LIMITS OF COMPUTABILITY



Decidable problems

* Recall: A decision problem is decidable if there is a decision algorithm.

» We can now make this more precise.

* Allanguage L C ¥* is|(Turing-) decidable

if it is recognized by some | Turing-decider, |that is

a Turing acceptor that terminates for every input.

* A decision problem is Turing-decidable if
its textual representation is.

 Given the Turing-Church Thesis we
identify informal algorithms with Turing acceptors!

F22



Decision problems about computing devices

* <-ACCEPTANCE:
Given acceptor M does M accept €?

* NON-EMPTINESS:
Given acceptor M, does it accept some string?

* TOTALITY:
Given acceptor M does M accept every string?

* ACCEPTANCE:
Given acceptor M and string w, does M accept w?

* HALTING:
Given a Turing transducer M and string w, does M terminate on input w ?.

F22



Decidability preseved under set operations

Let P and 9 be problems referring to the same instances, decided by algo-
rithms Ap and Agp respectively.

» The complement of P is decidable:
to decide w € P run Ap oninput w
and flip the answer.

* The intersection of P and O is decidable:
todecide we PN O

» Run Ap on w, if it rejects, reject; if it accepts:

» run Ag on w, if it rejects, reject; if it accepts accept.

» The union of the problems is also decidable, by a similar argument.

F22 4



REDUCTIONS BETWEEN PROBLEMS

F22



Using other problems’s solution

» We often fulfill tasks using tools developed for other tasks.

« Examples:

1. To match two decks of card, first sort them.

2. To use biased coins when a fair coin is needed
use a biased coin in double-rounds:
take HT as “head,” TH as “tail,” discard HH and TT.

3. Use calculator whose multiplication works only for squaring. Use:
z-y=(x+y)’—(z—y)? /2/2
* In engineering a problem is “reduced” when broken up.

In computing “reduction” means solving problem P
by mapping its instances to those of a problem O.

The intended lesson is that O is at least as informative as P..

F22



Example: INTEGER-PARTITION and EXACT-SUM

* INTEGER-PARTITION:
Instances: Finite S C N
Property: Exists P C S s.t. =P =3x5/2.

* EXACT-SUM:
Instances: Finite S C N and atarget t € N
Property: Exists PC S s.t. =P =1

* Reduction p:
Map instance S if INTEGER-PARTITION to

F22

(S, (£5)/2)



Example: CLIQUE reduces to INDEPENDENT SET

* A cligue in graph G = (V, E) is a set of vertices all adjacent to each other.
* CLIQUE: Given t € N is there a a clique of size t in G.

- An independent set in G = (V, E) is a set of vertices all non-adjacent to each
other.

* INDEP-SET: Given ¢ € N is there an independent-set of size ¢ in G.

* CLIQUE reduces to ind-set by a “reverse-video” mapping:

(V,E) (V. -E)
B

<

A blue graph A red graph
Missing edges are in Missing edges are in blue
{A,B,D} a clique of size 3 {A,B,D} an ind set of size 3




Reductions between problems

» A| reduction| of a decision-problem P to a problem © is a function

p: {lInstances of P} — {Instances of Q}

suchthat X eP iff p(X)e Q.

Thatis, if X € P then p(X) € Q
andif X ¢ P then p(X) ¢ Q.

 We write then p: P < O.

» Such p is valuable when it easier
to compute p(X) thanto decide X € P.

« When p is computable we write p: P <. O

and say that P | computably-reduces|to Q.

F22



Example: HALTING computably-reduces to ACCEPTANCE

* Define p: HALTING <. ACCEPTANCE

« p maps (M,w) to (M’ w)
where M’ on input w simulates M on w
but accepts if and when M halts.

* This is a reduction:;

» If M halts on w then M’ accepts w.

» If M diverges on w then so does M’,
so it does not accept.

» p merely tinkers with transitions, so it is computable.

F22

10



ACCEPTANCE computably-reduces to HALTING

* ACCEPTANCE: Given M & w, does M accept w?
* HALTING: Given M & w, does M halt on w?

« Define p: ACCEPTANCE <. HALTING
p maps (M,w) to (M',w)
where M’ is like M with rejection converted to looping:

« M’ oninput w simulates M but
enters a vacuous loop when M terminates without accepting.

