
SETS

RELATIONS, MAPPINGS, SIZE

F23 1

What are sets

• A set is a collection into a whole of

some well-recognized objects, dubbed the set’s elements.

• We write a ∈ Sa ∈ Sa ∈ S for “aaa is an element of SSS”

What are sets

• A set is a collection into a whole of

some well-recognized objects, dubbed the set’s elements.

• We write a ∈ Sa ∈ Sa ∈ S for “aaa is an element of SSS”

• The concept of set is “defined” here in terms of

“collection” and “whole”, i.e. synonyms of “set”!

• Shouldn’t concepts be defined using previously defined ones?

What are sets

• A set is a collection into a whole of

some well-recognized objects, dubbed the set’s elements.

• We write a ∈ Sa ∈ Sa ∈ S for “aaa is an element of SSS”

• The concept of set is “defined” here in terms of

“collection” and “whole”, i.e. synonyms of “set”!

• Shouldn’t concepts be defined using previously defined ones?

• Regressing this way cannot go on indefinitely:

we must stop with concepts that are left undefined .

• We only explain those informally,

hoping to establish some

shared imagery, intuitions and understanding.

“Set” is just such a concept.

F23 2

Exhibiting sets

• Sets are determined by their elements.

That is, if sets AAA and BBB have the same elements,

then they are one and the same set,

even if they are described in very different ways.

• This is the Principle of Extensionality .

Exhibiting sets

• Sets are determined by their elements.

That is, if sets AAA and BBB have the same elements,

then they are one and the same set,

even if they are described in very different ways.

• This is the Principle of Extensionality .

• It implies that finite sets can be defined

by exhibiting their elements: {a1, . . . , ak}{a1, . . . , ak}{a1, . . . , ak}.

So {0, 1}{0, 1}{0, 1}, {1, 0}{1, 0}{1, 0} and {0, 0, 1}{0, 0, 1}{0, 0, 1} are all the same set.

F23 3

Names and notations for special sets

• Some sets are commonly assumed as given, and assigned notations.

◮ For an alphabet ΣΣΣ, the set Σ∗Σ∗Σ∗ of ΣΣΣ-strings.

Names and notations for special sets

• Some sets are commonly assumed as given, and assigned notations.

◮ For an alphabet ΣΣΣ, the set Σ∗Σ∗Σ∗ of ΣΣΣ-strings.

◮ The set {0.1}{0.1}{0.1} of booleans, denoted BoolBoolBool.

Names and notations for special sets

• Some sets are commonly assumed as given, and assigned notations.

◮ For an alphabet ΣΣΣ, the set Σ∗Σ∗Σ∗ of ΣΣΣ-strings.

◮ The set {0.1}{0.1}{0.1} of booleans, denoted BoolBoolBool.

◮ natnatnat or NNN : The set of natural numbers 0, 1, 2, 3...0, 1, 2, 3...0, 1, 2, 3....

◮ intintint or ZZZ : The integers

◮ QQQ : the rational numbers (Q for “quotients”)

◮ RRR : the real numbers (the “real number line”)

Names and notations for special sets

• Some sets are commonly assumed as given, and assigned notations.

◮ For an alphabet ΣΣΣ, the set Σ∗Σ∗Σ∗ of ΣΣΣ-strings.

◮ The set {0.1}{0.1}{0.1} of booleans, denoted BoolBoolBool.

◮ natnatnat or NNN : The set of natural numbers 0, 1, 2, 3...0, 1, 2, 3...0, 1, 2, 3....

◮ intintint or ZZZ : The integers

◮ QQQ : the rational numbers (Q for “quotients”)

◮ RRR : the real numbers (the “real number line”)

◮ The empty set, denoted ∅∅∅ , which has no elements.

Names and notations for special sets

• Some sets are commonly assumed as given, and assigned notations.

◮ For an alphabet ΣΣΣ, the set Σ∗Σ∗Σ∗ of ΣΣΣ-strings.

◮ The set {0.1}{0.1}{0.1} of booleans, denoted BoolBoolBool.

◮ natnatnat or NNN : The set of natural numbers 0, 1, 2, 3...0, 1, 2, 3...0, 1, 2, 3....

◮ intintint or ZZZ : The integers

◮ QQQ : the rational numbers (Q for “quotients”)

◮ RRR : the real numbers (the “real number line”)

◮ The empty set, denoted ∅∅∅ , which has no elements.

