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What are sets

• A set is a collection into a whole of

some well-recognized objects, dubbed the set’s elements.

• We write a ∈ Sa ∈ Sa ∈ S for “aaa is an element of SSS”

• The concept of set is “defined” here in terms of

“collection” and “whole”, i.e. synonyms of “set”!

• Shouldn’t concepts be defined using previously defined ones?

• Regressing this way cannot go on indefinitely:

we must stop with concepts that are left undefined .

• We only explain those informally,

hoping to establish some

shared imagery, intuitions and understanding.

“Set” is just such a concept.
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Exhibiting sets

• Sets are determined by their elements.

That is, if sets AAA and BBB have the same elements,

then they are one and the same set,

even if they are described in very different ways.

• This is the Principle of Extensionality .



Exhibiting sets

• Sets are determined by their elements.

That is, if sets AAA and BBB have the same elements,

then they are one and the same set,

even if they are described in very different ways.

• This is the Principle of Extensionality .

• It implies that finite sets can be defined

by exhibiting their elements: {a1, . . . , ak}{a1, . . . , ak}{a1, . . . , ak}.

So {0, 1}{0, 1}{0, 1}, {1, 0}{1, 0}{1, 0} and {0, 0, 1}{0, 0, 1}{0, 0, 1} are all the same set.
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Names and notations for special sets

• Some sets are commonly assumed as given, and assigned notations.

◮ For an alphabet ΣΣΣ, the set Σ∗Σ∗Σ∗ of ΣΣΣ-strings.

◮ The set {0.1}{0.1}{0.1} of booleans, denoted BoolBoolBool.

◮ natnatnat or NNN : The set of natural numbers 0, 1, 2, 3...0, 1, 2, 3...0, 1, 2, 3....

◮ intintint or ZZZ : The integers

◮ QQQ : the rational numbers (Q for “quotients”)

◮ RRR : the real numbers (the “real number line”)

◮ The empty set, denoted ∅∅∅ , which has no elements.

• A set with exactly one element, however complex, is a singleton.

Examples: {0}{0}{0} , {∅}{∅}{∅} , {{∅}}{{∅}}{{∅}} and {N}{N}{N}
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Abstraction notation

• Another approach to defining sets is to delineate them

by certain properties, as in

“the set of registered voters” .

• Such definitions are captured by the notational convention

{x |{x |{x | a property of x}x}x}.

• Between braces: (1) a declared variable, say xxx ,

Between braces (2) a vertical bar (pronounced “such that”)

Between braces (3) a property of xxx .



Abstraction notation

• Another approach to defining sets is to delineate them

by certain properties, as in

“the set of registered voters” .

• Such definitions are captured by the notational convention

{x |{x |{x | a property of x}x}x}.

• Between braces: (1) a declared variable, say xxx ,

Between braces (2) a vertical bar (pronounced “such that”)

Between braces (3) a property of xxx .

• Example: {z | z = 2x{z | z = 2x{z | z = 2x for some x ∈ N}x ∈ N}x ∈ N}.

More concisely: {2x | x ∈ N}{2x | x ∈ N}{2x | x ∈ N}.



Abstraction notation

• Another approach to defining sets is to delineate them

by certain properties, as in

“the set of registered voters” .

• Such definitions are captured by the notational convention

{x |{x |{x | a property of x}x}x}.

• Between braces: (1) a declared variable, say xxx ,

Between braces (2) a vertical bar (pronounced “such that”)

Between braces (3) a property of xxx .

• Example: {z | z = 2x{z | z = 2x{z | z = 2x for some x ∈ N}x ∈ N}x ∈ N}.

More concisely: {2x | x ∈ N}{2x | x ∈ N}{2x | x ∈ N}.

• A set’s elements can themselves be complex entities!

Examples: {∅}{∅}{∅}, {N}{N}{N}, {∅, {∅}}{∅, {∅}}{∅, {∅}}.
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Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)
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[ p..q )[ p..q )[ p..q ) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[ p..)[ p..)[ p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [ p..∞ )[ p..∞ )[ p..∞ ).
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Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.
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• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.
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Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.
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Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[ p..q ][ p..q ][ p..q ] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[ p..q )[ p..q )[ p..q ) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[ p..)[ p..)[ p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [ p..∞ )[ p..∞ )[ p..∞ ).

• Examples for integers: [ −1..1) =[ −1..1) =[ −1..1) = {−1, 0}{−1, 0}{−1, 0}
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Relations between sets

• We say that AAA is a subset of BBB

and write A ⊆ BA ⊆ BA ⊆ B if every element of AAA is an element of BBB,

that is x ∈ Ax ∈ Ax ∈ A implies x ∈ Bx ∈ Bx ∈ B.
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Relations between sets

• We say that AAA is a subset of BBB

and write A ⊆ BA ⊆ BA ⊆ B if every element of AAA is an element of BBB,

that is x ∈ Ax ∈ Ax ∈ A implies x ∈ Bx ∈ Bx ∈ B.

• Examples:

◮ N ⊆ ZN ⊆ ZN ⊆ Z.

◮ For any set AAA : A ⊆ AA ⊆ AA ⊆ A and ∅ ⊆ A∅ ⊆ A∅ ⊆ A.

◮ The set of elephants is a subset of the set of mammals.

• If A ⊆ BA ⊆ BA ⊆ B and B ⊆ AB ⊆ AB ⊆ A

then AAA and BBB have the same elements.

By Extensionality this implies A = BA = BA = B.
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Puzzles

True or false?

0 ∈ {0, 1}0 ∈ {0, 1}0 ∈ {0, 1}
{0} ⊆ {0, 1}{0} ⊆ {0, 1}{0} ⊆ {0, 1}
{0} ∈ {0, 1}{0} ∈ {0, 1}{0} ∈ {0, 1}
{0, 1, 1} ⊆ {1, 0}{0, 1, 1} ⊆ {1, 0}{0, 1, 1} ⊆ {1, 0}
{0, 1} ⊆ N{0, 1} ⊆ N{0, 1} ⊆ N

{0, 1} ⊆ {N}{0, 1} ⊆ {N}{0, 1} ⊆ {N}

N ⊆ {N}N ⊆ {N}N ⊆ {N}
N ∈ {N}N ∈ {N}N ∈ {N}
∅ ⊆ {∅}∅ ⊆ {∅}∅ ⊆ {∅}
{∅} ⊆ ∅{∅} ⊆ ∅{∅} ⊆ ∅
∅ ∈ ∅∅ ∈ ∅∅ ∈ ∅
∅ ∈ {∅}∅ ∈ {∅}∅ ∈ {∅}
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The perils of abstraction

• In the template {x | · · · x · · · }{x | · · · x · · · }{x | · · · x · · · } ,

does xxx stand for “anything”?

