
LIMITS OF COMPUTABILITY

F22 1

Decidable problems

• Recall: A decision problem is decidable if there is a decision algorithm.

• We can now make this more precise.

• A language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is (Turing-) decidable

if it is recognized by some Turing-decider, that is

a Turing acceptor that terminates for every input .

• A decision problem is Turing-decidable if

its textual representation is.

• Given the Turing-Church Thesis we

identify informal algorithms with Turing acceptors!

F22 2

Decision problems about computing devices

• ε-ACCEPTANCE:

Given acceptor MMM does MMM accept εεε?

• NON-EMPTINESS:

Given acceptor MMM , does it accept some string?

• TOTALITY:

Given acceptor MMM does MMM accept every string?

• ACCEPTANCE:

Given acceptor MMM and string www, does MMM accept www?

• HALTING:

Given a Turing transducer MMM and string www, does MMM terminate on input www ?.

F22 3

Decidability preseved under set operations

• Let PPP and QQQ be problems referring to the same instances, decided by algo-

rithms APAPAP and AQAQAQ respectively.

• The complement of PPP is decidable:

to decide w ∈ P̄w ∈ P̄w ∈ P̄ run APAPAP on input www

and flip the answer.

• The intersection of PPP and QQQ is decidable:

to decide w ∈ P ∩ Qw ∈ P ∩ Qw ∈ P ∩ Q

◮ Run APAPAP on www, if it rejects, reject; if it accepts:

◮ run AQAQAQ on www, if it rejects, reject; if it accepts accept.

• The union of the problems is also decidable, by a similar argument.

F22 4

REDUCTIONS BETWEEN PROBLEMS

F22 5

Using other problems’s solution

• We often fulfill tasks using tools developed for other tasks.

• Examples:

1. To match two decks of card, first sort them.

2. To use biased coins when a fair coin is needed

use a biased coin in double-rounds:

take HT as “head,” TH as “tail,” discard HH and TT.

3. Use calculator whose multiplication works only for squaring. Use:

x · y = (x + y)2 − (x − y)2 /2 /2x · y = (x + y)2 − (x − y)2 /2 /2x · y = (x + y)2 − (x − y)2 /2 /2

• In engineering a problem is “reduced” when broken up.

In computing “reduction” means solving problem PPP

by mapping its instances to those of a problem QQQ.

The intended lesson is that QQQ is at least as informative as PPP..

F22 6

Example: INTEGER-PARTITION and EXACT-SUM

• INTEGER-PARTITION:

Instances: Finite S ⊆ NS ⊆ NS ⊆ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P =
∑

S/2
∑

P =
∑

S/2
∑

P =
∑

S/2.

• EXACT-SUM:

Instances: Finite S ⊂ NS ⊂ NS ⊂ N and a target t ∈ Nt ∈ Nt ∈ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P = t
∑

P = t
∑

P = t

• Reduction ρρρ:

Map instance SSS if INTEGER-PARTITION to (S, (
∑

S)/2)(S, (
∑

S)/2)(S, (
∑

S)/2)

F22 7

Example: CLIQUE reduces to INDEPENDENT SET

• A clique in graph G = (V, E)G = (V, E)G = (V, E) is a set of vertices all adjacent to each other.

• CLIQUE: Given t ∈ Nt ∈ Nt ∈ N is there a a clique of size ttt in GGG .

• An independent set in G = (V, E)G = (V, E)G = (V, E) is a set of vertices all non-adjacent to each

other.

• INDEP-SET: Given t ∈ Nt ∈ Nt ∈ N is there an independent-set of size ttt in GGG .

• CLIQUE reduces to ind-set by a “reverse-video” mapping:

B

C

D

E

{A,B,D} a clique of size 3

Missing edges are in

(V,E)

A blue graph

A

pink

A

B

C

D

E

A red graph

Missing edges are in

{A,B,D} an ind set of size 3

(V,V −E)
2

blue

Reductions between problems

• A reduction of a decision-problem PPP to a problem QQQ is a function

ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}

such that X ∈ PX ∈ PX ∈ P iff ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q.

That is, if X ∈ PX ∈ PX ∈ P then ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q

and if X 6∈ PX 6∈ PX 6∈ P then ρ(X) 6∈ Qρ(X) 6∈ Qρ(X) 6∈ Q .

• We write then ρ : P 6 Qρ : P 6 Qρ : P 6 Q.

• Such ρρρ is valuable when it easier

to compute ρ(X)ρ(X)ρ(X) than to decide X ∈ PX ∈ PX ∈ P.

• When ρρρ is computable we write ρ : P 6c Qρ : P 6c Qρ : P 6c Q

and say that PPP computably-reduces to QQQ.

