LIMITS OF COMPUTABILITY

Decidable problems

- Recall: A decision problem is decidable if there is a decision algorithm.
- We can now make this more precise.
- A language $L \subseteq \Sigma^{*}$ is (Turing-) decidable if it is recognized by some Turing-decider, that is a Turing acceptor that terminates for every input.
- A decision problem is Turing-decidable if
its textual representation is.
- Given the Turing-Church Thesis we
identify informal algorithms with Turing acceptors!

Decision problems about computing devices

- ε-ACCEPTANCE:

Given acceptor M does M accept ε ?

- NON-EMPTINESS:

Given acceptor M, does it accept some string?

- TOTALITY:

Given acceptor M does M accept every string?

- ACCEPTANCE:

Given acceptor M and string w, does M accept w ?

- HALTING:

Given a Turing transducer M and string w, does M terminate on input w ?.

Decidability preseved under set operations

- Let \mathcal{P} and \mathcal{Q} be problems referring to the same instances, decided by algorithms A_{P} and A_{Q} respectively.
- The complement of \mathcal{P} is decidable:
to decide $w \in \overline{\mathcal{P}}$ run A_{P} on input w
and flip the answer.
- The intersection of \mathcal{P} and \mathcal{Q} is decidable:
to decide $w \in \mathcal{P} \cap \mathcal{Q}$
- Run A_{P} on w, if it rejects, reject; if it accepts:
- run A_{Q} on w, if it rejects, reject; if it accepts accept.
- The union of the problems is also decidable, by a similar argument.

REDUCTIONS BETWEEN PROBLEMS

Using other problems's solution

- We often fulfill tasks using tools developed for other tasks.
- Examples:

1. To match two decks of card, first sort them.
2. To use biased coins when a fair coin is needed
use a biased coin in double-rounds:
take HT as "head," TH as "tail," discard HH and TT.
3. Use calculator whose multiplication works only for squaring. Use:

$$
x \cdot y=(x+y)^{2}-(x-y)^{2} / 2 / 2
$$

- In engineering a problem is "reduced" when broken up.

In computing "reduction" means solving problem \mathcal{P}
by mapping its instances to those of a problem \mathcal{Q}.
The intended lesson is that \mathcal{Q} is at least as informative as \mathcal{P}..

Example: INTEGER-PARTITION and EXACT-SUM

- INTEGER-PARTITION:

Instances: Finite $S \subseteq \mathbb{N}$
Property: Exists $P \subset S$ s.t. $\Sigma P=\Sigma S / 2$.

- EXACT-SUM:

Instances: Finite $S \subset \mathbb{N}$ and a target $t \in \mathbb{N}$
Property: Exists $P \subset S$ s.t. $\Sigma P=t$

- Reduction ρ :

Map instance S if integer-PARTITION to $\quad(S,(\Sigma S) / 2)$

Example: CLIQUE reduces to INDEPENDENT SET

- A clique in graph $\mathcal{G}=(V, E)$ is a set of vertices all adjacent to each other.
- Clique: Given $t \in \mathbb{N}$ is there a a clique of size t in \mathcal{G}.
- An independent set in $\mathcal{G}=(V, E)$ is a set of vertices all non-adjacent to each other.
- INDEP-SET: Given $t \in \mathbb{N}$ is there an independent-set of size t in \mathcal{G}.
- CLIQUE reduces to ind-set by a "reverse-video" mapping:

A blue graph Missing edges are in pink \{A,B,D\} a clique of size 3

A red graph
Missing edges are in blue
$\{A, B, D\}$ an ind set of size 3

Reductions between problems

- A reduction of a decision-problem \mathcal{P} to a problem \mathcal{Q} is a function

$$
\rho:\{\text { Instances of } \mathcal{P}\} \rightarrow\{\text { Instances of } \mathcal{Q}\}
$$

such that $\quad X \in \mathcal{P} \quad$ iff $\quad \rho(X) \in \mathcal{Q}$.
That is, if $X \in \mathcal{P}$ then $\rho(X) \in \mathcal{Q}$ and if $X \notin \mathcal{P}$ then $\rho(X) \notin \mathcal{Q}$.