• If that were so, we’d be able to define

R =df {x | x 6∈ x}R =df {x | x 6∈ x}R =df {x | x 6∈ x}
That is, for all xxx

x ∈ R iff x 6∈ xx ∈ R iff x 6∈ xx ∈ R iff x 6∈ x

• In particular, if we take xxx to be RRR then

R ∈ R iff R 6∈ RR ∈ R iff R 6∈ RR ∈ R iff R 6∈ R

A contradiction!

• This is known as Russell’s Paradox.
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The Separation Principle

• There is a circularity at the root of the definition of RRR:

“all sets” includes the set RRR itself,

which is defined in terms of “all sets.”

• Work-around: Zermelo’s Separation Principle:

For a given set SSS we may define {x ∈ S | · · · x · · · }{x ∈ S | · · · x · · · }{x ∈ S | · · · x · · · }.

We “separate” out the elements of SSS along the given property.

• This blocks Russell’s paradox:

SSS would have to be “all sets”, which is not admissible as a set.
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Bertrand Russell and Ernst Zermelo

Russell (1872-1970) Zermelo (1871-1953)



The Diagonal Method

• Russell’s Paradox epitomizes a powerful line of reasoning.

To illustrate, let’s call a book modest if its text does not mention its title.

Question: Can we compile a catalog of all modest books?

• Suppose such a catalog existed, with title MMM say.

A book is listed in MMM iff it does not mention itself.

In particular, MMM is listed in MMM iff MMM is not listed in MMM .

• Consequence: There can be no catalog of all modest books!

• Where does the contradiction come from?
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Contradictions via two-faced objects

• The catalog argument refers to each book in two ways:

as a title, and as contents.

• Russell’s Paradox refers to each set in two ways:

as a set of other objects, and as a possible element of other sets.

• This duality is the core of the Self-reference Method

AKA the Diagonal Method.

(A matrix’s diagonal is where row #i#i#i meets column #i#i#i.)

• This duality is ingrained in computing:

a program is both a string and an algorithm.
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Operations on sets

• A ∩ BA ∩ BA ∩ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x ∈ B}x ∈ B}x ∈ B}
A ∪ BA ∪ BA ∪ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A or x ∈ B}x ∈ B}x ∈ B}
A − BA − BA − B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x 6∈ B}x 6∈ B}x 6∈ B}



Operations on sets

• A ∩ BA ∩ BA ∩ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x ∈ B}x ∈ B}x ∈ B}
A ∪ BA ∪ BA ∪ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A or x ∈ B}x ∈ B}x ∈ B}
A − BA − BA − B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x 6∈ B}x 6∈ B}x 6∈ B}

• When all sets considered are subsets of some set UUU ,

we refer to U − AU − AU − A as the complement of AAA ,

and write Ā̄ĀA for it.
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∪∪∪∪∪∪∪∪∪ is the dual of ∩∩∩∩∩∩∩∩∩

• We have A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄:

x 6∈ A ∩ Bx 6∈ A ∩ Bx 6∈ A ∩ B iff x 6∈ Ax 6∈ Ax 6∈ A or x 6∈ Bx 6∈ Bx 6∈ B
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• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:
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{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},
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{a, b, c} }
◮ What is P(∅)?P(∅)?P(∅)? P(∅) = {∅}P(∅) = {∅}P(∅) = {∅}

◮ What is P({1})P({1})P({1})? P({1}) = {∅, {1}}P({1}) = {∅, {1}}P({1}) = {∅, {1}}
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Size of the power-set

• If a finite AAA has nnn elements,

then P(A)P(A)P(A) has 2n2n2n elements:

◮ A subset B ⊆ AB ⊆ AB ⊆ A , is fixed by choosing, for each x ∈ Ax ∈ Ax ∈ A ,

whether or not x ∈ Bx ∈ Bx ∈ B .

◮ Each choice doubles the number of previous choices.
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Disjoint sets

• Sets A, BA, BA, B are disjoint if A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry

(Japan disallows dual citizenship...)

• More generally, a collection CCC of sets is disjoint if

A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅ for every distinct A, B ∈ CA, B ∈ CA, B ∈ C .

(The phrase pairwise-disjoint means the same thing.)

• Example: The collection of open intervals (0..1), (1..2), (2..3), (3..4), · · ·(0..1), (1..2), (2..3), (3..4), · · ·(0..1), (1..2), (2..3), (3..4), · · ·
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Partitions

• A collection CCC of non-empty subsets of SSS is a partition of SSS

if every x ∈ Sx ∈ Sx ∈ S is in exactly one A ∈ CA ∈ CA ∈ C.

• Examples:

◮ {a, b, c, d}{a, b, c, d}{a, b, c, d} can be partitioned into {a, b, c}{a, b, c}{a, b, c} and {d}{d}{d}.

How many partitions into 2 sets? into 3 sets? into 4?

◮ {a...z}{a...z}{a...z} can be partitioned into the vowels and the consonants.

◮ NNN can be partitioned into the prime numbers, composite numbers,

and {0, 1}{0, 1}{0, 1}.

Another partition: Singletons {0}, {1}, {2} ...{0}, {1}, {2} ...{0}, {1}, {2} ... .

• Non-example:

◮ English words fall into eight parts of speech,

but this is not a partition: some words are both noun and verb.
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• Which are partitions:

◮ Classify humanity by birth-year:

people born in 2023, 2022, ...

◮ Classify RRR into two:

finite decimal expansions & infinite decimal expansions

◮ Classify RRR into the half-closed intervals

[n..n+1)[n..n+1)[n..n+1), (nnn an integer).



RELATIONS
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Ordered pairs

• Given any two objects a, ba, ba, b

we can form the ordered-pair 〈a, b〉〈a, b〉〈a, b〉.
aaa and bbb need not have anything in common, and may be identical.
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Ordered pairs

• Given any two objects a, ba, ba, b

we can form the ordered-pair 〈a, b〉〈a, b〉〈a, b〉.
aaa and bbb need not have anything in common, and may be identical.

• Unlike the set {a, b}{a, b}{a, b} , order and repetition in 〈a, b〉〈a, b〉〈a, b〉 do matter:

〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉 iff a = ca = ca = c and b = db = db = d .

• More generally, for each k > 1k > 1k > 1 we can form

the ordered kkk -tuples 〈a1, . . . , ak〉〈a1, . . . , ak〉〈a1, . . . , ak〉 of the objects a1, . . . , aka1, . . . , aka1, . . . , ak.

• As we did for sets, we take the formation of ordered-pairs

and ordered tuples to be a basic, intuitively clear, operation.
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Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :
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Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :

A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}

• If AAA has ppp elements and BBB has qqq elements,

then A × BA × BA × B has p · qp · qp · q elements.

• Examples.