• A set with exactly one element, however complex, is a singleton.

Examples: {0}{0}{0} , {∅}{∅}{∅} , {{∅}}{{∅}}{{∅}} and {N}{N}{N}

F23 4

Abstraction notation

• Another approach to defining sets is to delineate them

by certain properties, as in

“the set of registered voters” .

• Such definitions are captured by the notational convention

{x |{x |{x | a property of x}x}x}.

• Between braces: (1) a declared variable, say xxx ,

Between braces (2) a vertical bar (pronounced “such that”)

Between braces (3) a property of xxx .

Abstraction notation

• Another approach to defining sets is to delineate them

by certain properties, as in

“the set of registered voters” .

• Such definitions are captured by the notational convention

{x |{x |{x | a property of x}x}x}.

• Between braces: (1) a declared variable, say xxx ,

Between braces (2) a vertical bar (pronounced “such that”)

Between braces (3) a property of xxx .

• Example: {z | z = 2x{z | z = 2x{z | z = 2x for some x ∈ N}x ∈ N}x ∈ N}.

More concisely: {2x | x ∈ N}{2x | x ∈ N}{2x | x ∈ N}.

Abstraction notation

• Another approach to defining sets is to delineate them

by certain properties, as in

“the set of registered voters” .

• Such definitions are captured by the notational convention

{x |{x |{x | a property of x}x}x}.

• Between braces: (1) a declared variable, say xxx ,

Between braces (2) a vertical bar (pronounced “such that”)

Between braces (3) a property of xxx .

• Example: {z | z = 2x{z | z = 2x{z | z = 2x for some x ∈ N}x ∈ N}x ∈ N}.

More concisely: {2x | x ∈ N}{2x | x ∈ N}{2x | x ∈ N}.

• A set’s elements can themselves be complex entities!

Examples: {∅}{∅}{∅}, {N}{N}{N}, {∅, {∅}}{∅, {∅}}{∅, {∅}}.

F23 5

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [1..3] =[1..3] =[1..3] =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [1..3] =[1..3] =[1..3] = {1, 2, 3}{1, 2, 3}{1, 2, 3}

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: (1..3) =(1..3) =(1..3) =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: (1..3) =(1..3) =(1..3) = {2}{2}{2}

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [1..3) =[1..3) =[1..3) =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [1..3) =[1..3) =[1..3) = {1, 2}{1, 2}{1, 2}

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: (1..3] =(1..3] =(1..3] =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: (1..3] =(1..3] =(1..3] = {2, 3}{2, 3}{2, 3}

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [1..1] =[1..1] =[1..1] =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [1..1] =[1..1] =[1..1] = {1}{1}{1}

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: (1..1) =(1..1) =(1..1) =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: (1..1) =(1..1) =(1..1) = ∅∅∅

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [−1..1) =[−1..1) =[−1..1) =

Conventions for numeric intervals

• To denote intervals of integers or real numbers we indicate

end-point’s inclusion with a bracket, and exclusion with a parenthesis.

(p..q)(p..q)(p..q) === {x | p < x < q}{x | p < x < q}{x | p < x < q} (open interval)

[p..q][p..q][p..q] === {x | p 6 x 6 q}{x | p 6 x 6 q}{x | p 6 x 6 q} (closed interval)

[p..q)[p..q)[p..q) === {x | p 6 x < q}{x | p 6 x < q}{x | p 6 x < q} (left-closed interval)

[p..)[p..)[p..) === {x | p 6 x}{x | p 6 x}{x | p 6 x} (right-infinite interval)

The latter is

often written [p..∞)[p..∞)[p..∞).

• Examples for integers: [−1..1) =[−1..1) =[−1..1) = {−1, 0}{−1, 0}{−1, 0}

F23 6

Relations between sets

• We say that AAA is a subset of BBB

and write A ⊆ BA ⊆ BA ⊆ B if every element of AAA is an element of BBB,

that is x ∈ Ax ∈ Ax ∈ A implies x ∈ Bx ∈ Bx ∈ B.

Relations between sets

• We say that AAA is a subset of BBB

and write A ⊆ BA ⊆ BA ⊆ B if every element of AAA is an element of BBB,

that is x ∈ Ax ∈ Ax ∈ A implies x ∈ Bx ∈ Bx ∈ B.

• Examples:

◮ N ⊆ ZN ⊆ ZN ⊆ Z.