Accept: If M accepts w then M’ halts (and accepts) w.
Reject: If M halts without accepting then M’ does not halt.

Diverge: If M diverges then so does M’.

» The reduction merely tinkers with transitions, so it is computable.

F22 11



Example: -ACCEPTANCE reduces to TOTALITY

» Define a computable reduction p: e-ACCEPT <. TOTALITY.

« Map instance M of <-ACCEPT to instance M’ of TOTALITY
so that M accepts ¢ iff M’ accepts every string.

* Define M’ to be the acceptor that runs M on ¢ and accepts = if and when M
accepts ¢.

 If M accepts £ then M’ accepts every string.
Otherwise M’ accepts no string.

 l.e. M accepts ¢ iff p(M’) is total.

» The reduction p is computable, because it consists in
a simple syntactic construction of an algorithm M’ from an algorithm M and
a string w.

F22 12



Example: ACCEPTANCE <. TOTALITY & <-ACCEPT

» Define a computable reduction p: ACCEPTANCE <, TOTALITY.

« Map instance (M,w) of ACCEPTANCE to instance M’ of TOTALITY
so that M accepts w iff M’ accepts every string.

» Define M’ to be the acceptor that on input «
runs M on w, and accepts « if and when M accepts w.

« If M accepts w then M’ accepts every string.
Otherwise M’ accepts no string.

* l.e. M accepts w iff p(M’) is total.
We also have that M accepts w iff p(M’) accepts «.

» The reduction p is computable, because it consists in

a simple syntactic construction of an algorithm A’ from an algorithm M and

a string w .

F22

13



Composing reductions

« If functions f,q: ¥X*—Y* are computable, the so is f o g.
* Proof. The output of f is fedto g as input.

 Theorem
If p: P<.Q and p': Q<. R then pop': P<. R.

« pop’ is computable.
It is a reduction:

x€P IFF p(x) € Q (since p is a reduction)

IFF p'(p(x)) € R (since p’ is a reduction)

F22

14



Reductions preserve decidability

* Theorem. Suppose p: P <. Q. If Q is decidable then so is P.

* Proof. To decide whether X € P
compute p(X) and run the decider for Q@ on p(X) as input.

» Consequence: Show that a problem P is not decidable
by defining p: O <.P foran undecidable O.

F22

15



UNDECIDABILITY



A non-recognized problem

» The problem “Self non-accept” (SNA) is:
Instances: Turing-acceptors M
Property: M does not accept M.

» We show that SNA is not recognized, let alone decidable.

» Suppose we had an acceptor D recognizing SNA, that is:

D accepts M7# |IFF M does not accept M

* Taking for M the particular acceptor D:

D accepts D# IFF D does notaccept D¥

« Contradiction! So no acceptor D for SNA can exist!

F22

17



Analogy with Russell’s Paradox

* Recall Russell’'s Paradox:

Define R =4 {z |2 aset z¢&z}

That is: for any set z 2€R IFF z¢z.
* In particular taking R for z: ReR IFF R&€R

R is a collection of sets, which cannot be admitted as a “set””

Root of the problem:
Objects = are both objects and sets.

* SNA is a set of acceptors, which cannot be recognized by an acceptor.

Root of the problem:
An acceptor M is both a string M# and a language L(M).

F22 18



ACCEPTANCE is undecidable

* SNA is a contrived decision problem,
designed to bootstrap our exploration of undecidability.

» ACCEPTANCE is a natural and important problem:
Instances: Pairs (M,w), M an acceptor, w a string.
Property: M accepts w.

« THEOREM: ACCEPTANCE is undecidabile.

« PROOF: We have SNA <.NON-ACCEPTANCE :
Map instance M of SNA
to instance (M, M#) of NON-ACCEPTANCE.

* |[f ACCEPTANCE were decidable,
then so would be its complement NON-ACCEPTANCE,
and therefor also NSA.

F22

19



F22

SEMI-DECIDABILITY

20



Semi-decidable problems

* ACCEPTANCE is undecidable,
but it is recognized by an acceptor: the universal interpreter!

» That’s more than we can say about NSA!

* A problem is

semi-decidable (SD)

Turing-acceptor.

* A decision algorithm for problem P

if it is recognized (as a language) by a

identifies correctly both yes and no instances.