◮ {a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}

◮ R × RR × RR × R is the real-number plane.

◮ Z × ZZ × ZZ × Z is the integer grid.

◮ 〈〈〈 US town-names〉〉〉 ××× 〈〈〈 US state-names〉〉〉.
Some elements: 〈Bloomington, Indiana〉, 〈Cambridge, Ohio〉, 〈Portland, Maine〉〈Bloomington, Indiana〉, 〈Cambridge, Ohio〉, 〈Portland, Maine〉〈Bloomington, Indiana〉, 〈Cambridge, Ohio〉, 〈Portland, Maine〉
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• When 〈a, b〉 ∈ R〈a, b〉 ∈ R〈a, b〉 ∈ R we also write (in infix)

a R ba R ba R b or — if clearer — a (R) ba (R) ba (R) b .

• A relation from a set AAA to itself is a relation over AAA.



Binary relations

• Given sets A, BA, BA, B any set R ⊆ A × BR ⊆ A × BR ⊆ A × B is a binary-relation from AAA to BBB .

• When 〈a, b〉 ∈ R〈a, b〉 ∈ R〈a, b〉 ∈ R we also write (in infix)

a R ba R ba R b or — if clearer — a (R) ba (R) ba (R) b .

• A relation from a set AAA to itself is a relation over AAA.

• With few exceptions we use the usual infix notation: For 〈a, b〉 ∈ R〈a, b〉 ∈ R〈a, b〉 ∈ R

we write a R ba R ba R b.
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◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.
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◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.
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Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

◮ Divisibility over the integers:

p | qp | qp | q when ppp divides qqq . Eg: 3 | 213 | 213 | 21.

◮ Relatively prime:

{〈p, q〉 | p, q{〈p, q〉 | p, q{〈p, q〉 | p, q have no common divisor }}}. Eg: 8 and 15

◮ Kinship relations: parent-of, granddaughter-of, sibling-of.

◮ Reporting relation in an organization.

◮ Dependency relation between components of software modules.
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⋆ Renatus Cartesius

• René Descartes, 1596-1650

• https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes

• The unity of Mathematics!
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Visual representation by di-graphs

• Any binary relation R ⊆ A × AR ⊆ A × AR ⊆ A × A

can be represented as a directed-graph without multiple edges:

The vertices are the elements of AAA

and there is an edge x ↔ yx ↔ yx ↔ y iff x(R)yx(R)yx(R)y.
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MASQUERADING AS EQUALITY
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Reflexive relations

• One useful type of relations consists of those who share the

essential properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is reflexive on AAA if xRxxRxxRx for all x ∈ Ax ∈ Ax ∈ A.

• Note that this property of RRR , standing alone.
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Examples

◮ Identity over a set AAA.

◮ 666 between integers

◮ Congruence between angles (over angles in geometry)

◮ is-connected-to (over vertices of an undirected graph)

Non-examples:

◮ has-same-address-as (over people): Not everyone has an address!

◮ is-the-same-as-integer as a relation on the real numbers

◮ Inequality <<< between real numbers
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Which are reflexive?

◮ has-same-prime-factors-as (over NNN)



Which are reflexive?

◮ has-same-prime-factors-as (over NNN) Yes



Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane)



Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane) Yes



Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane)

◮ has-common-border-with (between countries)



Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane)

◮ has-common-border-with (between countries)

No: no country has a common border with itself
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Examples:

◮ Equality (over any set)

◮ has-same-prime-factors-as (over N)

◮ is-connected-to (over vertices of an undirected graphs)

◮ spouse-of, sibling-of, class-mate-of (over people)
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Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Non-examples:

◮ Weak inequality 666

◮ is-connected-to (over vertices of a directed graph)

◮ parent-of, supervisor-of (over people)
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Which are symmetric?

◮ loves



Which are symmetric?

◮ loves Unfortunately not



Which are symmetric?

◮ loves

◮ earlier-than



Which are symmetric?

◮ loves

◮ earlier-than No



Which are symmetric?

◮ loves

◮ earlier-than

◮ cousin-of



Which are symmetric?

◮ loves

◮ earlier-than

◮ cousin-of Yes
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Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Examples

◮ <<< over RRR

◮ divides over NNN

◮ ancestor-of (over people)

◮ connected-to (over vertices of a di-graph)

◮ ⊆⊆⊆ (over P(N)P(N)P(N))



Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Non-examples:

◮ parent-of, cousin-of



Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Non-examples:

◮ parent-of, cousin-of

◮ within-walking-distance-of
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Which are transitive?

◮ substring-of
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◮ substring-of Yes



Which are transitive?

◮ substring-of

◮ brother-in-law-of



Which are transitive?

◮ substring-of

◮ brother-in-law-of No



Which are transitive?

◮ substring-of

◮ brother-in-law-of

◮ relatively-prime-with



Which are transitive?

◮ substring-of

◮ brother-in-law-of

◮ relatively-prime-with No: Take 〈2, 3〉〈2, 3〉〈2, 3〉 and 〈3, 2〉〈3, 2〉〈3, 2〉)
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• Reflexivity, symmetry and transitivity

are the basic properties of equality.
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Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Non-examples

◮ is-descendant-of, self included (between people)

◮ Identity on NNN as a relation on RRR

◮ is-connected-to (between people)
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Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people) Yes



Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people)

◮ sibling-of (both parents)



Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people)

◮ sibling-of (both parents) Not reflexive
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• Intuitively, an equivalence unifies objects

that share some properties of interest.
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Equivalence approximates equality

• Intuitively, an equivalence unifies objects

that share some properties of interest.

• We think of a cluster of equivalent objects as an equivalence-class.

• Such class can be identified by one of its members.

We’ll see that it does not matter which one. So we define:

• Given an equivalence ∼∼∼ over AAA , and x ∈ Ax ∈ Ax ∈ A,

the ∼∼∼-class of xxx is defined by

[x]∼ =df {y ∈ S | y ∼ x}[x]∼ =df {y ∈ S | y ∼ x}[x]∼ =df {y ∈ S | y ∼ x}
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Examples of equivalence-classes

• Over NNN , equality modulo 5, that is has-same-remainder-over-5-as.

[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}
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Examples of equivalence-classes

• Over NNN , equality modulo 5, that is has-same-remainder-over-5-as.

[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}

• For points in the plane, equidistance-to-origin.

[(1, 0)]∼ =[(1, 0)]∼ =[(1, 0)]∼ = the unit circle.

• Over an undirected graph, is-connected-to

[u]∼ =[u]∼ =[u]∼ = the connected component of uuu
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Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.

