Non-scope properties of Turing machines

- Has more than 100 states.
- Reads every input to its end.
- For some input visits every state during computation
- Never runs more than n^2 steps for input of size $\leq n$
- Is a decider

(but "recognizes a deciable language" *is* a scope-property!)

Rice's Theorem

- A property is **trivial** for a language Lif it is either true of every $w \in L$ or false for every w.
- Example: The property $\mathcal{L}(M)$ is SD

is always true: it just conveys the definition of SD.

• Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors, other than the trivial properties.

- Proof idea:
 - If \mathcal{P} is non-trivial, then ε -ACCEPT $\leq_{c} \mathcal{P}$.

So \mathcal{P} is undecidable.

Proof of Rice's Theorem

- Let *P* be a non-trivial scope-property of Turing acceptors. Fix some acceptor *E* recognizing Ø. Assume *E* ∉ *P* (it won't matter). Also, *P* is non-trivial, so it is true of some acceptor *A*.
- Note: we have E and A on opposite sides of \mathcal{P} !
- Define $\rho: \varepsilon \mathsf{ACCEPT} \leqslant_c \mathcal{P}$,
- Write M' for $\rho(M)$.
- On input x, M' disregards x, and runs M on ε . If and when M accepts ε , M' fires A on x.
- So we have

 $\mathcal{L}(M') = \text{ if } M \text{ accepts } \varepsilon \text{ then } \mathcal{L}(A)$ else \emptyset , i.e. $\mathcal{L}(E)$

- SO *M* accepts ε just in case $M' = \rho(M) \in \mathcal{P}$.
- The reduction consists in tinkering with transitions, so it is computable.

Using Rice's Theorem

- All previous examples of scope properties are non-trivial, and therefore undecidable.
- Rice's Theorem says nothing about problems that are are not scope-properties.
- Properties referring to the structure of Turing machines, or to the syntax of programs, are always decidable.
- But properties that relate to the workings of algorithms and machines are often, but not always, undecidable.
- Example. ALL-STATES-USED:

Each state of a given TM M occurs in some trace of M.

• It is not hard to show that ε -ACCEPT \leq_c ALL-STATES-USED. So the non-scope problem ALL-STATES-USED is undecidable. • Outline of the reduction:

- Acceptor M is mapped to M', which uses an additional alphabet symbol # and an additional state t.
- *M*' runs *M* on input *ε* and if accepted
 writes *#*, switches to *t*,
 and cycles while reading *#* through all states of *M*.
- So if M accepts ε then M' uses all its states. If not, then M' does not use the state t.

SUMMARY OF METHODS

Proving problems to be decidable

Methods for proving problems *L* decidable:

- ► *L* is recognized by a decider.
- ► *L* is finite or orderly-enumerated.
- Both L and \overline{L} are semi-decidable.
- L is definable using union, intersection, and complement (or difference) from decidable problems.
- ► *L* is computably reducible to a decidable problem.

Proving problems to be SD

Methods for proving problems *L* semi-decidable:

- L is recognized by an acceptor.
- ► *L* is computably-enumerated.
- \blacktriangleright L has a decidable certification.
- L is defined using union and intersection from SD languages.
- *L* is computably reducible to a SD problem.

Proving properties to be undecidable

- Methods for proving problems *L* undecidable:
 - \blacktriangleright *L* is a stable property of acceptors or transducers.
 - \blacktriangleright *L* is defined using complement from undecidable languages.
 - An undecidable problem is computably reducible to L.
- Methods for proving problems *L* non-SD:
 - \blacktriangleright *L* is the complement of a SD but undecidable problem.
 - A non-SD problem, such as ε -NON-ACCEPT, is $\leq_c L$.

OTHER UNDECIDABLE PROBLEMS

String equations

• Recall string expressions:

generated from variables and fixed strings using the concatenation, head, and tail operations.

• Solution to E = E':

a binding of variables to strings, for which the equation is true.

- x * 01 * y = y * 10 * x has as solution x = 11, y = 1.
- string-equation Problem:

Given an equation between string-expressions, does it have a solution?

• string-equation is undecidable

Integer equations

- Arithmetic expressions: generated from variables and numerals using + and ×.
- A solution to E = E':
 - a binding of variables to integers, for which the equation is true.
- arith-equation Problem:

Given an equation between arithmetic-expressions, does it have a solution?

• Proved undecidable in the 1970's, incrementally,

by Yuri Matiyasevich, Julia Robinson, Hilary Putnam and Martin Davis.

* Tessellation

- Consider square tiles, with each side marked with a design. Such tiles are used to tessellate rectangles, with similar abutting sides.
- Example: The following tiles can be used to tessellate a 3×3 display

• The following tessellates a 2×2 display, but not any 3×3 :

Undecidable: The tiling Problem (Hao Wang, 1961):
 Given a set *P* of marked tiles,

can *P* tessellate arbitrarily large rectangles.

*Post's Correspondence Problem

• A *correspondence* over an alphabet Σ is a finite set of pairs

 $(u_1, v_1), \ldots, (u_k, v_k)$ $(u_i, v_i \in \Sigma^*)$

A *match* for such a correspondence is a string *w* that can be read both as a concatenation of some *u_i*'s and as the concatenation of the *corresponding v_i*'s:

 $w = u_{i_1} \cdots u_{i_n} = v_{i_1} \cdots v_{i_n}$

- Example: The correspondence $C = \{(100, 1), (0, 100), (1, 00)\}$ has the following match:
 - $w = 100 \ 1 \ 100 \ 100 \ 1 \ 0 \ 0$ $= 1 \ 00 \ 1 \ 1 \ 00 \ 100 \ 100$
- The undecidable **post's correspondence** Problem: *Given a correspondence C*, *does it have a match?*

F22

*The Perishable Matrix Problem

- A finite set S of k × k matrices is perishable if some product of matrices out of S (repetition allowed) yields the zero k × k matrix.
- **PERISHABLE-MATRIX** Problem:

Given s set of $k \times k$ integer matrices (for some k), is it perishable.

Problems about CFGs

- Does a given CFG over Σ generate all Σ -strings? (Whether a CFG generate some string *is* decidable).
- Is a given CFG ambiguous?
- Given CFGs G and G', is $\mathcal{L}(G_0) \subseteq \mathcal{L}(G_1)$? Is $\mathcal{L}(G) \cap \mathcal{L}(G')$ empty?
* Validity

- Relational Logic gives rules of reasoning for the basic logical operations: the connective: ¬, ∧, ∨, and the quantifiers: ∀, ∃
- Example: $(\forall x \ P(x)) \lor (\exists y \neg P(y)).$
- A statement is *valid* if it is true regardless of the particulars.
 For example, the statement above is valid.
- In contrast, the following statement is not valid:

 $(\forall x \exists y \ P(x,y)) \lor (\exists x \forall y \neg P(x,y))$

• The **VALIDITY** Problem:

Given a statement of relational logic, is it valid?

 Undecidability proved in 1936 independently by Alan Turing and Alonzo Church.

F22