A recognition (semi-decision) algorithm for P

identifies correctly the yes instances,

but might loop for the no instances.

yes

DECISION

yes

SEMI-DECISION



Typical semi-decision: Unbounded exhaustive search

* INTEGER POLYNOMIALS
Given a polynomial P(Z) with integer coefficients,
does it have an integer zero: P(ii) = 0.

» Semi-decision algorithm:
Exhaustive Search: Try successively all tuples 1i,
accept P if and when such a solution is found.

F22

22



Certificates for semi-decidability

» Many decision problems are of the form

« Examples:

X

(a) Given a graph X , is there a cycle c¢ visiting each vertex once?

(b) Given a natural number X , does it have a divisor ¢ > 1.

* We say that c is a

certificate

for X € P.

The cycle is a certificate for (a), a divisor is a certificate for (b).

* If the object ¢ is provided by some benevolent power,

it only remains to check that it actually works:

the suggested list of vertices for (a) is indeed a cycle in the graph,

the suggested divisor for (b) is in fact a divisor of the given integer.

F22

23



Formal definition of certification

* Let £(P) be a problem.

A

certification for P |is a mapping F»p

from finite discrete objects (coded as strings) to instances of P
such that

XeP IFF c¢lkp X forsome ¢



Formal definition of certification

* Let £(P) be a problem.

A

certification for P |is a mapping F»p

from finite discrete objects (coded as strings) to instances of P
such that

XeP IFF c¢lkp X forsome ¢

* The subscriptin  Fp is omitted

F22

when P is evident.



Examples

* COMPOSITENESS:
A certificate for “n is composite” is a divisor of n.



Examples

* COMPOSITENESS:
A certificate for “n is composite” is a divisor of n.

* INTEGER POLYNOMIALS:
A certificate for P|Z] is a vector 7i of integers such that P[ii| = 0.



Examples

* COMPOSITENESS:

A certificate for “n is composite” is a divisor of n.

* INTEGER POLYNOMIALS:

A certificate for P|Z] is a vector 7i of integers such that P[ii| = 0.

* INTEGER PARTITION:
A certificate for a finite S C N
isaset P C S satisfying =P = (=.9)/2.

F22

25



Decidable certifications

» A certification  for a problem P is|decidable

if it is decidable as a set:
There is an algorithm deciding,
given string ¢ and instance X whether ¢ X .



Decidable certifications

» A certification  for a problem P is|decidable

if it is decidable as a set:
There is an algorithm deciding,
given string ¢ and instance X whether ¢ X .

« Example: ACCEPTANCE has the certification ¢+ (M, w)
where c is an accepting trace of M for input w.



Decidable certifications

» A certification - for a problem P is
if it is decidable as a set:
There is an algorithm deciding,

given string ¢ and instance X whether ¢ X .

« Example: ACCEPTANCE has the certification ¢+ (M, w)
where c is an accepting trace of M for input w.

* This certification is decidable:

given string ¢ and instance (M7, w) of ACCEPTANCE
it is easy to check that ¢ is an accepting trace of M

for input w .

F22

decidable

26



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.

Proof of = :
Suppose L = L(M).
Let ¢ w iff ¢ is atrace of M that accepts w.



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.

Proof of = :
Suppose L = L(M).
Let ¢ w iff ¢ is atrace of M that accepts w.

» | is a certification for L, since M recognizes L.



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.

Proof of = :
Suppose L = L(M).
Let ¢ w iff ¢ is atrace of M that accepts w.

» | is a certification for L, since M recognizes L.

» | is decidable:
Check ¢’s frst cfg is M ’s initial cfg for input w.
Check that successive transitions in ¢ is correct for M.
Check c’s last cfg is accepting for M.



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.

Proof of <=
Suppose I is a decidable certification for L.
Here is an algorithm that recognizes L:



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.

Proof of <=
Suppose I is a decidable certification for L.
Here is an algorithm that recognizes L:

» Given w € L check successive strings c
(under size+lexicographic order) whether ¢t w.



Decidable certification = semi-decidable

« THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.

Proof of <
Suppose I is a decidable certification for L.
Here is an algorithm that recognizes L:

» Given w € L check successive strings ¢
(under size+lexicographic order) whether ¢t w.

» Accept w if and when such a ¢ is found.

F22

27



Computably enumerated problems

* Aproblem L C 3" is

computably enumerated (CE)

if there is a computable function f: N — ¥* with image L.