In fact a ∼ a′a ∼ a′a ∼ a′ iff [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼
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Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.
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⇒⇒⇒ x ∼ a′x ∼ a′x ∼ a′ (transitivity, since a ∼ a′a ∼ a′a ∼ a′

⇒⇒⇒ x ∈ [a′]∼x ∈ [a′]∼x ∈ [a′]∼

• ⇐:⇐:⇐: Suppose [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼ show a ∼ a′a ∼ a′a ∼ a′

a ∼ aa ∼ aa ∼ a (reflexivity)

⇒⇒⇒ a ∈ [a]∼a ∈ [a]∼a ∈ [a]∼ (dfn of [a]∼[a]∼[a]∼)

⇒⇒⇒ a ∈ [a′]∼a ∈ [a′]∼a ∈ [a′]∼ (since [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼)

⇒⇒⇒ a ∼ a′a ∼ a′a ∼ a′ (dfn of [a′]∼[a′]∼[a′]∼)
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Order relations

• Order relations are everywhere, starting with the order between integers.

• But they can be different in a variety of ways.

◮ Integers have a successor, real numbers do not.

◮ NNN has a smallest element, ZZZ does not.

◮ Natural numbers always compare under 666 ,

but not every two sets compare under ⊆⊆⊆.

◮ QQQ has an element between any two elements, NNN does not.
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What is common to all order relations?

• Intuition of order is rooted in the natural order:

0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · · .

• Its most essential features are

◮ Asymmetry: uRvuRvuRv contradicts vRuvRuvRu

◮ Transitivity: uRvuRvuRv and vRwvRwvRw together imply uRwuRwuRw.



What is common to all order relations?

• Intuition of order is rooted in the natural order:

0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · · .

• Its most essential features are

◮ Asymmetry: uRvuRvuRv contradicts vRuvRuvRu

◮ Transitivity: uRvuRvuRv and vRwvRwvRw together imply uRwuRwuRw.

• But historically 666 was considered a more useful paradigm.

So the common characterization of “order” has shifted to be:

• A relation RRR over a set AAA is an order on AAA if it is

◮ Reflexive on AAA

◮ Transitive

◮ Anti-symmetric: uRvuRvuRv and vRuvRuvRu together imply u = vu = vu = v .
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Order on strings

• We assume that each alphabet ΣΣΣ comes with some order ≺≺≺.

• ≺≺≺ can be extended to a size-lex order ≺≺≺ between strings. We let

σ1 · · · σp ≺ τ 1 · · · τ qσ1 · · · σp ≺ τ 1 · · · τ qσ1 · · · σp ≺ τ 1 · · · τ q if either p < qp < qp < q

or p = qp = qp = q and for some i < pi < pi < p, σ1 · · · σi = τ 1 · · · τ iσ1 · · · σi = τ 1 · · · τ iσ1 · · · σi = τ 1 · · · τ i and σi+1 ≺ τ i+1σi+1 ≺ τ i+1σi+1 ≺ τ i+1

• I.e. strings are ordered by length, and lexicographically within each length.

• Any set of strings can be listed in increasing ≺≺≺ order.

• This is not possible with usual lexicographic order:

For example, the one-letter Latin string bbb

is preceded by the infinitely many strings that start with aaa.



MAPPINGS
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Binary relations as input-output processes

• A relation from AAA to BBB can often be construed

as a process that takes elements of AAA as input

and yields corresponding output-values in BBB.

• For example, the relation parent-of can be construed

as yielding for any person each one of their children.

• Interpreting relations as processes is not always natural.

It is awkward to construe <<< on NNN

as a process that maps each xxx to each y > xy > xy > x.
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Mappings

• A relation R ⊆ A × BR ⊆ A × BR ⊆ A × B does not determine the sets AAA and BBB ,

because R ⊆ A′ × B′R ⊆ A′ × B′R ⊆ A′ × B′ for every A′ ⊇ AA′ ⊇ AA′ ⊇ A and B′ ⊇ BB′ ⊇ BB′ ⊇ B .

• For example, if RRR maps people to their ancestors aged 6 1506 1506 150

then it also maps people to their ancestor aged 6 2006 2006 200.

• We define a mapping as a triple (R, A, B)(R, A, B)(R, A, B) where R ⊆ A × BR ⊆ A × BR ⊆ A × B.

We write R : A ⇒ BR : A ⇒ BR : A ⇒ B to state that (A, R, B)(A, R, B)(A, R, B) is a mapping.

AAA is the domain of the mapping and BBB its range .
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Image under a mapping

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and x ∈ Ax ∈ Ax ∈ A then

R[x]R[x]R[x] is the image of xxx under RRR



Image under a mapping

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and x ∈ Ax ∈ Ax ∈ A then

R[x]R[x]R[x] is the image of xxx under RRR

• Also, if A0 ⊆ AA0 ⊆ AA0 ⊆ A then

R[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) y for some x ∈ A0 }x ∈ A0 }x ∈ A0 }
is the image of A0A0A0 under RRR .



Image under a mapping

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and x ∈ Ax ∈ Ax ∈ A then

R[x]R[x]R[x] is the image of xxx under RRR

• Also, if A0 ⊆ AA0 ⊆ AA0 ⊆ A then

R[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) y for some x ∈ A0 }x ∈ A0 }x ∈ A0 }
is the image of A0A0A0 under RRR .

• Example: Consider the relation
√

= {〈x2, x〉 | x ∈ R}√
= {〈x2, x〉 | x ∈ R}√
= {〈x2, x〉 | x ∈ R}.

Then
√

[4] = {2, −2}√
[4] = {2, −2}√
[4] = {2, −2} √

[0] = {0}√
[0] = {0}√
[0] = {0} √

[−4] = ∅√
[−4] = ∅√
[−4] = ∅

−1

0

1

−2

2

−1

0

1

−2

2

3

4

ZZ
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Operations on mappings
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Mapping inverse

• The inverse of a mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is the mapping R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A

where x (R−1) yx (R−1) yx (R−1) y iff y (R) xy (R) xy (R) x.

• The superscript −1−1−1 is borrowed from

the reciprocal function x−1 = 1/xx−1 = 1/xx−1 = 1/x over RRR.
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Examples

◮ Inverse of parent-of is child-of

◮ Inverse of loves is is-loved-by

◮ Inverse of has-SSN is is-SSN-of

◮ The inverse of <<< is >>>,

and the inverse of 666 is >>>.
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Inverting the inverse

• (R−1)−1 = R(R−1)−1 = R(R−1)−1 = R

• Proof. x (R−1)−1 yx (R−1)−1 yx (R−1)−1 y iff y (R−1) xy (R−1) xy (R−1) x

iff x (R) yx (R) yx (R) y
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Relational-composition

• The relational-composition of mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C

is the mapping (R ; Q) : A ⇒ C(R ; Q) : A ⇒ C(R ; Q) : A ⇒ C where

x (R ; Q) zx (R ; Q) zx (R ; Q) z iff for some y ∈ By ∈ By ∈ B both x R yx R yx R y and y Q zy Q zy Q z .