F22 9

Example: HALTING computably-reduces to ACCEPTANCE

• Define ρ :ρ :ρ : HALTING 6c6c6c ACCEPTANCE

• ρρρ maps (M, w)(M, w)(M, w) to (M ′, w)(M ′, w)(M ′, w)

where M ′M ′M ′ on input www simulates MMM on www

but accepts if and when MMM halts.

• This is a reduction:

◮ If MMM halts on www then M ′M ′M ′ accepts www.

◮ If MMM diverges on www then so does M ′M ′M ′ ,

so it does not accept.

• ρρρ merely tinkers with transitions, so it is computable.

F22 10

ACCEPTANCE computably-reduces to HALTING

• ACCEPTANCE: Given MMM & www, does MMM accept www?

• HALTING: Given MMM & www, does MMM halt on www ?

• Define ρ :ρ :ρ : ACCEPTANCE 6c6c6c HALTING

ρρρ maps (M, w)(M, w)(M, w) to (M ′, w)(M ′, w)(M ′, w)

where M ′M ′M ′ is like MMM with rejection converted to looping:

• M ′M ′M ′ on input www simulates MMM but

enters a vacuous loop when MMM terminates without accepting.

Accept: If MMM accepts www then M ′M ′M ′ halts (and accepts) www.

Reject: If MMM halts without accepting then M ′M ′M ′ does not halt.

Diverge: If MMM diverges then so does M ′M ′M ′ .

• The reduction merely tinkers with transitions, so it is computable.

F22 11

Example: ε-ACCEPTANCE reduces to TOTALITY

• Define a computable reduction ρ : ε-ACCEPT 6c TOTALITYρ : ε-ACCEPT 6c TOTALITYρ : ε-ACCEPT 6c TOTALITY.

• Map instance MMM of ε-ACCEPT to instance M ′M ′M ′ of TOTALITY

so that MMM accepts εεε iff M ′M ′M ′ accepts every string.

• Define M ′M ′M ′ to be the acceptor that runs MMM on εεε and accepts xxx if and when MMM

accepts εεε .

• If MMM accepts εεε then M ′M ′M ′ accepts every string.

Otherwise M ′M ′M ′ accepts no string.

• I.e. MMM accepts εεε iff ρ(M ′)ρ(M ′)ρ(M ′) is total.

• The reduction ρρρ is computable, because it consists in

a simple syntactic construction of an algorithm M ′M ′M ′ from an algorithm MMM and

a string www .

F22 12

Example: ACCEPTANCE 6c6c6c TOTALITY & ε-ACCEPT

• Define a computable reduction ρ : ACCEPTANCE 6c TOTALITYρ : ACCEPTANCE 6c TOTALITYρ : ACCEPTANCE 6c TOTALITY.

• Map instance (M, w)(M, w)(M, w) of ACCEPTANCE to instance M ′M ′M ′ of TOTALITY

so that MMM accepts www iff M ′M ′M ′ accepts every string.

• Define M ′M ′M ′ to be the acceptor that on input xxx

runs MMM on www , and accepts xxx if and when MMM accepts www .

• If MMM accepts www then M ′M ′M ′ accepts every string.

Otherwise M ′M ′M ′ accepts no string.

• I.e. MMM accepts www iff ρ(M ′)ρ(M ′)ρ(M ′) is total.

We also have that MMM accepts www iff ρ(M ′)ρ(M ′)ρ(M ′) accepts εεε .

• The reduction ρρρ is computable, because it consists in

a simple syntactic construction of an algorithm M ′M ′M ′ from an algorithm MMM and

a string www .

F22 13

Composing reductions

• If functions f, g : Σ∗ →Σ∗f, g : Σ∗ →Σ∗f, g : Σ∗ →Σ∗ are computable, the so is f ◦ gf ◦ gf ◦ g.

• Proof. The output of fff is fed to ggg as input.

• Theorem

If ρ : P 6c Qρ : P 6c Qρ : P 6c Q and ρ′ : Q 6c Rρ′ : Q 6c Rρ′ : Q 6c R then ρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c R .

• ρ ◦ ρ′ρ ◦ ρ′ρ ◦ ρ′ is computable.

It is a reduction:

x ∈ Px ∈ Px ∈ P IFF ρ(x) ∈ Qρ(x) ∈ Qρ(x) ∈ Q (since ρρρ is a reduction)

IFF ρ′(ρ(x)) ∈ Rρ′(ρ(x)) ∈ Rρ′(ρ(x)) ∈ R (since ρ′ρ′ρ′ is a reduction)

F22 14

Reductions preserve decidability

• Theorem. Suppose ρ : P 6c Qρ : P 6c Qρ : P 6c Q . If QQQ is decidable then so is PPP .