- We write then $\rho: \mathcal{P} \leqslant \mathcal{Q}$.
- Such ρ is valuable when it easier to compute $\rho(X)$ than to decide $X \in \mathcal{P}$.
- When ρ is computable we write $\rho: \mathcal{P} \leqslant_{c} \mathcal{Q}$ and say that \mathcal{P} computably-reduces to \mathcal{Q}.

Example: HALTING computably-reduces to ACCEPTANCE

- Define ρ : HALTING \leqslant_{c} ACCEPTANCE
- ρ maps (M, w) to $\left(M^{\prime}, w\right)$
where M^{\prime} on input w simulates M on w but accepts if and when M halts.
- This is a reduction:
- If M halts on w then M^{\prime} accepts w.
- If M diverges on w then so does M^{\prime}, so it does not accept.
- ρ merely tinkers with transitions, so it is computable.

ACCEPTANCE computably-reduces to HALTING

- ACCEPTANCE: Given $M \& w$, does M accept w ?
- halting: Given $M \& w$, does M halt on w ?
- Define ρ : ACCEPTANCE \leqslant_{c} HALTING
$\rho \operatorname{maps}(M, w)$ to $\left(M^{\prime}, w\right)$
where M^{\prime} is like M with rejection converted to looping:
- M^{\prime} on input w simulates M but
enters a vacuous loop when M terminates without accepting.
Accept: If M accepts w then M^{\prime} halts (and accepts) w.
Reject: If M halts without accepting then M^{\prime} does not halt.
Diverge: If M diverges then so does M^{\prime}.
- The reduction merely tinkers with transitions, so it is computable.

Example: ε-ACCEPTANCE reduces to TOTALITY

- Define a computable reduction $\rho: \varepsilon$-ACCEPT \leqslant_{c} TOTALITY.
- Map instance M of ε-ACCEPT to instance M^{\prime} of TOTALITY so that M accepts ε iff M^{\prime} accepts every string.
- Define M^{\prime} to be the acceptor that runs M on ε and accepts x if and when M accepts ε.
- If M accepts ε then M^{\prime} accepts every string.

Otherwise M^{\prime} accepts no string.

- I.e. M accepts ε iff $\rho\left(M^{\prime}\right)$ is total.
- The reduction ρ is computable, because it consists in
a simple syntactic construction of an algorithm M^{\prime} from an algorithm M and a string w.

Example: ACCEPTANCE \leqslant_{c} TOTALITY \& ε-ACCEPT

- Define a computable reduction ρ : ACCEPTANCE \leqslant_{c} TOTALITY.
- Map instance (M, w) of ACceptance to instance M^{\prime} of totality
so that M accepts w iff M^{\prime} accepts every string.
- Define M^{\prime} to be the acceptor that on input x runs M on w, and accepts x if and when M accepts w.
- If M accepts w then M^{\prime} accepts every string.

Otherwise M^{\prime} accepts no string.

- I.e. M accepts w iff $\rho\left(M^{\prime}\right)$ is total.

We also have that M accepts w iff $\rho\left(M^{\prime}\right)$ accepts ε.

- The reduction ρ is computable, because it consists in a simple syntactic construction of an algorithm M^{\prime} from an algorithm M and a string w.

Composing reductions

- If functions $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ are computable, the so is $f \circ g$.
- Proof. The output of f is fed to g as input.
- Theorem

$$
\text { If } \rho: \mathcal{P} \leqslant_{c} \mathcal{Q} \text { and } \rho^{\prime}: \mathcal{Q} \leqslant_{c} \mathcal{R} \text { then } \rho \circ \rho^{\prime}: \mathcal{P} \leqslant_{c} \mathcal{R} .
$$

- $\rho \circ \rho^{\prime}$ is computable.