Relational-composition

• The relational-composition of mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C

is the mapping (R ; Q) : A ⇒ C(R ; Q) : A ⇒ C(R ; Q) : A ⇒ C where

x (R ; Q) zx (R ; Q) zx (R ; Q) z iff for some y ∈ By ∈ By ∈ B both x R yx R yx R y and y Q zy Q zy Q z .

• Relational-composition interprets mappings as processes,

therefore following the procedural order.

The semi-colon notation reflects this interpretation.
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Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.
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◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}
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Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}
◮ Over RRR : (<) ; (<)(<) ; (<)(<) ; (<) is (<)(<)(<)

◮ Over subsets of NNN:

(⊆) ; (⊆)(⊆) ; (⊆)(⊆) ; (⊆) is ⊆⊆⊆



Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}
◮ Over RRR : (<) ; (<)(<) ; (<)(<) ; (<) is (<)(<)(<)

◮ Over subsets of NNN:

(⊆) ; (⊆)(⊆) ; (⊆)(⊆) ; (⊆) is ⊆⊆⊆
but (⊂) ; (⊂)(⊂) ; (⊂)(⊂) ; (⊂) is “extending by at least 2 elements”.
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Inverse of a composition

• (R ; Q)−1 = Q−1 ; R−1(R ; Q)−1 = Q−1 ; R−1(R ; Q)−1 = Q−1 ; R−1

Proof. x (R ; Q)−1 zx (R ; Q)−1 zx (R ; Q)−1 z iff z (R ; Q) xz (R ; Q) xz (R ; Q) x (dfn of inverse)

iff z R yz R yz R y and y Q xy Q xy Q x some yyy (dfn of ;;; )

iff y R−1 zy R−1 zy R−1 z and x Q−1 yx Q−1 yx Q−1 y some yyy (dfn of inverse)

iff x (Q−1 ; R−1) zx (Q−1 ; R−1) zx (Q−1 ; R−1) z (dfn of compcompcomp)
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Properties of mappings

F23 55



Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.



Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Injective:]

For every y ∈ By ∈ By ∈ B there is at most one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.



Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Injective:]

For every y ∈ By ∈ By ∈ B there is at most one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

[Total:]

For every x ∈ Ax ∈ Ax ∈ A there is at least one y ∈ By ∈ By ∈ B such that x R yx R yx R y.



Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Injective:]

For every y ∈ By ∈ By ∈ B there is at most one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

[Total:]

For every x ∈ Ax ∈ Ax ∈ A there is at least one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Surjective:]

For every y ∈ By ∈ By ∈ B there is at least one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

F23 56



Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’
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Examples.

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is univalent:

every x ∈ Nx ∈ Nx ∈ N yields no other number than x2x2x2.
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• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)
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Examples.

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is univalent:

every x ∈ Nx ∈ Nx ∈ N yields no other number than x2x2x2.

◮ {〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z } is not univalent:

we have both 〈4, 2〉〈4, 2〉〈4, 2〉 and 〈4, −2〉〈4, −2〉〈4, −2〉.



Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y
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Examples.

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is univalent:

every x ∈ Nx ∈ Nx ∈ N yields no other number than x2x2x2.

◮ {〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z } is not univalent:

we have both 〈4, 2〉〈4, 2〉〈4, 2〉 and 〈4, −2〉〈4, −2〉〈4, −2〉.
◮ married-to is univalent assuming monogamy.



Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.
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Non-examples.

◮ Neither has-as-parent nor has-as-child is univalent:

people have more than one parent, and can have more than one child.



Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Non-examples.

◮ Neither has-as-parent nor has-as-child is univalent:

people have more than one parent, and can have more than one child.

◮ 666 on NNN : any x ∈ Nx ∈ Nx ∈ N is mapped to each y > xy > xy > x.



Composition of univalent mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are univalent

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.



Composition of univalent mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are univalent

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Suppose x (R ; Q) zx (R ; Q) zx (R ; Q) z and x (R ; Q) z′x (R ; Q) z′x (R ; Q) z′ ,

that is x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x (R) y′ (Q) z′x (R) y′ (Q) z′x (R) y′ (Q) z′ for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B



Composition of univalent mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are univalent

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Suppose x (R ; Q) zx (R ; Q) zx (R ; Q) z and x (R ; Q) z′x (R ; Q) z′x (R ; Q) z′ ,

that is x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x (R) y′ (Q) z′x (R) y′ (Q) z′x (R) y′ (Q) z′ for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B

• Then y = y′y = y′y = y′ because RRR is univalent,

and so z = z′z = z′z = z′ because QQQ is univalent.
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Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWED



Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.



Injective mappings
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x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

◮ {〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N} is injective:

different squares have different roots.



Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

◮ {〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N} is injective:

different squares have different roots.

Non-examples:

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is not injective:

222 and −2−2−2 are mapped to the same number.



Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

◮ {〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N} is injective:

different squares have different roots.

Non-examples:

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is not injective:

222 and −2−2−2 are mapped to the same number.

◮ The mapping from people to their name is not injective:

different people may have the same name.
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Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R} No. Both 222 and −2−2−2 map to 4.



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R} Yes



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }

No. This maps both 888 and 999 to 11.



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}}



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}} Yes.



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}}
◮ The mapping from US residents to their SSN.



Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}}
◮ The mapping from US residents to their SSN.

Yes. No SSN is assigned to two different persons.
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Injective is the dual of univalent

◮ Univalent:

At most one output per input. NOT ALLOWEDx
y

y’

◮ Injective:

at most one input per output. y
x

x’

NOT ALLOWED

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is injective



Injective is the dual of univalent

◮ Univalent:

At most one output per input. NOT ALLOWEDx
y

y’

◮ Injective:

at most one input per output. y
x

x’

NOT ALLOWED

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is injective

• Proof. x (R) yx (R) yx (R) y plus x (R) y′x (R) y′x (R) y′ imply y = y′y = y′y = y′

iff

y (R−1) xy (R−1) xy (R−1) x plus y′ (R−1) xy′ (R−1) xy′ (R−1) x imply y = y′y = y′y = y′,
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Composition of injective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are injective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.



Composition of injective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are injective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.
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Composition of injective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are injective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Assume x (R ; Q) zx (R ; Q) zx (R ; Q) z and x′ (R ; Q) zx′ (R ; Q) zx′ (R ; Q) z.

That is, x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x′ (R) y′ (Q) zx′ (R) y′ (Q) zx′ (R) y′ (Q) z for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B.

• y = y′y = y′y = y′ because QQQ is injective,

and therefore x = x′x = x′x = x′ because RRR is injective.
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Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

• Note: Totality is a property of the mapping,

not just the relation RRR .