• Proof. To decide whether X ∈ PX ∈ PX ∈ P

compute ρ(X)ρ(X)ρ(X) and run the decider for QQQ on ρ(X)ρ(X)ρ(X) as input.

• Consequence: Show that a problem PPP is not decidable

by defining ρ : Q 6c Pρ : Q 6c Pρ : Q 6c P for an undecidable QQQ.

F22 15

UNDECIDABILITY

A non-recognized problem

• The problem “Self non-accept” (SNA) is:

Instances: Turing-acceptors MMM

Property: MMM does not accept M#M#M#.

• We show that SNA is not recognized, let alone decidable.

• Suppose we had an acceptor DDD recognizing SNA, that is:

DDD accepts M#M#M# IFF MMM does not accept M#M#M#

• Taking for MMM the particular acceptor DDD :

DDD accepts D#D#D# IFF DDD does not accept D#D#D#

• Contradiction! So no acceptor DDD for SNA can exist!

F22 17

Analogy with Russell’s Paradox

• Recall Russell’s Paradox:

Define R =df {x | xR =df {x | xR =df {x | x a set, x 6∈ x}x 6∈ x}x 6∈ x}

That is: for any set zzz z ∈ Rz ∈ Rz ∈ R IFF z 6∈ zz 6∈ zz 6∈ z.

• In particular taking RRR for zzz : R ∈ RR ∈ RR ∈ R IFF R 6∈ RR 6∈ RR 6∈ R

• RRR is a collection of sets, which cannot be admitted as a “set.”

Root of the problem:

Objects xxx are both objects and sets.

• SNA is a set of acceptors, which cannot be recognized by an acceptor.

Root of the problem:

An acceptor MMM is both a string M#M#M# and a language L(M)L(M)L(M).

F22 18

ACCEPTANCE is undecidable

• SNA is a contrived decision problem,

designed to bootstrap our exploration of undecidability.

• ACCEPTANCE is a natural and important problem:

Instances: Pairs (M, w)(M, w)(M, w) , MMM an acceptor, www a string.

Property: MMM accepts www.

• THEOREM: ACCEPTANCE is undecidable.

• PROOF: We have SNA 6c NON-ACCEPTANCESNA 6c NON-ACCEPTANCESNA 6c NON-ACCEPTANCE :

Map instance MMM of SNA

to instance (M, M#)(M, M#)(M, M#) of NON-ACCEPTANCE.

• If ACCEPTANCE were decidable,

then so would be its complement NON-ACCEPTANCE,

and therefor also NSA.

F22 19

SEMI-DECIDABILITY

F22 20

Semi-decidable problems

• ACCEPTANCE is undecidable,

but it is recognized by an acceptor: the universal interpreter!

• That’s more than we can say about NSA!

• A problem is semi-decidable (SD) if it is recognized (as a language) by a

Turing-acceptor.

• A decision algorithm for problem PPP

identifies correctly both yes and no instances.

A recognition (semi-decision) algorithm for PPP

identifies correctly the yes instances,

but might loop for the no instances.

noyes yes

DECISION SEMI−DECISION

Typical semi-decision: Unbounded exhaustive search

• INTEGER POLYNOMIALS

Given a polynomial P (~x)P (~x)P (~x) with integer coefficients,

does it have an integer zero: P (~n) = 0P (~n) = 0P (~n) = 0.

• Semi-decision algorithm:

Exhaustive Search: Try successively all tuples ~n~n~n,

accept PPP if and when such a solution is found.

F22 22

Certificates for semi-decidability

• Many decision problems are of the form

Given an instance XXX is there an object ccc such that ... ?

• Examples:

(a) Given a graph XXX , is there a cycle ccc visiting each vertex once?

(b) Given a natural number XXX , does it have a divisor c > 1c > 1c > 1.

• We say that ccc is a certificate for X ∈ PX ∈ PX ∈ P.

The cycle is a certificate for (a), a divisor is a certificate for (b).

• If the object ccc is provided by some benevolent power,

it only remains to check that it actually works:

the suggested list of vertices for (a) is indeed a cycle in the graph,

the suggested divisor for (b) is in fact a divisor of the given integer.

F22 23

Formal definition of certification

• Let L(P)L(P)L(P) be a problem.

A certification for PPP is a mapping ⊢P⊢P⊢P

from finite discrete objects (coded as strings) to instances of P

such that

X ∈ PX ∈ PX ∈ P IFF c ⊢P Xc ⊢P Xc ⊢P X for some ccc

Formal definition of certification

• Let L(P)L(P)L(P) be a problem.