It is a reduction:

$$
\begin{array}{lll}
x \in \mathcal{P} & \text { IFF } & \rho(x) \in \mathcal{Q} \\
& \text { (since } \rho \text { is a reduction) } \\
& \text { IFF } & \rho^{\prime}(\rho(x)) \in \mathcal{R}
\end{array} \text { (since } \rho^{\prime} \text { is a reduction) }
$$

Reductions preserve decidability

- Theorem. Suppose $\rho: \mathcal{P} \leqslant c \mathcal{Q}$. If \mathcal{Q} is decidable then so is \mathcal{P}.
- Proof. To decide whether $X \in \mathcal{P}$
compute $\rho(X)$ and run the decider for \mathcal{Q} on $\rho(X)$ as input.
- Consequence: Show that a problem \mathcal{P} is not decidable by defining $\quad \rho: \mathcal{Q} \leqslant c \mathcal{P}$ for an undecidable \mathcal{Q}.

UNDECIDABILITY

- The problem "Self non-accept" (SNA) is:

Instances: Turing-acceptors M
Property: M does not accept $M^{\#}$.

- We show that SNA is not recognized, let alone decidable.
- Suppose we had an acceptor D recognizing SNA, that is:
D accepts $M^{\#}$ IFF M does not accept $M^{\#}$
- Taking for M the particular acceptor D :
D accepts $D^{\#}$ IFF D does not accept $D^{\#}$
- Contradiction! So no acceptor D for SNA can exist!

Analogy with Russell's Paradox

- Recall Russell's Paradox:

$$
\text { Define } \quad \mathcal{R}=_{\mathrm{df}}\{x \mid x \quad \text { a set, } x \notin x\}
$$

That is: for any set $z \quad z \in \mathcal{R} \quad$ IFF $\quad z \notin z$.

- In particular taking \mathcal{R} for $z: \quad \mathcal{R} \in \mathcal{R} \quad$ IFF $\quad \mathcal{R} \notin \mathcal{R}$
- \mathcal{R} is a collection of sets, which cannot be admitted as a "set."

Root of the problem:
Objects x are both objects and sets.

- SNA is a set of acceptors, which cannot be recognized by an acceptor.

Root of the problem:
An acceptor M is both a string $M^{\#}$ and a language $\mathcal{L}(M)$.

- SNA is a contrived decision problem, designed to bootstrap our exploration of undecidability.
- ACCEPTANCE is a natural and important problem:

Instances: Pairs $(M, w), M$ an acceptor, w a string.
Property: M accepts w.

- THEOREM: ACCEPTANCE is undecidable.
- PROOF: We have SNA \leqslant_{c} NON-ACCEPTANCE :

Map instance M of SNA
to instance $\left(M, M^{\#}\right)$ of NON-ACCEPTANCE.

- If ACCEPTANCE were decidable,
then so would be its complement NON-ACCEPTANCE, and therefor also NSA.

SEMI-DECIDABILITY

Semi-decidable problems

- ACCEPTANCE is undecidable,
but it is recognized by an acceptor: the universal interpreter!
- That's more than we can say about NSA!
- A problem is semi-decidable (SD) if it is recognized (as a language) by a Turing-acceptor.
- A decision algorithm for problem \mathcal{P}
identifies correctly both yes and no instances.
A recognition (semi-decision) algorithm for \mathcal{P}
identifies correctly the yes instances,
but might loop for the no instances.

Typical semi-decision: Unbounded exhaustive search

- INTEGER POLYNOMIALS

Given a polynomial $P(\vec{x})$ with integer coefficients, does it have an integer zero: $P(\vec{n})=0$.

- Semi-decision algorithm:

Exhaustive Search: Try successively all tuples \vec{n}, accept P if and when such a solution is found.

Certificates for semi-decidability

- Many decision problems are of the form

Given an instance X is there an object c such that ... ?

- Examples:
(a) Given a graph X, is there a cycle c visiting each vertex once?
(b) Given a natural number X, does it have a divisor $c>1$.
- We say that c is a certificate for $X \in \mathcal{P}$.

The cycle is a certificate for (a), a divisor is a certificate for (b).