Examples.

◮ born-on over people.

◮ The mapping has-integer-value from real numbers to integers

Non-examples.

◮ The reciprocal mapping (1/x)(1/x)(1/x) on RRR has no output for input 000.

◮ The trigonometric mapping tantantan (tangent) has no output for input

kπ/2kπ/2kπ/2 for odd integers kkk.
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Composition of total mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are total

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. If x ∈ Ax ∈ Ax ∈ A then x (R), yx (R), yx (R), y for some y ∈ By ∈ By ∈ B,

since RRR is total.

So y (Q) zy (Q) zy (Q) z for some z ∈ Cz ∈ Cz ∈ C, since QQQ is total.

Put together, we obtain x (R ; Q) zx (R ; Q) zx (R ; Q) z for some zzz.
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Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto )

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Examples.

◮ The trigonometric function sin : R ⇒ [−1..1]sin : R ⇒ [−1..1]sin : R ⇒ [−1..1] .

◮ The cubic function over RRR.

◮ The mapping over humanity that maps people to their children

Non-Examples.

◮ The squaring function over NNN.

◮ The mapping over humanity that maps people to their spouse
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Composition of surjective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are surjective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Given that Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C is surjective,

for every z ∈ Cz ∈ Cz ∈ C there is a y ∈ By ∈ By ∈ B such that y (Q) zy (Q) zy (Q) z.

• This implies, Since R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective,

that x (R) yx (R) yx (R) y for some x ∈ Ax ∈ Ax ∈ A.

• Thus x (R ; Q) zx (R ; Q) zx (R ; Q) z.

Since this holds for every z ∈ Cz ∈ Cz ∈ C, R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C is surjective.
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Functions: univalent and total

• When a mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent

we also say that it is a partial-function (from AAA to BBB),

and write R : A ⇀ BR : A ⇀ BR : A ⇀ B (note the maimed arrow).

• When that mapping is also total

we say that it is a total-function (or function for short),

and write R : A → BR : A → BR : A → B.

• A partial-function R : A ⇀ BR : A ⇀ BR : A ⇀ B is “partial” in that

it is not necessarily total (on BBB).

So every total-function is also a partial-function!

And a partial-function may be total or non-total .
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Functions and naming

• Univalence

is the most consequential property that a mapping can have:

it enables the naming of new mathematical objects!

• If F : A → BF : A → BF : A → B and x (F ) yx (F ) yx (F ) y we write F (x)F (x)F (x) for yyy.

• When F : A ⇀ BF : A ⇀ BF : A ⇀ B (i.e. totality not assumed),

we still write F (x)F (x)F (x) for the yyy satisfying x (F ) yx (F ) yx (F ) y ,

and say that FFF is undefined if no such yyy exists.
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Here FFF is defined in terms of 2, addition, and multiplication.
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Explicit function definitions

• Consider a function definition: F (x, y) = 2 · x + yF (x, y) = 2 · x + yF (x, y) = 2 · x + y.

Here FFF is defined in terms of 2, addition, and multiplication.

• An explicit definition of a function F : A ⇒ BF : A ⇒ BF : A ⇒ B from objects c1, c2 . . . ∈ Ac1, c2 . . . ∈ Ac1, c2 . . . ∈ A

and functions g1, g2 . . .g1, g2 . . .g1, g2 . . . over AAA can be given by an equation

F (x1, . . . , xk) = EF (x1, . . . , xk) = EF (x1, . . . , xk) = E

where EEE is an “algebraic expression” built from

the cicici’s, gjgjgj’s and variables x1 . . . xkx1 . . . xkx1 . . . xk

by function application.

• To refer to a function on the fly, without naming it,

we use the “maps-to” notation: x 7→ Ex 7→ Ex 7→ E.

Example: x 7→ 2x + 1x 7→ 2x + 1x 7→ 2x + 1.
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Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

• Predecessor over the integers: x 7→ x−1x 7→ x−1x 7→ x−1 .

Cut-off predecessor over NNN : x 7→x 7→x 7→ if x = 0x = 0x = 0 then 000 else x−1x−1x−1.

• A function F : A → BF : A → BF : A → B for which F (x) = bF (x) = bF (x) = b

for a fixed b ∈ Bb ∈ Bb ∈ B is a constant-function .

• For any set AAA the identity function over AAA IdA : A → AIdA : A → AIdA : A → A defined by

x 7→ xx 7→ xx 7→ x.

• The reciprocal-function over R+R+
R+ x 7→ 1/xx 7→ 1/xx 7→ 1/x is a total-function.

• F (n) =F (n) =F (n) = the first prime number > n> n> n.

That this function is total is akin to saying that

there are infinitely many primes.
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Examples of partial-functions

• The reciprocal function over RRR

(it is undefined for 0).

• Over the set of people: p 7→p 7→p 7→ the spouse of ppp

(not every person is married).

• Over P(N)P(N)P(N) : A 7→A 7→A 7→ the smallest element of AAA

(Undefined for ∅∅∅.)

• For any sets A, BA, BA, B we have an empty partial-function ∅ : A ⇀ B∅ : A ⇀ B∅ : A ⇀ B .

That is, ∅(x)∅(x)∅(x) is undefined for all x ∈ Ax ∈ Ax ∈ A.
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Functions of several arguments

• Let F : A × B ⇀ CF : A × B ⇀ CF : A × B ⇀ C.

We write F (a, b)F (a, b)F (a, b) for F (〈a, b〉)F (〈a, b〉)F (〈a, b〉).

• This convention can be applied to functions with more than two arguments.

• Example: Addition, multiplication and exponentiation

are binary functions over RRR.

• We use infix notation for most binary functions: x+yx+yx+y for +(x, y)+(x, y)+(x, y).
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Bijections

• An injective function is an injection.

• A surjective function is a surjection.

• If f : A → Bf : A → Bf : A → B is both injective and surjective

then it is a bijection and we write f : A ∼= Bf : A ∼= Bf : A ∼= B .

• So a bijection has all four I/O properties:

univalent, injective, total and surjective.

• If there is a bijection from AAA to BBB

then we write A ∼= BA ∼= BA ∼= B and say that AAA and BBB are equipollent.

F23 74



Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.



Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

◮ The mapping x 7→ 1/xx 7→ 1/xx 7→ 1/x over the positive real numbers.



Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

◮ The mapping x 7→ 1/xx 7→ 1/xx 7→ 1/x over the positive real numbers.

◮ The successor-modulo-12 function over [0..11][0..11][0..11] .



Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

◮ The mapping x 7→ 1/xx 7→ 1/xx 7→ 1/x over the positive real numbers.

◮ The successor-modulo-12 function over [0..11][0..11][0..11] .