A certification for PPP is a mapping ⊢P⊢P⊢P

from finite discrete objects (coded as strings) to instances of P

such that

X ∈ PX ∈ PX ∈ P IFF c ⊢P Xc ⊢P Xc ⊢P X for some ccc

• The subscript in ⊢P⊢P⊢P is omitted

when PPP is evident.

F22 24

Examples

• COMPOSITENESS:

A certificate for “nnn is composite” is a divisor of nnn .

Examples

• COMPOSITENESS:

A certificate for “nnn is composite” is a divisor of nnn .

• INTEGER POLYNOMIALS:

A certificate for P [~x]P [~x]P [~x] is a vector ~n~n~n of integers such that P [~n] = 0P [~n] = 0P [~n] = 0.

Examples

• COMPOSITENESS:

A certificate for “nnn is composite” is a divisor of nnn .

• INTEGER POLYNOMIALS:

A certificate for P [~x]P [~x]P [~x] is a vector ~n~n~n of integers such that P [~n] = 0P [~n] = 0P [~n] = 0.

• INTEGER PARTITION:

A certificate for a finite S ⊂ NS ⊂ NS ⊂ N

is a set P ⊆ SP ⊆ SP ⊆ S satisfying
∑

P = (
∑

S)/2
∑

P = (
∑

S)/2
∑

P = (
∑

S)/2.

F22 25

Decidable certifications

• A certification ⊢⊢⊢ for a problem PPP is decidable

if it is decidable as a set:

There is an algorithm deciding,

given string ccc and instance XXX whether c ⊢ Xc ⊢ Xc ⊢ X .

Decidable certifications

• A certification ⊢⊢⊢ for a problem PPP is decidable

if it is decidable as a set:

There is an algorithm deciding,

given string ccc and instance XXX whether c ⊢ Xc ⊢ Xc ⊢ X .

• Example: ACCEPTANCE has the certification c ⊢ (M, w)c ⊢ (M, w)c ⊢ (M, w)

where ccc is an accepting trace of MMM for input www.

Decidable certifications

• A certification ⊢⊢⊢ for a problem PPP is decidable

if it is decidable as a set:

There is an algorithm deciding,

given string ccc and instance XXX whether c ⊢ Xc ⊢ Xc ⊢ X .

• Example: ACCEPTANCE has the certification c ⊢ (M, w)c ⊢ (M, w)c ⊢ (M, w)

where ccc is an accepting trace of MMM for input www.

• This certification is decidable:

given string ccc and instance (M#, w)(M#, w)(M#, w) of ACCEPTANCE

it is easy to check that ccc is an accepting trace of MMM

for input www .

F22 26

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of ⇒⇒⇒ :

Suppose L = L(M)L = L(M)L = L(M).

Let c ⊢ wc ⊢ wc ⊢ w iff ccc is a trace of MMM that accepts www.

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of ⇒⇒⇒ :

Suppose L = L(M)L = L(M)L = L(M).

Let c ⊢ wc ⊢ wc ⊢ w iff ccc is a trace of MMM that accepts www.

◮ ⊢⊢⊢ is a certification for LLL, since MMM recognizes LLL.

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of ⇒⇒⇒ :

Suppose L = L(M)L = L(M)L = L(M).

Let c ⊢ wc ⊢ wc ⊢ w iff ccc is a trace of MMM that accepts www.

◮ ⊢⊢⊢ is a certification for LLL, since MMM recognizes LLL.

◮ ⊢⊢⊢ is decidable:

Check ccc ’s frst cfg is MMM ’s initial cfg for input www.

Check that successive transitions in ccc is correct for MMM .

Check ccc ’s last cfg is accepting for MMM .

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of ⇐⇐⇐ :

Suppose ⊢⊢⊢ is a decidable certification for LLL.

Here is an algorithm that recognizes LLL:

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of ⇐⇐⇐ :

Suppose ⊢⊢⊢ is a decidable certification for LLL.

Here is an algorithm that recognizes LLL:

◮ Given w ∈ Lw ∈ Lw ∈ L check successive strings ccc

(under size+lexicographic order) whether c ⊢ wc ⊢ wc ⊢ w.

Decidable certification = semi-decidable

• THEOREM. LLL is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of ⇐⇐⇐ :

Suppose ⊢⊢⊢ is a decidable certification for LLL.

Here is an algorithm that recognizes LLL:

◮ Given w ∈ Lw ∈ Lw ∈ L check successive strings ccc

(under size+lexicographic order) whether c ⊢ wc ⊢ wc ⊢ w.

◮ Accept www if and when such a ccc is found.

F22 27

Computably enumerated problems

• A problem L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is computably enumerated (CE)

if there is a computable function f : N → Σ∗f : N → Σ∗f : N → Σ∗ with image LLL.