- If the object c is provided by some benevolent power, it only remains to check that it actually works:
the suggested list of vertices for (a) is indeed a cycle in the graph, the suggested divisor for (b) is in fact a divisor of the given integer.

Formal definition of certification

- Let $\mathcal{L}(P)$ be a problem.

A certification for P is a mapping $\vdash_{\mathcal{P}}$
from finite discrete objects (coded as strings) to instances of \mathcal{P}
such that

$$
X \in \mathcal{P} \quad \text { IFF } \quad c \vdash_{\mathcal{P}} X \text { for some } c
$$

Formal definition of certification

- Let $\mathcal{L}(P)$ be a problem.

A certification for P is a mapping $\vdash_{\mathcal{P}}$
from finite discrete objects (coded as strings) to instances of \mathcal{P}
such that

$$
X \in \mathcal{P} \quad \text { IFF } \quad c \vdash_{\mathcal{P}} X \text { for some } c
$$

- The subscript in $\vdash_{\mathcal{P}}$ is omitted when \mathcal{P} is evident.

Examples

- COMPOSITENESS:

A certificate for " n is composite" is a divisor of n.

Examples

- COMPOSITENESS:

A certificate for " n is composite" is a divisor of n.

- INTEGER POLYNOMIALS:

A certificate for $P[\vec{x}]$ is a vector \vec{n} of integers such that $P[\vec{n}]=0$.

Examples

- COMPOSITENESS:

A certificate for " n is composite" is a divisor of n.

- INTEGER POLYNOMIALS:

A certificate for $P[\vec{x}]$ is a vector \vec{n} of integers such that $P[\vec{n}]=0$.

- INTEGER PARTITION:

A certificate for a finite $S \subset \mathbb{N}$ is a set $P \subseteq S$ satisfying $\Sigma P=(\Sigma S) / 2$.

Decidable certifications

- A certification \vdash for a problem \mathcal{P} is decidable
if it is decidable as a set:
There is an algorithm deciding,
given string c and instance X whether $c \vdash X$.

Decidable certifications

- A certification \vdash for a problem \mathcal{P} is decidable
if it is decidable as a set:
There is an algorithm deciding,
given string c and instance X whether $c \vdash X$.
- Example: ACCEPTANCE has the certification $c \vdash(M, w)$
where c is an accepting trace of M for input w.

Decidable certifications

- A certification \vdash for a problem \mathcal{P} is decidable
if it is decidable as a set:
There is an algorithm deciding,
given string c and instance X whether $c \vdash X$.
- Example: ACCEPTANCE has the certification $c \vdash(M, w)$ where c is an accepting trace of M for input w.
- This certification is decidable:
given string c and instance $\left(M^{\#}, w\right)$ of ACCEPTANCE
it is easy to check that c is an accepting trace of M
for input w.

Decidable certification = semi-decidable

- THEOREM. L is recoginized by an acceptor iff
quad iff it has a decidable certification.

Decidable certification = semi-decidable

- THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.
Proof of \Rightarrow :
Suppose $L=\mathcal{L}(M)$.
Let $c \vdash w$ iff c is a trace of M that accepts w.

Decidable certification = semi-decidable

- THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.
Proof of \Rightarrow :
Suppose $L=\mathcal{L}(M)$.
Let $c \vdash w$ iff c is a trace of M that accepts w.
- $\quad \vdash$ is a certification for L, since M recognizes L.
- THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.
Proof of \Rightarrow :
Suppose $L=\mathcal{L}(M)$.
Let $c \vdash w$ iff c is a trace of M that accepts w.
- $\quad \vdash$ is a certification for L, since M recognizes L.
- \vdash is decidable:

Check c 's frst cfg is M 's initial cfg for input w. Check that successive transitions in c is correct for M. Check c 's last cfg is accepting for M.