◮ Let d(x) = 2xd(x) = 2xd(x) = 2x .

d : R ⇀ Rd : R ⇀ Rd : R ⇀ R is a bijection.

d : N ⇀ Nd : N ⇀ Nd : N ⇀ N is not: it is not surjective.

d : N ⇀ Evend : N ⇀ Evend : N ⇀ Even is a bijection.
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Closure properties of bijections

• Theorem. The inverse of a bijection F : A ⇒ BF : A ⇒ BF : A ⇒ B is a bijection.

• Proof. A bijection f : A ⇒ Bf : A ⇒ Bf : A ⇒ B is univalent, total, injective and surjective,

so f−1 : B ⇒ Af−1 : B ⇒ Af−1 : B ⇒ A is injective, surjective, univalent and total.

• Theorem The composition of bijections f : A ⇒ Bf : A ⇒ Bf : A ⇒ B and g : B ⇒ Cg : B ⇒ Cg : B ⇒ C

is a bijection (f ; g) : A ⇒ C(f ; g) : A ⇒ C(f ; g) : A ⇒ C.

• Proof. We saw above that the properties univalent, total,

injective and surjective are all closed under composition.

F23 76



Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is



Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

◮ Reflexive: For each AAA we have IdA : A ∼= AIdA : A ∼= AIdA : A ∼= A.



Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

◮ Reflexive: For each AAA we have IdA : A ∼= AIdA : A ∼= AIdA : A ∼= A.

◮ Symmetric: If f : A ∼= Bf : A ∼= Bf : A ∼= B then f−1 : B ∼= Af−1 : B ∼= Af−1 : B ∼= A.



Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

◮ Reflexive: For each AAA we have IdA : A ∼= AIdA : A ∼= AIdA : A ∼= A.

◮ Symmetric: If f : A ∼= Bf : A ∼= Bf : A ∼= B then f−1 : B ∼= Af−1 : B ∼= Af−1 : B ∼= A.

◮ Transitive: If F : A ∼= BF : A ∼= BF : A ∼= B and G : B ∼= CG : B ∼= CG : B ∼= C then F ; G : A ∼= CF ; G : A ∼= CF ; G : A ∼= C.
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Comparing set size

• When we say that a set SSS “is smaller than” BBB

we commonly mean that

◮ The count p ∈ Np ∈ Np ∈ N of AAA ’s elements

is <<< than the count qqq of BBB .

• “Counting” AAA means defining a bijection j : {1, . . . , p} → Aj : {1, . . . , p} → Aj : {1, . . . , p} → A.

• This size-comparison of AAA and BBB makes a detour via NNN.

Is that detour useful? necessary?

It is a strole of genius for finite sets.

It is not necessary.

It hinders generalization of size to infinite sets!
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Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

• One option is clear: A ⊆ BA ⊆ BA ⊆ B .

What if AAA is not related to BBB ?

• Dfn. An embedding of AAA in BBB is an injection j : A → Bj : A → Bj : A → B .

• If such an embedding exists, we write A 4 BA 4 BA 4 B.

Think of it as assigning a “name” in BBB to each element of AAA .

• The composition of injections is an injection, so:

Theorem. 444 is transitive: If A 4 B 4 CA 4 B 4 CA 4 B 4 C then A 4 CA 4 CA 4 C.
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Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

• For a seated class, the mapping from students to chairs they occupy

is an embedding from the set of students to the set of chairs.i

• IdEven : Even 4 NIdEven : Even 4 NIdEven : Even 4 N

• The injection x 7→ 2xx 7→ 2xx 7→ 2x embeds NNN in EvenEvenEven.

• x 7→ x/1000x 7→ x/1000x 7→ x/1000 is an embedding of (0..1000](0..1000](0..1000] in (0..1](0..1](0..1].

• [1..∞) 4 (0..1][1..∞) 4 (0..1][1..∞) 4 (0..1] by the embedding x 7→ 1/xx 7→ 1/xx 7→ 1/x.
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Examples

Over the set RRR of real numbers:

◮ Stretch: For a, b > 0a, b > 0a, b > 0 we have (0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)

by the injection x 7→ bx/ax 7→ bx/ax 7→ bx/a.

◮ Displacement: (a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d) by the injection x 7→ x + dx 7→ x + dx 7→ x + d
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Using transitivity of 444

◮ For a < b, c < da < b, c < da < b, c < d (a .. b) 4 (c..d)(a .. b) 4 (c..d)(a .. b) 4 (c..d) :

(a .. b)(a .. b)(a .. b) 444 (0 .. b−a)(0 .. b−a)(0 .. b−a) (displace by −a−a−a)

444 (0..d−c(0..d−c(0..d−c (stretch)

444 (c..d)(c..d)(c..d) (displace)

◮ Do we have [0..1] 4 (0..1)[0..1] 4 (0..1)[0..1] 4 (0..1) ?

◮ (1..2) 4 [1..2] 4 (0..3)(1..2) 4 [1..2] 4 (0..3)(1..2) 4 [1..2] 4 (0..3) (by identities)

(1..2) 4 [1..2] 4 (1..2)(1..2) 4 [1..2] 4 (1..2)(1..2) 4 [1..2] 4 (1..2) (Stretch)
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◮ Example: NNN is equipollent to the set EEE of even naturals

since x 7→ 2xx 7→ 2xx 7→ 2x is a bijection.
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Equipollence

• Recall that AAA is equipollent with BBB when there is a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

◮ Example: NNN is equipollent to the set EEE of even naturals

since x 7→ 2xx 7→ 2xx 7→ 2x is a bijection.

• If j : A ∼= Bj : A ∼= Bj : A ∼= B then A 4 BA 4 BA 4 B since jjj is an injection,

and B 4 AB 4 AB 4 A since j−1j−1j−1 is an injection.

• Surprisingly, the converse also holds:

Cantor-Bernstein-Schröder Theorem. (1896/97)

If A 4 BA 4 BA 4 B and B 4 AB 4 AB 4 A then A ∼= BA ∼= BA ∼= B .
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Using CBS

1. The CBS Theorem is useful in proving set equipollence,

because mutual embeddings are often easier to find than a bijection.

2. We showed that all real number intervals are embedable in each other.

So by CBS they are all equipollent to each other.

Not a big deal, you say, because the embedding are in fact bijections.

Not so fast...
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Using CBS

1. The CBS Theorem is useful in proving set equipollence,

because mutual embeddings are often easier to find than a bijection.

2. We showed that all real number intervals are embedable in each other.

So by CBS they are all equipollent to each other.

Not a big deal, you say, because the embedding are in fact bijections.

Not so fast...

3. {0, 1}∗ ∼= N{0, 1}∗ ∼= N{0, 1}∗ ∼= N :

◮ f : {0, 1}∗ 4 Nf : {0, 1}∗ 4 Nf : {0, 1}∗ 4 N

where f(w)f(w)f(w) is the numeric value of 1w1w1w.