• A language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is orderly enumerated if there is a

computable injection f : N → Σ∗f : N → Σ∗f : N → Σ∗ ,

where |f(n)| 6 |f(n + 1)||f(n)| 6 |f(n + 1)||f(n)| 6 |f(n + 1)| ,

whose image is LLL.

• That is, L = {f(0), f(1), . . .}L = {f(0), f(1), . . .}L = {f(0), f(1), . . .} is a listing of LLL

without repetition, in non-size-decreasing order.

F22 28

Enumeration of decidable languages

• THEOREM.

An infinite language is decidable iff it is orderly-enumerated

• ⇒:⇒:⇒: Suppose LLL is recognized by a decider MMM .

◮ Referring to size-lexicographic ordering:

LLL is orderly-enumerated by

f(0)f(0)f(0) === first www accepted by MMM

f(n + 1)f(n + 1)f(n + 1) === first www after f(n)f(n)f(n) accepted by MMM

◮ fff is a non-size-decreasing injection by dfn,

and is computable since MMM is a decider.

◮ Since LLL is infinite, fff is total.

F22 29

• ⇐⇐⇐ :

Suppose LLL is orderly-enumerated by f : N → Σ∗f : N → Σ∗f : N → Σ∗.

1. Then L = L(M)L = L(M)L = L(M) , where MMM is the following acceptor:

on input www compute f(n)f(n)f(n) for successive nnn’s,

accept if www is reached, stop and reject if |w||w||w| is exceeded.

2. MMM is a decider because fff is

total, injective, and non-size-decreasing.

F22 30

Computable enumeration = recognition

Theorem. A non-empty problem is recognized (i.e. SD) iff

it is finite or computably enumerated.

• ⇒⇒⇒:

Suppose LLL is an infinite recognized problem.

◮ Then it has a decidable certification ⊢⊢⊢.

◮ Since ⊢⊢⊢ is an infinite decidable set it is order-enumerated:

(c1, w1), (c2, w2), . . .(c1, w1), (c2, w2), . . .(c1, w1), (c2, w2), . . .

◮ So w1, w2 . . .w1, w2 . . .w1, w2 . . . is a computable enumeration of LLL.

• ⇐⇐⇐ :

Suppose LLL is enumerated by a computable f : N → Σ∗f : N → Σ∗f : N → Σ∗.

◮ L = L(M)L = L(M)L = L(M) where MMM is the acceptor that

on input www calculates f(0), f(1), f(2) . . .f(0), f(1), f(2) . . .f(0), f(1), f(2) . . . ,

and accepts www if and when it is obtained as output.

Decidability in terms of semi-decidability

• We characterized SD in terms of decidability:

LLL is SD iff it has a decidable certification.

• We now characterize decidability in terms of semi-decidability.

• Motivation: A decision algorithm answers yes/noyes/noyes/no correctly.

A semi-decision algorithm uields just the yesyesyes answers.

• Decidability of LLL is like having two semi-decision algorithms:

one for LLL and the other for L̄̄L̄L .

F22 32

Theorem. A language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is decidable

iff both LLL and its complement L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L are SD.

• ⇒⇒⇒ : If LLL is decidable, then so is its complement.

Every decidable language is trivially SD, so both LLL and L̄̄L̄L are SD.

◮ LLL is SD, so it is the image of a computable f+ : N → Σ∗f+ : N → Σ∗f+ : N → Σ∗.

◮ L̄̄L̄L is also SD, so it too is the image of a computable f− : N → Σ∗f− : N → Σ∗f− : N → Σ∗.

◮ To decide w ∈ Lw ∈ Lw ∈ L calculate f+(0), f−(0), f+(1), f−(1)...f+(0), f−(0), f+(1), f−(1)...f+(0), f−(0), f+(1), f−(1)... until www is obtained

as an output.

If it is an output of f+f+f+ then w ∈ Lw ∈ Lw ∈ L , if of f−f−f− then w ∈ L̄w ∈ L̄w ∈ L̄ .

• A problem whose complement is SD is said to be co-SD.

So the Theorem states that

a problem is decidable iff it is both SD and co-SD.

F22 33

Summary of characterizations

Let L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗

• The following are equivalent:

(a) LLL is semi-decidable, i.e. recognized by an acceptor

(b) LLL is computably-enumerated

(c) LLL has a decidable certification

• The following are equivalent:

(a) LLL is decidable, i.e. recognized by a terminating acceptor

(b) LLL is orderly-enumerated

(c) LLL is both SD and co-SD

• (a) are characterizations in terms of machine acceptors,

(b) in terms of generators,

(c) decidability and decidability in terms of each other.