◮ For any set AAA : A ⊆ AA ⊆ AA ⊆ A and ∅ ⊆ A∅ ⊆ A∅ ⊆ A.

◮ The set of elephants is a subset of the set of mammals.

Relations between sets

• We say that AAA is a subset of BBB

and write A ⊆ BA ⊆ BA ⊆ B if every element of AAA is an element of BBB,

that is x ∈ Ax ∈ Ax ∈ A implies x ∈ Bx ∈ Bx ∈ B.

• Examples:

◮ N ⊆ ZN ⊆ ZN ⊆ Z.

◮ For any set AAA : A ⊆ AA ⊆ AA ⊆ A and ∅ ⊆ A∅ ⊆ A∅ ⊆ A.

◮ The set of elephants is a subset of the set of mammals.

• If A ⊆ BA ⊆ BA ⊆ B and B ⊆ AB ⊆ AB ⊆ A

then AAA and BBB have the same elements.

By Extensionality this implies A = BA = BA = B.

F23 7

Puzzles

True or false?

0 ∈ {0, 1}0 ∈ {0, 1}0 ∈ {0, 1}
{0} ⊆ {0, 1}{0} ⊆ {0, 1}{0} ⊆ {0, 1}
{0} ∈ {0, 1}{0} ∈ {0, 1}{0} ∈ {0, 1}
{0, 1, 1} ⊆ {1, 0}{0, 1, 1} ⊆ {1, 0}{0, 1, 1} ⊆ {1, 0}
{0, 1} ⊆ N{0, 1} ⊆ N{0, 1} ⊆ N

{0, 1} ⊆ {N}{0, 1} ⊆ {N}{0, 1} ⊆ {N}

N ⊆ {N}N ⊆ {N}N ⊆ {N}
N ∈ {N}N ∈ {N}N ∈ {N}
∅ ⊆ {∅}∅ ⊆ {∅}∅ ⊆ {∅}
{∅} ⊆ ∅{∅} ⊆ ∅{∅} ⊆ ∅
∅ ∈ ∅∅ ∈ ∅∅ ∈ ∅
∅ ∈ {∅}∅ ∈ {∅}∅ ∈ {∅}

F23 8

The perils of abstraction

• In the template {x | · · · x · · · }{x | · · · x · · · }{x | · · · x · · · } ,

does xxx stand for “anything”?

• If that were so, we’d be able to define

R =df {x | x 6∈ x}R =df {x | x 6∈ x}R =df {x | x 6∈ x}
That is, for all xxx

x ∈ R iff x 6∈ xx ∈ R iff x 6∈ xx ∈ R iff x 6∈ x

• In particular, if we take xxx to be RRR then

R ∈ R iff R 6∈ RR ∈ R iff R 6∈ RR ∈ R iff R 6∈ R

A contradiction!

• This is known as Russell’s Paradox.

F23 9

The Separation Principle

• There is a circularity at the root of the definition of RRR:

“all sets” includes the set RRR itself,

which is defined in terms of “all sets.”

• Work-around: Zermelo’s Separation Principle:

For a given set SSS we may define {x ∈ S | · · · x · · · }{x ∈ S | · · · x · · · }{x ∈ S | · · · x · · · }.

We “separate” out the elements of SSS along the given property.

• This blocks Russell’s paradox:

SSS would have to be “all sets”, which is not admissible as a set.

F23 10

Bertrand Russell and Ernst Zermelo

Russell (1872-1970) Zermelo (1871-1953)

The Diagonal Method

• Russell’s Paradox epitomizes a powerful line of reasoning.

To illustrate, let’s call a book modest if its text does not mention its title.

Question: Can we compile a catalog of all modest books?

• Suppose such a catalog existed, with title MMM say.

A book is listed in MMM iff it does not mention itself.

In particular, MMM is listed in MMM iff MMM is not listed in MMM .

• Consequence: There can be no catalog of all modest books!

• Where does the contradiction come from?

F23 12

Contradictions via two-faced objects

• The catalog argument refers to each book in two ways:

as a title, and as contents.

• Russell’s Paradox refers to each set in two ways:

as a set of other objects, and as a possible element of other sets.

• This duality is the core of the Self-reference Method

AKA the Diagonal Method.

(A matrix’s diagonal is where row #i#i#i meets column #i#i#i.)

• This duality is ingrained in computing:

a program is both a string and an algorithm.