Decidable certification = semi-decidable

- THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.
Proof of \Leftarrow :
Suppose \vdash is a decidable certification for L.
Here is an algorithm that recognizes L :
- THEOREM. L is recognized by an acceptor iff
quad iff it has a decidable certification.
Proof of \Leftarrow :
Suppose \vdash is a decidable certification for L.
Here is an algorithm that recognizes L :
- Given $w \in L$ check successive strings c (under size+lexicographic order) whether $c \vdash w$.
- THEOREM. L is recognized by an acceptor iff

quad iff it has a decidable certification.

Proof of \Leftarrow :
Suppose \vdash is a decidable certification for L.
Here is an algorithm that recognizes L :

- Given $w \in L$ check successive strings c (under size+lexicographic order) whether $c \vdash w$.
- Accept w if and when such a c is found.

Computably enumerated problems

- A problem $L \subseteq \Sigma^{*}$ is computably enumerated (CE)
if there is a computable function $f: \mathbb{N} \rightarrow \Sigma^{*}$ with image L.
- A language $L \subseteq \Sigma^{*}$ is orderly enumerated if there is a computable injection $f: \mathbb{N} \rightarrow \Sigma^{*}$, where $|f(n)| \leqslant|f(n+1)|$,
whose image is L.
- That is, $L=\{f(0), f(1), \ldots\} \quad$ is a listing of L without repetition, in non-size-decreasing order.

Enumeration of decidable languages

- THEOREM.

An infinite language is decidable iff it is orderly-enumerated
$\bullet \Rightarrow$ Suppose L is recognized by a decider M.

- Referring to size-lexicographic ordering:
L is orderly-enumerated by

$$
\begin{aligned}
f(0) & =\text { first } w \text { accepted by } M \\
f(n+1) & =\text { first } w \text { after } f(n) \text { accepted by } M
\end{aligned}
$$

- f is a non-size-decreasing injection by dfn, and is computable since M is a decider.
- Since L is infinite, f is total.
$\cdot \Leftarrow$:
Suppose L is orderly-enumerated by $\quad f: \mathbb{N} \rightarrow \Sigma^{*}$.

1. Then $L=\mathcal{L}(M)$, where M is the following acceptor: on input w compute $f(n)$ for successive n 's, accept if w is reached, stop and reject if $|w|$ is exceeded.
2. M is a decider because f is total, injective, and non-size-decreasing.

Theorem. A non-empty problem is recognized (i.e. SD) iff
it is finite or computably enumerated.
$\cdot \Rightarrow$:
Suppose L is an infinite recognized problem.

- Then it has a decidable certification \vdash.
- Since \vdash is an infinite decidable set it is order-enumerated:

$$
\left(c_{1}, w_{1}\right),\left(c_{2}, w_{2}\right), \ldots
$$

- So $w_{1}, w_{2} \ldots$ is a computable enumeration of L.
$\bullet \Leftarrow$:
Suppose L is enumerated by a computable $\quad f: \mathbb{N} \rightarrow \Sigma^{*}$.
- $L=\mathcal{L}(M)$ where M is the acceptor that on input w calculates $f(0), f(1), f(2) \ldots$, and accepts w if and when it is obtained as output.

Decidability in terms of semi-decidability

- We characterized SD in terms of decidability:
L is SD iff it has a decidable certification.
- We now characterize decidability in terms of semi-decidability.
- Motivation: A decision algorithm answers yes/no correctly.

A semi-decision algorithm uields just the yes answers.

- Decidability of L is like having two semi-decision algorithms: one for L and the other for \bar{L}.

Theorem. A language $L \subseteq \Sigma^{*}$ is decidable
iff both L and its complement $\bar{L}=\Sigma^{*}-L$ are SD.
$\cdot \Rightarrow$: If L is decidable, then so is its complement.
Every decidable language is trivially SD, so both L and \bar{L} are SD.

- L is SD , so it is the image of a computable $f^{+}: \mathbb{N} \rightarrow \Sigma^{*}$.
- \bar{L} is also SD, so it too is the image of a computable $f^{-}: \mathbb{N} \rightarrow \Sigma^{*}$.
- To decide $w \in L$ calculate $f^{+}(0), f^{-}(0), f^{+}(1), f^{-}(1) \ldots$ until w is obtained as an output.
If it is an output of f^{+}then $w \in L$, if of f^{-}then $w \in \bar{L}$.
- A problem whose complement is SD is said to be co-SD.