* Alanguage L C ¥* is

orderly enumerated

computable injection f: N — ¥*

where |f(n)| < [f(n+
whose image is L.

1l

if there is a

« Thatis, L={f(0),f(1),...} isalistingof L
without repetition, in non-size-decreasing order.

F22

28



Enumeration of decidable languages

- THEOREM.
An infinite language is decidable iff it is orderly-enumerated

» =: Suppose L is recognized by a decider M.

» Referring to size-lexicographic ordering:
L is orderly-enumerated by
f(0) = first w accepted by M
f(n+1) = first w after f(n) accepted by M
» f is a non-size-decreasing injection by dfn,
and is computable since M is a decider.

» Since L is infinite, f is total.

F22

29



¢ &=
Suppose L is orderly-enumerated by f: N — ¥*.

1. Then L = L(M) , where M is the following acceptor:
on input w compute f(n) for successive n’s,

accept if w is reached, stop and reject if |w| is exceeded.

2. M is a decider because f is
total, injective, and non-size-decreasing.

F22

30



Computable enumeration = recognition

Theorem. A non-empty problem is recognized (i.e. SD) iff
it is finite or computably enumerated.

=
Suppose L is an infinite recognized problem.

» Then it has a decidable certification I-.

» Since + is an infinite decidable set it is order-enumerated:
(c1,wn), (c2,w2), ...

» SO0 wp,ws... isacomputable enumeration of L.
¢ &
Suppose L is enumerated by a computable f: N — ¥*.
» L =L(M) where M is the acceptor that

oninput w calculates  f(0), f(1), f(2)... ,
and accepts w if and when it is obtained as output.



Decidability in terms of semi-decidability

» We characterized SD in terms of decidability:
L is SD iff it has a decidable certification.

» We now characterize decidability in terms of semi-decidability.

« Motivation: A decision algorithm answers yes/no correcily.
A semi-decision algorithm uields just the yes answers.

 Decidability of L is like having two semi-decision algorithms:
one for L and the other for L .

F22

32



Theorem. LCY*
L L=—-1L

= If L is decidable, then so is its complement.
Every decidable language is trivially SD, so both L and L are SD.

» L is SD, so it is the image of a computable f*: N — ¥,

» L is also SD, so it too is the image of a computable f~: N — &*.

» To decide w € L calculate f*(0), f7(0), f*(1), f~(1)... until w is obtained
as an output.
If it is an output of f* thenw € L, if of f~ then w e L.

* A problem whose complement is SD is said to be | co-SD.

So the Theorem states that
a problem is decidable iff it is both SD and co-SD.

F22 33



Summary of characterizations

Let L C ¥*

 The following are equivalent:

a)L is

semi-decidable, |i.e. recognized by an acceptor

b) L is computably-enumerated

(@) L is

(
(
(c) L has a decidable certification
T

he following are equivalent:

decidable, |i.e. recognized by a terminating acceptor

(b) L is orderly-enumerated
(c) L is both SD and co-SD

* (a) are characterizations in terms of machine acceptors,

(b) in terms of generators,

(c) decidability and decidability in terms of each other.

F22



Set operations on SD problems

e Let L(),Ll C >* be SD.
e Claim: LyU L, is SD.

» We can't just run the two acceptors sequentially:
the first may fail to terminate.

» But since Ly, L, are SD, they have decidable certifications,
say o for Ly and ; for L.
Let ¢+ w justincase ckow or ek w (i.e. Fis (FoUH))

- is decidable, as the union of decidable sets.

* - is a certification for Lo U L; :

r€LogUL, IFF x €Ly or x € 14
IFF forsome c:cltgx or ¢k x
IFF ¢k x for some ¢ (dfn of )



SD is not closed under complement!

» We have seen: acceptance is SD but not decidable.

« If the complement of acceptance were SD,
then acceptance would be both SD and co-SD,
and therefore decidable, which it is not.

F22

36



Proving SD via computable reductions

» We know that the problem accept, referring to Turing acceptors, is SD.
» There is an algorithm for transforming Turing acceptors M
to equivalent general grammars G, that is such that (G) = L(M) .

So the following problem is also SD.
generate: Given a grammar G and a string w ,
does G generate w.