F22 34

Set operations on SD problems

• Let L0, L1 ⊆ Σ∗L0, L1 ⊆ Σ∗L0, L1 ⊆ Σ∗ be SD.

• Claim: L0 ∪ L1L0 ∪ L1L0 ∪ L1 is SD.

• We can’t just run the two acceptors sequentially:

the first may fail to terminate.

• But since L0, L1L0, L1L0, L1 are SD, they have decidable certifications,

say ⊢0⊢0⊢0 for L0L0L0 and ⊢1⊢1⊢1 for L1L1L1.

Let c ⊢ wc ⊢ wc ⊢ w just in case c ⊢0 wc ⊢0 wc ⊢0 w or c ⊢1 wc ⊢1 wc ⊢1 w (i.e. ⊢⊢⊢ is (⊢0 ∪ ⊢1)(⊢0 ∪ ⊢1)(⊢0 ∪ ⊢1))

• ⊢⊢⊢ is decidable, as the union of decidable sets.

• ⊢⊢⊢ is a certification for L0 ∪ L1L0 ∪ L1L0 ∪ L1 :

x ∈ L0 ∪ L1x ∈ L0 ∪ L1x ∈ L0 ∪ L1 IFF x ∈ L0x ∈ L0x ∈ L0 or x ∈ L1x ∈ L1x ∈ L1

IFF for some ccc : c ⊢0 xc ⊢0 xc ⊢0 x or c ⊢1 xc ⊢1 xc ⊢1 x

IFF c ⊢ xc ⊢ xc ⊢ x for some ccc (dfn of ⊢⊢⊢)

SD is not closed under complement!

• We have seen: acceptance is SD but not decidable.

• If the complement of acceptance were SD,

then acceptance would be both SD and co-SD,

and therefore decidable, which it is not.

F22 36

Proving SD via computable reductions

• We know that the problem accept, referring to Turing acceptors, is SD.

• There is an algorithm for transforming Turing acceptors MMM

to equivalent general grammars GGG , that is such that (G) = L(M)(G) = L(M)(G) = L(M) .

So the following problem is also SD.

generate: Given a grammar GGG and a string www ,

does GGG generate www.

F22 37

SCOPE PROPERTIES OF COMPUTING DEVICES

F22 38

Decidable problems of Turing machines

• Properties of Turing acceptors may be decidable:

Runs more than 4 steps on input 001

Has more than 4 states

The accept state is the only terminal state

• These refer to the inner workings of the Turing machine

not to the language it recognizes.

• The ε-ACCEPT problem is different:

It is about the language LLL recognized, not the recognizing device.

• The answer yes/no would be the same for any acceptor for LLL.

F22 39

Scope-properties of machines

• Many important properties of computing devices MMM

are scope-properties , in that they are about what MMM does, and not about

how it does it.

• So a scope-property of acceptors MMM

is a property of the language that MMM recognizes, i.e. L(M)L(M)L(M) .

• If two acceptors recognize the same language

then they share every scope-property.

Scope-properties of machines

• Many important properties of computing devices MMM

are scope-properties , in that they are about what MMM does, and not about

how it does it.

• So a scope-property of acceptors MMM

is a property of the language that MMM recognizes, i.e. L(M)L(M)L(M) .

• If two acceptors recognize the same language

then they share every scope-property.

• Similarly, a scope-property of transducers MMM

is a property of the partial-function that it computes.

• If two transducers compute the same partial-function

then they share every scope-property.

Scope-properties of machines

• Many important properties of computing devices MMM

are scope-properties , in that they are about what MMM does, and not about

how it does it.

• So a scope-property of acceptors MMM

is a property of the language that MMM recognizes, i.e. L(M)L(M)L(M) .

• If two acceptors recognize the same language

then they share every scope-property.

• Similarly, a scope-property of transducers MMM

is a property of the partial-function that it computes.

• If two transducers compute the same partial-function

then they share every scope-property.

• Scope-properties are also called by logicians

scope, extensional, index-sets and semantical.

Examples for Turing-acceptors

• L(M)L(M)L(M) is finite.

• L(M)L(M)L(M) is infinite.

• Accepts at least two strings, i.e. L(M)L(M)L(M) > 2> 2> 2 elements.

• Every string accepted by MMM has even length.

• L(M)L(M)L(M) is a regular language.

This does not mean that MMM is a DFA.

• For some n > 0n > 0n > 0 MMM accepts every string of length nnn.

• For every n > 0n > 0n > 0 MMM accepts some string of length nnn.

F22 41

Examples for Turing-transducers MMM .

• Computes a total function.

• Undefined for input εεε.

• Define for all input of even length.

• Undefined for all input of even length.