F23 13

Operations on sets

• A ∩ BA ∩ BA ∩ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x ∈ B}x ∈ B}x ∈ B}
A ∪ BA ∪ BA ∪ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A or x ∈ B}x ∈ B}x ∈ B}
A − BA − BA − B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x 6∈ B}x 6∈ B}x 6∈ B}

Operations on sets

• A ∩ BA ∩ BA ∩ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x ∈ B}x ∈ B}x ∈ B}
A ∪ BA ∪ BA ∪ B === {x | x ∈ A{x | x ∈ A{x | x ∈ A or x ∈ B}x ∈ B}x ∈ B}
A − BA − BA − B === {x | x ∈ A{x | x ∈ A{x | x ∈ A and x 6∈ B}x 6∈ B}x 6∈ B}

• When all sets considered are subsets of some set UUU ,

we refer to U − AU − AU − A as the complement of AAA ,

and write Ā̄ĀA for it.

F23 14

∪∪∪∪∪∪∪∪∪ is the dual of ∩∩∩∩∩∩∩∩∩

• We have A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄:

x 6∈ A ∩ Bx 6∈ A ∩ Bx 6∈ A ∩ B iff x 6∈ Ax 6∈ Ax 6∈ A or x 6∈ Bx 6∈ Bx 6∈ B

“not both true” is the same as “at least one is false”

∪∪∪∪∪∪∪∪∪ is the dual of ∩∩∩∩∩∩∩∩∩

• We have A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄:

x 6∈ A ∩ Bx 6∈ A ∩ Bx 6∈ A ∩ B iff x 6∈ Ax 6∈ Ax 6∈ A or x 6∈ Bx 6∈ Bx 6∈ B

“not both true” is the same as “at least one is false”

• Complementing both sides we get:

A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄

∪∪∪∪∪∪∪∪∪ is the dual of ∩∩∩∩∩∩∩∩∩

• We have A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄:

x 6∈ A ∩ Bx 6∈ A ∩ Bx 6∈ A ∩ B iff x 6∈ Ax 6∈ Ax 6∈ A or x 6∈ Bx 6∈ Bx 6∈ B

“not both true” is the same as “at least one is false”

• Complementing both sides we get:

A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄

• Similarly, we have A ∪ B = Ā ∩ B̄A ∪ B = Ā ∩ B̄A ∪ B = Ā ∩ B̄:

x 6∈ A ∪ Bx 6∈ A ∪ Bx 6∈ A ∪ B iff x 6∈ Ax 6∈ Ax 6∈ A and x 6∈ Bx 6∈ Bx 6∈ B

“neither true” is the same as “both false”

∪∪∪∪∪∪∪∪∪ is the dual of ∩∩∩∩∩∩∩∩∩

• We have A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄:

x 6∈ A ∩ Bx 6∈ A ∩ Bx 6∈ A ∩ B iff x 6∈ Ax 6∈ Ax 6∈ A or x 6∈ Bx 6∈ Bx 6∈ B

“not both true” is the same as “at least one is false”

• Complementing both sides we get:

A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄A ∩ B = Ā ∪ B̄

• Similarly, we have A ∪ B = Ā ∩ B̄A ∪ B = Ā ∩ B̄A ∪ B = Ā ∩ B̄:

x 6∈ A ∪ Bx 6∈ A ∪ Bx 6∈ A ∪ B iff x 6∈ Ax 6∈ Ax 6∈ A and x 6∈ Bx 6∈ Bx 6∈ B

“neither true” is the same as “both false”

• Complementing both sides we get:

A ∪ B = Ā ∩ B̄A ∪ B = Ā ∩ B̄A ∪ B = Ā ∩ B̄

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:

◮ A = {0, 1}A = {0, 1}A = {0, 1}, P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:

◮ A = {0, 1}A = {0, 1}A = {0, 1}, P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}

◮ P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:

◮ A = {0, 1}A = {0, 1}A = {0, 1}, P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}

◮ P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }
◮ What is P(∅)?P(∅)?P(∅)?

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:

◮ A = {0, 1}A = {0, 1}A = {0, 1}, P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}

◮ P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }
◮ What is P(∅)?P(∅)?P(∅)? P(∅) = {∅}P(∅) = {∅}P(∅) = {∅}

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:

◮ A = {0, 1}A = {0, 1}A = {0, 1}, P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}

◮ P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }
◮ What is P(∅)?P(∅)?P(∅)? P(∅) = {∅}P(∅) = {∅}P(∅) = {∅}

◮ What is P({1})P({1})P({1})?