So the Theorem states that
a problem is decidable iff it is both SD and co-SD.

Summary of characterizations

Let $L \subseteq \Sigma^{*}$

- The following are equivalent:
(a) L is semi-decidable, i.e. recognized by an acceptor
(b) L is computably-enumerated
(c) L has a decidable certification
- The following are equivalent:
(a) L is decidable, i.e. recognized by a terminating acceptor
(b) L is orderly-enumerated
(c) L is both SD and co-SD
- (a) are characterizations in terms of machine acceptors,
(b) in terms of generators,
(c) decidability and decidability in terms of each other.

Set operations on SD problems

- Let $L_{0}, L_{1} \subseteq \Sigma^{*}$ be SD.
- Claim: $L_{0} \cup L_{1}$ is SD.
- We can't just run the two acceptors sequentially: the first may fail to terminate.
- But since L_{0}, L_{1} are SD, they have decidable certifications, say \vdash_{0} for L_{0} and \vdash_{1} for L_{1}.

Let $c \vdash w$ just in case $c \vdash_{0} w$ or $c \vdash_{1} w$ (i.e. \vdash is $\left.\left(\vdash_{0} \cup \vdash_{1}\right)\right)$
$\bullet \vdash$ is decidable, as the union of decidable sets.
$\bullet \vdash$ is a certification for $L_{0} \cup L_{1}$:

$$
\begin{aligned}
x \in L_{0} \cup L_{1} & \text { IFF } x \in L_{0} \text { or } x \in L_{1} \\
& \text { IFF for some } c: c \vdash_{0} x \text { or } c \vdash_{1} x \\
& \text { IFF } c \vdash x \text { for some } c \quad(d f n ~ o f ~ \vdash) ~
\end{aligned}
$$

SD is not closed under complement!

- We have seen: acceptance is SD but not decidable.
- If the complement of acceptance were SD, then acceptance would be both SD and co-SD, and therefore decidable, which it is not.

Proving SD via computable reductions

- We know that the problem accept, referring to Turing acceptors, is SD.
- There is an algorithm for transforming Turing acceptors M to equivalent general grammars G, that is such that $(\mathcal{G})=\mathcal{L}(\mathcal{M})$.

So the following problem is also SD.
generate: Given a grammar G and a string w, does G generate w.

SCOPE PROPERTIES OF COMPUTING DEVICES

Decidable problems of Turing machines

- Properties of Turing acceptors may be decidable:

Runs more than 4 steps on input 001
Has more than 4 states
The accept state is the only terminal state

- These refer to the inner workings of the Turing machine not to the language it recognizes.
- The ε-ACCEPT problem is different:

It is about the language L recognized, not the recognizing device.

- The answer yes/no would be the same for any acceptor for L.

Scope-properties of machines

- Many important properties of computing devices M are scope-properties, in that they are about what M does, and not about how it does it.
- So a scope-property of acceptors M
is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.
- If two acceptors recognize the same language
then they share every scope-property.
- Many important properties of computing devices M are scope-properties, in that they are about what M does, and not about how it does it.
- So a scope-property of acceptors M
is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.
- If two acceptors recognize the same language then they share every scope-property.
- Similarly, a scope-property of transducers M
is a property of the partial-function that it computes.
- If two transducers compute the same partial-function then they share every scope-property.
- Many important properties of computing devices M
are scope-properties, in that they are about what M does, and not about how it does it.
- So a scope-property of acceptors M
is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.
- If two acceptors recognize the same language
then they share every scope-property.
- Similarly, a scope-property of transducers M
is a property of the partial-function that it computes.
- If two transducers compute the same partial-function
then they share every scope-property.
- Scope-properties are also called by logicians
scope, extensional, index-sets and semantical.