◮ g : N 4 {0, 1}∗g : N 4 {0, 1}∗g : N 4 {0, 1}∗

where ggg is the injection n 7→n 7→n 7→ binary numeral for nnn.
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Countable sets

• A set AAA is denumerable if A ∼= NA ∼= NA ∼= N.

• AAA is countable if A 4 NA 4 NA 4 N.

• So AAA is countable iff it is either finite or denumerable.
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Examples of denumerable sets.

1. The set ZZZ of integers:

Z ∼= NZ ∼= NZ ∼= N by the bijection

x 7→x 7→x 7→ if x > 0x > 0x > 0 then 2x2x2x else −2x − 1−2x − 1−2x − 1 .

I.e. ZZZ is listed as 0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ....

2. N ∼= N × NN ∼= N × NN ∼= N × N .

◮ N 4 N × NN 4 N × NN 4 N × N by the injection n 7→ 〈0, n〉n 7→ 〈0, n〉n 7→ 〈0, n〉
◮ N × N 4 NN × N 4 NN × N 4 N by the injection 〈p, q〉 7→ 2p · 3q〈p, q〉 7→ 2p · 3q〈p, q〉 7→ 2p · 3q

◮ So N ∼= N × NN ∼= N × NN ∼= N × N by CBS.
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1. Q+Q+
Q+ is the set of positive rational numbers.

◮ N 4 Q+N 4 Q+
N 4 Q+ by the identity function on NNN.

◮ Q 4 N × NQ 4 N × NQ 4 N × N by the injection

that maps x ∈ Q+x ∈ Q+x ∈ Q+ to the pair 〈p, q〉〈p, q〉〈p, q〉 where x = p
q

x = p
qx = p
q p, qp, qp, q are rela-

tively prime.

(Example: 0.75 is mapped to 〈3, 4〉〈3, 4〉〈3, 4〉.)
◮ But we already know that N × N 4 NN × N 4 NN × N 4 N, so Q 4 NQ 4 NQ 4 N.

◮ Since N 4 Q+N 4 Q+
N 4 Q+ and Q+

4 NQ+
4 NQ+
4 N it follows by CBS that Q+ ∼= NQ+ ∼= NQ+ ∼= N .

2. Seems like all infinite sets are countable. Are they?
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The size of P(A)P(A)P(A)

• Not all infinite sets are countable!

• Cantor’s Theorem (1891)

For all sets AAA : P(A) 64 AP(A) 64 AP(A) 64 A .

• Proof. We show that for ever set AAA and function g : A → P(A)g : A → P(A)g : A → P(A) ,

ggg is not surjective.

I.e. no way to name each B ⊆ AB ⊆ AB ⊆ A by an element of AAA .

◮ Let D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)},

i.e. x ∈ Dx ∈ Dx ∈ D iff x 6∈ g(x)x 6∈ g(x)x 6∈ g(x).

We show that DDD cannot be in the image of ggg .

◮ If we had D = g(d)D = g(d)D = g(d) for some d ∈ Ad ∈ Ad ∈ A

then taking ddd for xxx above, we’d get

d ∈ Dd ∈ Dd ∈ D iff d 6∈ g(d) = Dd 6∈ g(d) = Dd 6∈ g(d) = D, a contradiction. QED.

– In particular, P(N) 6∼= NP(N) 6∼= NP(N) 6∼= N, that is: P(N)P(N)P(N) is not countable!
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Comments on Cantor’s Theorem

• Of course, f : A 4 P(A)f : A 4 P(A)f : A 4 P(A)
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• Of course, f : A 4 P(A)f : A 4 P(A)f : A 4 P(A)

where fff is the embedding x 7→ {x}x 7→ {x}x 7→ {x}

• Compare:

For all AAA we have A ≺ P(A)A ≺ P(A)A ≺ P(A) (strict size-increase)

For all nnn we have n ≪ 2nn ≪ 2nn ≪ 2n (big jump)

• The set Pfin(N)Pfin(N)Pfin(N) of finite subsets of NNN is 4 {0, 1}∗4 {0, 1}∗4 {0, 1}∗

by our familiar embedding, e.g. {0, 2, 3} 7→ 1011{0, 2, 3} 7→ 1011{0, 2, 3} 7→ 1011.

But {0, 1}∗ 4 N{0, 1}∗ 4 N{0, 1}∗ 4 N so Pfin(N) 4 NPfin(N) 4 NPfin(N) 4 N by CBS.
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◮ Given a ∈ (0..1)a ∈ (0..1)a ∈ (0..1) write aaa as an infinite binary fraction 0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2 . . . .

For example, 1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111... .

Such an expansion is unique to aaa.

◮ Map the binary expansion to the set {n | dn = 1}{n | dn = 1}{n | dn = 1}.

For example 1/41/41/4 is mapped to the set {2, 3, 4, . . .}.{2, 3, 4, . . .}.{2, 3, 4, . . .}.

• P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1):
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0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2 . . . where di = 0di = 0di = 0 if di ∈ Adi ∈ Adi ∈ A and = 0= 0= 0 otherwise.

That real number is unique to AAA.

◮ For example, the set EvenEvenEven is mapped

to the real number 0.101010 · · ·0.101010 · · ·0.101010 · · · (in decimal).

• By CBS conclude R ∼= (0..1) ∼= P(N)R ∼= (0..1) ∼= P(N)R ∼= (0..1) ∼= P(N).
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• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A

we construct a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.
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f→ b−1
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f→ b1

g→ a1

f→ b2
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f→ b3 · ··
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• Similarly, each b ∈ Bb ∈ Bb ∈ B starts a chain b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··,
which might be extended also to the left.



⋆ Proof of CBS

• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A
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• Similarly, each b ∈ Bb ∈ Bb ∈ B starts a chain b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··,
which might be extended also to the left.

• Every x ∈ A ∪ Bx ∈ A ∪ Bx ∈ A ∪ B is in some chain.

Repetitions, e.g. a
f→ b

g→ a
f→ b · · ·a

f→ b
g→ a

f→ b · · ·a
f→ b

g→ a
f→ b · · · are harmless.
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⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
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• If CCC starts with b ∈ Bb ∈ Bb ∈ B then

the chain above yields gc : Bc
∼= Acgc : Bc
∼= Acgc : Bc
∼= Ac:

b
g→ a1

f→ b1

g→ a2
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g→ a3 · ··b
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g→ a3 · ··b
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and so (gc)

−1 : Ac
∼= Bc(gc)

−1 : Ac
∼= Bc(gc)

−1 : Ac
∼= Bc

• The union (over all chains) of these bijections is a bijection from AAA to BBB.

QED.
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