The power-set operation

• If AAA is a set, then the power-set of AAA is

P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}P(A) =df {B | B ⊆ A}• Examples:

◮ A = {0, 1}A = {0, 1}A = {0, 1}, P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}P(A) = {∅, {0}, {1}, {0, 1}}

◮ P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }

P({a, b, c}) = { ∅,

{a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c} }
◮ What is P(∅)?P(∅)?P(∅)? P(∅) = {∅}P(∅) = {∅}P(∅) = {∅}

◮ What is P({1})P({1})P({1})? P({1}) = {∅, {1}}P({1}) = {∅, {1}}P({1}) = {∅, {1}}

F23 16

Size of the power-set

• If a finite AAA has nnn elements,

then P(A)P(A)P(A) has 2n2n2n elements:

Size of the power-set

• If a finite AAA has nnn elements,

then P(A)P(A)P(A) has 2n2n2n elements:

◮ A subset B ⊆ AB ⊆ AB ⊆ A , is fixed by choosing, for each x ∈ Ax ∈ Ax ∈ A ,

whether or not x ∈ Bx ∈ Bx ∈ B .

◮ Each choice doubles the number of previous choices.

F23 17

Disjoint sets

• Sets A, BA, BA, B are disjoint if A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅,

i.e. they have no element in common.

Disjoint sets

• Sets A, BA, BA, B are disjoint if A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry

(Japan disallows dual citizenship...)

Disjoint sets

• Sets A, BA, BA, B are disjoint if A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry

(Japan disallows dual citizenship...)

• More generally, a collection CCC of sets is disjoint if

A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅ for every distinct A, B ∈ CA, B ∈ CA, B ∈ C .

(The phrase pairwise-disjoint means the same thing.)

Disjoint sets

• Sets A, BA, BA, B are disjoint if A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry

(Japan disallows dual citizenship...)

• More generally, a collection CCC of sets is disjoint if

A ∩ B = ∅A ∩ B = ∅A ∩ B = ∅ for every distinct A, B ∈ CA, B ∈ CA, B ∈ C .

(The phrase pairwise-disjoint means the same thing.)

• Example: The collection of open intervals (0..1), (1..2), (2..3), (3..4), · · ·(0..1), (1..2), (2..3), (3..4), · · ·(0..1), (1..2), (2..3), (3..4), · · ·

F23 18

Partitions

• A collection CCC of non-empty subsets of SSS is a partition of SSS

if every x ∈ Sx ∈ Sx ∈ S is in exactly one A ∈ CA ∈ CA ∈ C.

Partitions

• A collection CCC of non-empty subsets of SSS is a partition of SSS

if every x ∈ Sx ∈ Sx ∈ S is in exactly one A ∈ CA ∈ CA ∈ C.

• Examples:

◮ {a, b, c, d}{a, b, c, d}{a, b, c, d} can be partitioned into {a, b, c}{a, b, c}{a, b, c} and {d}{d}{d}.

How many partitions into 2 sets? into 3 sets? into 4?

Partitions

• A collection CCC of non-empty subsets of SSS is a partition of SSS

if every x ∈ Sx ∈ Sx ∈ S is in exactly one A ∈ CA ∈ CA ∈ C.

• Examples:

◮ {a, b, c, d}{a, b, c, d}{a, b, c, d} can be partitioned into {a, b, c}{a, b, c}{a, b, c} and {d}{d}{d}.

How many partitions into 2 sets? into 3 sets? into 4?

◮ {a...z}{a...z}{a...z} can be partitioned into the vowels and the consonants.

Partitions

• A collection CCC of non-empty subsets of SSS is a partition of SSS

if every x ∈ Sx ∈ Sx ∈ S is in exactly one A ∈ CA ∈ CA ∈ C.

• Examples:

◮ {a, b, c, d}{a, b, c, d}{a, b, c, d} can be partitioned into {a, b, c}{a, b, c}{a, b, c} and {d}{d}{d}.

How many partitions into 2 sets? into 3 sets? into 4?

◮ {a...z}{a...z}{a...z} can be partitioned into the vowels and the consonants.

◮ NNN can be partitioned into the prime numbers, composite numbers,

and {0, 1}{0, 1}{0, 1}.