Examples for Turing-acceptors

- $\mathcal{L}(M)$ is finite.
- $\mathcal{L}(M)$ is infinite.
- Accepts at least two strings, i.e. $\mathcal{L}(M) \geqslant 2$ elements.
- Every string accepted by M has even length.
- $\mathcal{L}(M)$ is a regular language.

This does not mean that M is a DFA.

- For some $n>0 M$ accepts every string of length n.
- For every $n \geqslant 0 M$ accepts some string of length n.

Examples for Turing-transducers M.

- Computes a total function.
- Undefined for input ε.
- Define for all input of even length.
- Undefined for all input of even length.
- Constant (same output for all input
- Increasing: If $|x|<|y|$ then $|f(x)|<|f(y)|$
- Bounded: There is an $n \in \mathbb{N}$ s.t. $|f(x)| \leqslant n$ for all x.
- Unbounded: For every n there is some x s.t. $|f(x)|>n$.
- Inflationary: $|f(x)| \geqslant|x|$ for all x.

Non-scope properties of Turing machines

- Has more than 100 states.
- Reads every input to its end.
- For some input visits every state during computation
- Never runs more than n^{2} steps for input of size $\leqslant n$
- Is a decider
(but "recognizes a deciable language" is a scope-property!)

Rice's Theorem

- A property is trivial for a language L
if it is either true of every $w \in L$ or false for every w.
- Example: The property $\mathcal{L}(M)$ is $S D$
is always true: it just conveys the definition of SD.
- Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors, other than the trivial properties.

- Proof idea:

If \mathcal{P} is non-trivial, then ε-ACCEPT $\leqslant_{c} \mathcal{P}$.
So \mathcal{P} is undecidable.

- Let \mathcal{P} be a non-trivial scope-property of Turing acceptors.

Fix some acceptor E recognizing \emptyset.
Assume $E \notin \mathcal{P}$ (it won't matter).
Also, \mathcal{P} is non-trivial, so it is true of some acceptor A.

- Note: we have E and A on opposite sides of \mathcal{P} !
- Define $\rho: \varepsilon$-ACCEPT $\leqslant_{c} \mathcal{P}$,
- Write M^{\prime} for $\rho(M)$.
- On input x, M^{\prime} disregards x, and runs M on ε.

If and when M accepts ε, M^{\prime} fires A on x.

- So we have

$$
\begin{aligned}
\mathcal{L}\left(M^{\prime}\right)=\text { if } M \text { accepts } \varepsilon & \text { then } \mathcal{L}(A) \\
& \text { else } \emptyset, \text { i.e. } \mathcal{L}(E)
\end{aligned}
$$

- SO M accepts ε just in case $M^{\prime}=\rho(M) \in \mathcal{P}$.
- The reduction consists in tinkering with transitions, so it is computable.

Using Rice's Theorem

- All previous examples of scope properties are non-trivial, and therefore undecidable.
- Rice's Theorem says nothing about problems that are are not scope-properties.
- Properties referring to the structure of Turing machines, or to the syntax of programs, are always decidable.
- But properties that relate to the workings of algorithms and machines are often, but not always, undecidable.
- Example. ALL-States-used:

Each state of a given TM M occurs in some trace of M.

- It is not hard to show that ε-ACCEPT \leqslant_{c} ALL-STATES-USED.

So the non-scope problem ALL-STATES-USED is undecidable.

- Outline of the reduction:
- Acceptor M is mapped to M^{\prime}, which uses an additional alphabet symbol \# and an additional state t.
- M^{\prime} runs M on input ε and if accepted writes \#, switches to t, and cycles while reading \# through all states of M.
- So if M accepts ε then M^{\prime} uses all its states.

If not, then M^{\prime} does not use the state t.

SUMMARY OF METHODS

Proving problems to be decidable

Methods for proving problems L decidable:

- L is recognized by a decider.
- L is finite or orderly-enumerated.
- Both L and \bar{L} are semi-decidable.
- L is definable using union, intersection, and complement (or difference) from decidable problems.
- L is computably reducible to a decidable problem.