F22

37



F22

SCOPE PROPERTIES OF COMPUTING DEVICES

38



Decidable problems of Turing machines

 Properties of Turing acceptors may be decidable:

Runs more than 4 steps on input 001
Has more than 4 states
The accept state is the only terminal state

* These refer to the inner workings of the Turing machine
not to the language it recognizes.

» The =-ACCEPT problem is different:

It is about the language L recognized, not the recognizing device.

» The answer yes/no would be the same for any acceptor for L.

F22

39



Scope-properties of machines

* Many important properties of computing devices M

are

scope-properties

how it does it.

, in that they are about what M does, and not about

« So a scope-property of acceptors M

is a property of the language that M recognizes, i.e. L(M).

* If two acceptors recognize the same language

then they share every scope-property.



Scope-properties of machines

* Many important properties of computing devices M

are

scope-properties

how it does it.

, in that they are about what M does, and not about

« So a scope-property of acceptors M

is a property of the language that M recognizes, i.e. L(M).

* If two acceptors recognize the same language

then they share every scope-property.

 Similarly, a scope-property of transducers M

is a property of the partial-function that it computes.

« If two transducers compute the same partial-function

then they share every scope-property.



Scope-properties of machines

» Many important properties of computing devices M

are

scope-properties

how it does it.

, in that they are about what M does, and not about

« So a scope-property of acceptors M

is a property of the language that M recognizes, i.e. L(M).

* If two acceptors recognize the same language

then they share every scope-property.

 Similarly, a scope-property of transducers M

is a property of the partial-function that it computes.

« If two transducers compute the same partial-function

then they share every scope-property.

» Scope-properties are also called by logicians

scope, extensional, index-sets and semantical.



Examples for Turing-acceptors

F22

« L(M) is finite.
« L(M) is infinite.

 Accepts at least two strings, i.e. L(M) > 2 elements.

 Every string accepted by M has even length.

« L(M) is a regular language.
This does not mean that M is a DFA.

« For some n >0 M accepts every string of length n.

* Forevery n >0 M accepts some string of length n.

41



Examples for Turing-transducers M .

« Computes a total function.

» Undefined for input ¢.

« Define for all input of even length.

» Undefined for all input of even length.

» Constant (same output for all input

* Increasing: If |z| < |y| then |f(z)| < |f(y)|

« Bounded: Thereisan n € N s.t. |f(z)| <n forall z.

« Unbounded: For every n there is some z s.t. |f(z)| >n.

* Inflationary: |f(z)| = |z| for all x.

F22

42



Non-scope properties of Turing machines

» Has more than 100 states.

» Reads every input to its end.

» For some input visits every state during computation
« Never runs more than n? steps for input of size < n

* Is a decider
(but “recognizes a deciable language” is a scope-property!)

F22

43



Rice’s Theorem

A property is | trivial|for a language L

if it is either true of every w € L or false for every w .

« Example: The property L(M) is SD
is always true: it just conveys the definition of SD.
» Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors, other than the
trivial properties.

* Proof idea:
If P is non-trivial, then =-ACCEPT <, P .
So P is undecidable.

F22 44



Proof of Rice’s Theorem

» Let P be a non-trivial scope-property of Turing acceptors.
Fix some acceptor E recognizing 0.
Assume E ¢ P (it won’t matter).
Also, P is non-trivial, so it is true of some acceptor A.

* Note: we have F and A on opposite sides of P!
* Define p: € — ACCEPT <, P
* Write M’ for p(M) .

* On input z, M’ disregards z, and runs M on &.
If and when M accepts e, M’ fires A on «.

* So we have

L(M'") = if M accepts € then L(A)
else 0,i.e. L(E)



F22

« SO M accepts € justincase M' = p(M) € P.

» The reduction consists in tinkering with transitions, so it is computable.

46



Using Rice’s Theorem

« All previous examples of scope properties are non-trivial,
and therefore undecidable.

* Rice’s Theorem says nothing about problems that are are not scope-properties.

* Properties referring to the structure of Turing machines,
or to the syntax of programs, are always decidable.

 But properties that relate to the workings of algorithms and machines
are often, but not always, undecidable.

« Example. ALL-STATES-USED:
Each state of a given TM M occurs in some trace of M .

* It is not hard to show that e-ACCEPT <. ALL-STATES-USED.
So the non-scope problem ALL-STATES-USED is undecidable.

F22 47



F22

« Quitline of the reduction:

» Acceptor M is mapped to M’, which uses
an additional alphabet symbol # and an additional state ¢.