• Constant (same output for all input

• Increasing: If |x| < |y||x| < |y||x| < |y| then |f(x)| < |f(y)||f(x)| < |f(y)||f(x)| < |f(y)|

• Bounded: There is an n ∈ Nn ∈ Nn ∈ N s.t. |f(x)| 6 n|f(x)| 6 n|f(x)| 6 n for all xxx .

• Unbounded: For every nnn there is some xxx s.t. |f(x)| > n|f(x)| > n|f(x)| > n .

• Inflationary: |f(x)| > |x||f(x)| > |x||f(x)| > |x| for all xxx.

F22 42

Non-scope properties of Turing machines

• Has more than 100 states.

• Reads every input to its end.

• For some input visits every state during computation

• Never runs more than n2n2n2 steps for input of size 6 n6 n6 n

• Is a decider

(but “recognizes a deciable language” is a scope-property!)

F22 43

Rice’s Theorem

• A property is trivial for a language LLL

if it is either true of every w ∈ Lw ∈ Lw ∈ L or false for every www .

• Example: The property L(M)L(M)L(M) is SD

is always true: it just conveys the definition of SD.

• Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors, other than the

trivial properties.

• Proof idea:

If PPP is non-trivial, then ε-ACCEPT 6c Pε-ACCEPT 6c Pε-ACCEPT 6c P .

So PPP is undecidable.

F22 44

Proof of Rice’s Theorem

• Let PPP be a non-trivial scope-property of Turing acceptors.

Fix some acceptor EEE recognizing ∅∅∅.

Assume E 6∈ PE 6∈ PE 6∈ P (it won’t matter).

Also, PPP is non-trivial, so it is true of some acceptor AAA.

• Note: we have EEE and AAA on opposite sides of PPP !

• Define ρ : ε − ACCEPT 6c Pρ : ε − ACCEPT 6c Pρ : ε − ACCEPT 6c P ,

• Write M ′M ′M ′ for ρ(M)ρ(M)ρ(M) .

• On input xxx, M ′M ′M ′ disregards xxx, and runs MMM on εεε.

If and when MMM accepts εεε, M ′M ′M ′ fires AAA on xxx.

• So we have

L(M ′) =L(M ′) =L(M ′) = if MMM accepts εεε then L(A)L(A)L(A)

else ∅∅∅, i.e. L(E)L(E)L(E)

• SO MMM accepts εεε just in case M ′ = ρ(M) ∈ PM ′ = ρ(M) ∈ PM ′ = ρ(M) ∈ P.

• The reduction consists in tinkering with transitions, so it is computable.

F22 46

Using Rice’s Theorem

• All previous examples of scope properties are non-trivial,

and therefore undecidable.

• Rice’s Theorem says nothing about problems that are are not scope-properties.

• Properties referring to the structure of Turing machines,

or to the syntax of programs, are always decidable.

• But properties that relate to the workings of algorithms and machines

are often, but not always, undecidable.

• Example. ALL-STATES-USED:

Each state of a given TM MMM occurs in some trace of MMM .

• It is not hard to show that ε-ACCEPT 6c6c6c ALL-STATES-USED.

So the non-scope problem ALL-STATES-USED is undecidable.

F22 47

• Outline of the reduction:

◮ Acceptor MMM is mapped to M ′M ′M ′ , which uses

an additional alphabet symbol ### and an additional state ttt .

◮ M ′M ′M ′ runs MMM on input εεε and if accepted

writes ### , switches to ttt ,

and cycles while reading ### through all states of MMM .

• So if MMM accepts εεε then M ′M ′M ′ uses all its states.

If not, then M ′M ′M ′ does not use the state ttt.

F22 48

SUMMARY OF METHODS

F22 49

Proving problems to be decidable

Methods for proving problems LLL decidable:

◮ LLL is recognized by a decider.

◮ LLL is finite or orderly-enumerated.

◮ Both LLL and LLL are semi-decidable.

◮ LLL is definable using union, intersection,

and complement (or difference) from decidable problems.

◮ LLL is computably reducible to a decidable problem.

F22 50

Proving problems to be SD

Methods for proving problems LLL semi-decidable:

◮ LLL is recognized by an acceptor.

◮ LLL is computably-enumerated.

◮ LLL has a decidable certification.

◮ LLL is defined using union and intersection

from SD languages.

◮ LLL is computably reducible to a SD problem.

F22 51

Proving properties to be undecidable

• Methods for proving problems LLL undecidable:

◮ LLL is a stable property of acceptors or transducers.

◮ LLL is defined using complement from undecidable languages.

◮ An undecidable problem is computably reducible to LLL.

• Methods for proving problems LLL non-SD:

◮ LLL is the complement of a SD but undecidable problem.

◮ A non-SD problem, such as ε-NON-ACCEPT, is 6c L6c L6c L.