Another partition: Singletons {0}, {1}, {2} ...{0}, {1}, {2} ...{0}, {1}, {2}

Partitions

• A collection CCC of non-empty subsets of SSS is a partition of SSS

if every x ∈ Sx ∈ Sx ∈ S is in exactly one A ∈ CA ∈ CA ∈ C.

• Examples:

◮ {a, b, c, d}{a, b, c, d}{a, b, c, d} can be partitioned into {a, b, c}{a, b, c}{a, b, c} and {d}{d}{d}.

How many partitions into 2 sets? into 3 sets? into 4?

◮ {a...z}{a...z}{a...z} can be partitioned into the vowels and the consonants.

◮ NNN can be partitioned into the prime numbers, composite numbers,

and {0, 1}{0, 1}{0, 1}.

Another partition: Singletons {0}, {1}, {2} ...{0}, {1}, {2} ...{0}, {1}, {2}

• Non-example:

◮ English words fall into eight parts of speech,

but this is not a partition: some words are both noun and verb.

• Which are partitions:

◮ Classify humanity by birth-year:

people born in 2023, 2022, ...

• Which are partitions:

◮ Classify humanity by birth-year:

people born in 2023, 2022, ...

◮ Classify RRR into two:

finite decimal expansions & infinite decimal expansions

• Which are partitions:

◮ Classify humanity by birth-year:

people born in 2023, 2022, ...

◮ Classify RRR into two:

finite decimal expansions & infinite decimal expansions

◮ Classify RRR into the half-closed intervals

[n..n+1)[n..n+1)[n..n+1), (nnn an integer).

RELATIONS

F23 21

Ordered pairs

• Given any two objects a, ba, ba, b

we can form the ordered-pair 〈a, b〉〈a, b〉〈a, b〉.
aaa and bbb need not have anything in common, and may be identical.

Ordered pairs

• Given any two objects a, ba, ba, b

we can form the ordered-pair 〈a, b〉〈a, b〉〈a, b〉.
aaa and bbb need not have anything in common, and may be identical.

• Unlike the set {a, b}{a, b}{a, b} , order and repetition in 〈a, b〉〈a, b〉〈a, b〉 do matter:

〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉 iff a = ca = ca = c and b = db = db = d .

Ordered pairs

• Given any two objects a, ba, ba, b

we can form the ordered-pair 〈a, b〉〈a, b〉〈a, b〉.
aaa and bbb need not have anything in common, and may be identical.

• Unlike the set {a, b}{a, b}{a, b} , order and repetition in 〈a, b〉〈a, b〉〈a, b〉 do matter:

〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉 iff a = ca = ca = c and b = db = db = d .

• More generally, for each k > 1k > 1k > 1 we can form

the ordered kkk -tuples 〈a1, . . . , ak〉〈a1, . . . , ak〉〈a1, . . . , ak〉 of the objects a1, . . . , aka1, . . . , aka1, . . . , ak.

Ordered pairs

• Given any two objects a, ba, ba, b

we can form the ordered-pair 〈a, b〉〈a, b〉〈a, b〉.
aaa and bbb need not have anything in common, and may be identical.

• Unlike the set {a, b}{a, b}{a, b} , order and repetition in 〈a, b〉〈a, b〉〈a, b〉 do matter:

〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉〈a, b〉 = 〈c, d〉 iff a = ca = ca = c and b = db = db = d .

• More generally, for each k > 1k > 1k > 1 we can form

the ordered kkk -tuples 〈a1, . . . , ak〉〈a1, . . . , ak〉〈a1, . . . , ak〉 of the objects a1, . . . , aka1, . . . , aka1, . . . , ak.

• As we did for sets, we take the formation of ordered-pairs

and ordered tuples to be a basic, intuitively clear, operation.

F23 22

Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :

A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}

Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :

A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}

• If AAA has ppp elements and BBB has qqq elements,

then A × BA × BA × B has p · qp · qp · q elements.

• Examples.

Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :

A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}

• If AAA has ppp elements and BBB has qqq elements,

then A × BA × BA × B has p · qp · qp · q elements.

• Examples.

◮ {a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}

Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :

A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}

• If AAA has ppp elements and BBB has qqq elements,

then A × BA × BA × B has p · qp · qp · q elements.

• Examples.

◮ {a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}

◮ R × RR × RR × R is the real-number plane.