» M’ runs M oninput € and if accepted
writes # , switches to %,
and cycles while reading # through all states of M .

« So if M accepts € then M’ uses all its states.
If not, then M’ does not use the state t.

48



F22

SUMMARY OF METHODS

49



Proving problems to be decidable

Methods for proving problems L decidable:

» L is recognized by a decider.

v

L is finite or orderly-enumerated.

Both L and L are semi-decidable.

v

v

L is definable using union, intersection,

and complement (or difference) from decidable problems.

v

L is computably reducible to a decidable problem.

F22

50



Proving problems to be SD

F22

Methods for proving problems L semi-decidable:

» L is recognized by an acceptor.
» L is computably-enumerated.
» L. has a decidable certification.

» L is defined using union and intersection
from SD languages.

» L is computably reducible to a SD problem.

51



Proving properties to be undecidable

» Methods for proving problems L undecidable:

» L is a stable property of acceptors or transducers.

» L is defined using complement from undecidable languages.

» An undecidable problem is computably reducible to L.
» Methods for proving problems L non-SD:

» L is the complement of a SD but undecidable problem.

» A non-SD problem, such as -=-NON-ACCEPT, is <. L.

F22

52



F22

OTHER UNDECIDABLE PROBLEMS

53



String equations

 Recall string expressions:
generated from variables and fixed strings
using the concatenation, head, and tail operations.

* Solutionto F = E:
a binding of variables to strings, for which the equation is true.

e xx01l*xy=y=*x10+2x has as solution z =11, y = 1.

* string-equation Problem:
Given an equation between string-expressions, does it have a solution?

* string-equation is undecidable

F22

54



Integer equations

* | Arithmetic expressions:

X.

e A solutionto E = E’:

generated from variables and numerals using + and

a binding of variables to integers, for which the equation is true.

* arith-equation Problem:

Given an equation between arithmetic-expressions, does it have a solution?

» Proved undecidable in the 1970’s, incrementally,

by Yuri Matiyasevich, Julia Robinson, Hilary Putham and Martin Davis.

F22

55



*Tessellation

» Consider square tiles, with each side marked with a design.
Such tiles are used to tessellate rectangles, with similar abutting sides.

« Example: The following tiles can be used to tessellate a 3 x 3 display

V) 070
) O() O() O(
) O O (
» The following tessellates a 2 x 2 display, but notany 3 x 3:
VvV
) ()7« PN
)~ 0~ (
» Undecidable: The tiling Problem (Hao Wang, 1961):

Given a set P of marked tiles,
can P tessellate arbitrarily large rectangles.



*Post’s Correspondence Problem

» A correspondence over an alphabet ¥ is a finite set of pairs
(uy,v), ..., (ug, vi) (u;, v; € ¥)

» A match for such a correspondence is a string w
that can be read both as a concatenation of some wu;’s
and as the concatenation of the corresponding v;’s:

W= Uy - Uy, = Vg, * eV

n

« Example: The correspondence C = {(100,1),(0,100),(1,00)}
has the following match:

w = 1001100100100

= 1001100100 100
* The undecidable post’s correspondence Problem:

Given a correspondence C, does it have a match?

F22 57



*The Perishable Matrix Problem

 Afinite set S of k x k£ matrices is perishable
if some product of matrices out of S (repetition allowed) yields
the zero k x k matrix.

* PERISHABLE-MATRIX Problem:
Given s set of k x k integer matrices (for some k),
is it perishable.

F22

58



Problems about CFGs

» Does a given CFG over ¥ generate all X -strings? (Whether a CFG generate
some string is decidable).

* |Is a given CFG ambiguous?

« Given CFGs G and G',is L(Gy) C L(G1)?
Is £L(G)N L(G") empty?

F22 59



*Validity

 Relational Logic gives rules of reasoning for the basic logical operations: the
connective: -, A, V, and the quantifiers: V,

« Example: (Vz P(z)) VvV (Jy -P(y)).

A statement is valid if it is true regardless of the particulars.
For example, the statement above is valid.

* In contrast, the following statement is not valid:

(Vz Iy P(z,y)) V (JzVy—P(z,y))

» The VALIDITY Problem:
Given a statement of relational logic, is it valid?

» Undecidability proved in 1936
independently by Alan Turing and Alonzo Church.

F22 60