Proving problems to be SD

Methods for proving problems L semi-decidable:

- L is recognized by an acceptor.
- L is computably-enumerated.
- L has a decidable certification.
- L is defined using union and intersection from SD languages.
- L is computably reducible to a SD problem.

Proving properties to be undecidable

- Methods for proving problems L undecidable:
- L is a stable property of acceptors or transducers.
- L is defined using complement from undecidable languages.
- An undecidable problem is computably reducible to L.
- Methods for proving problems L non-SD:
- L is the complement of a SD but undecidable problem.
- A non-SD problem, such as ε-NON-ACCEPT, is $\leqslant_{c} L$.

OTHER UNDECIDABLE PROBLEMS

String equations

- Recall string expressions:
generated from variables and fixed strings
using the concatenation, head, and tail operations.
- Solution to $E=E^{\prime}$:
a binding of variables to strings, for which the equation is true.
- $x * 01 * y=y * 10 * x$ has as solution $x=11, y=1$.
- string-equation Problem:

Given an equation between string-expressions, does it have a solution?

- string-equation is undecidable
- Arithmetic expressions: generated from variables and numerals using + and \times.
- A solution to $E=E^{\prime}$:
a binding of variables to integers, for which the equation is true.
- arith-equation Problem:

Given an equation between arithmetic-expressions, does it have a solution?

- Proved undecidable in the 1970's, incrementally,
by Yuri Matiyasevich, Julia Robinson, Hilary Putnam and Martin Davis.

*Tessellation

- Consider square tiles, with each side marked with a design.

Such tiles are used to tessellate rectangles, with similar abutting sides.

- Example: The following tiles can be used to tessellate a 3×3 display

- The following tessellates a 2×2 display, but not any 3×3 :

- Undecidable: The tiling Problem (Hao Wang, 1961):

Given a set P of marked tiles, can P tessellate arbitrarily large rectangles.

*Post's Correspondence Problem

- A correspondence over an alphabet Σ is a finite set of pairs

$$
\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right) \quad\left(u_{i}, v_{i} \in \Sigma^{*}\right)
$$

- A match for such a correspondence is a string w that can be read both as a concatenation of some u_{i} 's and as the concatenation of the corresponding v_{i} 's:

$$
w=u_{i_{1}} \cdots u_{i_{n}}=v_{i_{1}} \cdots v_{i_{n}}
$$

- Example: The correspondence $C=\{(100,1),(0,100),(1,00)\}$ has the following match:

$$
\begin{aligned}
w & =1001100100100 \\
& =1001100100100
\end{aligned}
$$

- The undecidable post's correspondence Problem:

Given a correspondence C, does it have a match?

${ }^{\star}$ The Perishable Matrix Problem

- A finite set S of $k \times k$ matrices is perishable
if some product of matrices out of S (repetition allowed) yields the zero $k \times k$ matrix.
- PERISHAbLE-MATRIX Problem:

Given s set of $k \times k$ integer matrices (for some k), is it perishable.

Problems about CFGs

- Does a given CFG over Σ generate all Σ-strings? (Whether a CFG generate some string is decidable).
- Is a given CFG ambiguous?
- Given CFGs G and $G^{\prime \prime}$, is $\quad \mathcal{L}\left(G_{0}\right) \subseteq \mathcal{L}\left(G_{1}\right)$?

Is $\mathcal{L}(G) \cap \mathcal{L}\left(G^{\prime}\right)$ empty?

* Validity

- Relational Logic gives rules of reasoning for the basic logical operations: the connective: \neg, \wedge, \vee, and the quantifiers: \forall, \exists
- Example: $(\forall x P(x)) \vee(\exists y \neg P(y))$.
- A statement is valid if it is true regardless of the particulars.

For example, the statement above is valid.

- In contrast, the following statement is not valid:

$$
(\forall x \exists y P(x, y)) \vee(\exists x \forall y \neg P(x, y))
$$

- The VALIdity Problem:

Given a statement of relational logic, is it valid?

- Undecidability proved in 1936 independently by Alan Turing and Alonzo Church.