F22 52

OTHER UNDECIDABLE PROBLEMS

F22 53

String equations

• Recall string expressions:

generated from variables and fixed strings

using the concatenation, head, and tail operations.

• Solution to E = E ′E = E ′E = E ′:

a binding of variables to strings, for which the equation is true.

• x ∗ 01 ∗ y = y ∗ 10 ∗ xx ∗ 01 ∗ y = y ∗ 10 ∗ xx ∗ 01 ∗ y = y ∗ 10 ∗ x has as solution x = 11, y = 1x = 11, y = 1x = 11, y = 1.

• string-equation Problem:

Given an equation between string-expressions, does it have a solution?

• string-equation is undecidable

F22 54

Integer equations

• Arithmetic expressions: generated from variables and numerals using +++ and

×××.

• A solution to E = E ′E = E ′E = E ′:

a binding of variables to integers, for which the equation is true.

• arith-equation Problem:

Given an equation between arithmetic-expressions, does it have a solution?

• Proved undecidable in the 1970’s, incrementally,

by Yuri Matiyasevich, Julia Robinson, Hilary Putnam and Martin Davis.

F22 55

⋆Tessellation

• Consider square tiles, with each side marked with a design.

Such tiles are used to tessellate rectangles, with similar abutting sides.

• Example: The following tiles can be used to tessellate a 3 × 33 × 33 × 3 display

• The following tessellates a 2 × 22 × 22 × 2 display, but not any 3 × 33 × 33 × 3 :

• Undecidable: The tiling Problem (Hao Wang, 1961):

Given a set PPP of marked tiles,

can PPP tessellate arbitrarily large rectangles.

⋆Post’s Correspondence Problem

• A correspondence over an alphabet ΣΣΣ is a finite set of pairs

(u1, v1), . . . , (uk, vk) (ui, vi ∈ Σ∗)(u1, v1), . . . , (uk, vk) (ui, vi ∈ Σ∗)(u1, v1), . . . , (uk, vk) (ui, vi ∈ Σ∗)

• A match for such a correspondence is a string www

that can be read both as a concatenation of some uiuiui’s

and as the concatenation of the corresponding vivivi’s:

w = ui1 · · · uin = vi1 · · · vinw = ui1 · · · uin = vi1 · · · vinw = ui1 · · · uin = vi1 · · · vin

• Example: The correspondence C = {(100, 1), (0, 100), (1, 00)}C = {(100, 1), (0, 100), (1, 00)}C = {(100, 1), (0, 100), (1, 00)}

has the following match:

www === 100 1 100 100 1 0 0100 1 100 100 1 0 0100 1 100 100 1 0 0

=== 1 00 1 1 00 100 1001 00 1 1 00 100 1001 00 1 1 00 100 100

• The undecidable post’s correspondence Problem:

Given a correspondence CCC, does it have a match?

F22 57

⋆The Perishable Matrix Problem

• A finite set SSS of k × kk × kk × k matrices is perishable

if some product of matrices out of SSS (repetition allowed) yields

the zero k × kk × kk × k matrix.

• PERISHABLE-MATRIX Problem:

Given s set of k × kk × kk × k integer matrices (for some kkk),

is it perishable.

F22 58

Problems about CFGs

• Does a given CFG over ΣΣΣ generate all ΣΣΣ -strings? (Whether a CFG generate

some string is decidable).

• Is a given CFG ambiguous?

• Given CFGs GGG and G′G′G′ , is L(G0) ⊆ L(G1)L(G0) ⊆ L(G1)L(G0) ⊆ L(G1)?

Is L(G) ∩ L(G′)L(G) ∩ L(G′)L(G) ∩ L(G′) empty?

F22 59

⋆Validity

• Relational Logic gives rules of reasoning for the basic logical operations: the

connective: ¬, ∧, ∨¬, ∧, ∨¬, ∧, ∨, and the quantifiers: ∀, ∃∀, ∃∀, ∃

• Example: (∀x P (x)) ∨ (∃y ¬P (y))(∀x P (x)) ∨ (∃y ¬P (y))(∀x P (x)) ∨ (∃y ¬P (y)).

• A statement is valid if it is true regardless of the particulars.

For example, the statement above is valid.

• In contrast, the following statement is not valid:

(∀x ∃y P (x, y)) ∨ (∃x ∀y¬P (x, y))(∀x ∃y P (x, y)) ∨ (∃x ∀y¬P (x, y))(∀x ∃y P (x, y)) ∨ (∃x ∀y¬P (x, y))

• The VALIDITY Problem:

Given a statement of relational logic, is it valid?

• Undecidability proved in 1936

independently by Alan Turing and Alonzo Church.

F22 60