◮ Z × ZZ × ZZ × Z is the integer grid.

Set-product

• Pairing of objects leads us to set-product of two sets A, BA, BA, B :

A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}A × B =df {〈a, b〉 | a ∈ A, b ∈ B}

• If AAA has ppp elements and BBB has qqq elements,

then A × BA × BA × B has p · qp · qp · q elements.

• Examples.

◮ {a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}

◮ R × RR × RR × R is the real-number plane.

◮ Z × ZZ × ZZ × Z is the integer grid.

◮ 〈〈〈 US town-names〉〉〉 ××× 〈〈〈 US state-names〉〉〉.
Some elements: 〈Bloomington, Indiana〉, 〈Cambridge, Ohio〉, 〈Portland, Maine〉〈Bloomington, Indiana〉, 〈Cambridge, Ohio〉, 〈Portland, Maine〉〈Bloomington, Indiana〉, 〈Cambridge, Ohio〉, 〈Portland, Maine〉

Binary relations

• Given sets A, BA, BA, B any set R ⊆ A × BR ⊆ A × BR ⊆ A × B is a binary-relation from AAA to BBB .

Binary relations

• Given sets A, BA, BA, B any set R ⊆ A × BR ⊆ A × BR ⊆ A × B is a binary-relation from AAA to BBB .

• When 〈a, b〉 ∈ R〈a, b〉 ∈ R〈a, b〉 ∈ R we also write (in infix)

a R ba R ba R b or — if clearer — a (R) ba (R) ba (R) b .

• A relation from a set AAA to itself is a relation over AAA.

Binary relations

• Given sets A, BA, BA, B any set R ⊆ A × BR ⊆ A × BR ⊆ A × B is a binary-relation from AAA to BBB .

• When 〈a, b〉 ∈ R〈a, b〉 ∈ R〈a, b〉 ∈ R we also write (in infix)

a R ba R ba R b or — if clearer — a (R) ba (R) ba (R) b .

• A relation from a set AAA to itself is a relation over AAA.

• With few exceptions we use the usual infix notation: For 〈a, b〉 ∈ R〈a, b〉 ∈ R〈a, b〉 ∈ R

we write a R ba R ba R b.

F23 24

Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

◮ Divisibility over the integers:

p | qp | qp | q when ppp divides qqq . Eg: 3 | 213 | 213 | 21.

Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

◮ Divisibility over the integers:

p | qp | qp | q when ppp divides qqq . Eg: 3 | 213 | 213 | 21.

◮ Relatively prime:

{〈p, q〉 | p, q{〈p, q〉 | p, q{〈p, q〉 | p, q have no common divisor }}}. Eg: 8 and 15

Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

◮ Divisibility over the integers:

p | qp | qp | q when ppp divides qqq . Eg: 3 | 213 | 213 | 21.

◮ Relatively prime:

{〈p, q〉 | p, q{〈p, q〉 | p, q{〈p, q〉 | p, q have no common divisor }}}. Eg: 8 and 15

◮ Kinship relations: parent-of, granddaughter-of, sibling-of.

Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

◮ Divisibility over the integers:

p | qp | qp | q when ppp divides qqq . Eg: 3 | 213 | 213 | 21.

◮ Relatively prime:

{〈p, q〉 | p, q{〈p, q〉 | p, q{〈p, q〉 | p, q have no common divisor }}}. Eg: 8 and 15

◮ Kinship relations: parent-of, granddaughter-of, sibling-of.

◮ Reporting relation in an organization.

Examples

◮ Size order over the real numbers: {〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.{〈x, y〉 | x, y ∈ R, x < y}.

◮ Divisibility over the integers:

p | qp | qp | q when ppp divides qqq . Eg: 3 | 213 | 213 | 21.

◮ Relatively prime:

{〈p, q〉 | p, q{〈p, q〉 | p, q{〈p, q〉 | p, q have no common divisor }}}. Eg: 8 and 15

◮ Kinship relations: parent-of, granddaughter-of, sibling-of.

◮ Reporting relation in an organization.

◮ Dependency relation between components of software modules.

F23 25

⋆ Renatus Cartesius

• René Descartes, 1596-1650

• https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes

• The unity of Mathematics!

F23 26

Visual representation by di-graphs

• Any binary relation R ⊆ A × AR ⊆ A × AR ⊆ A × A

can be represented as a directed-graph without multiple edges:

The vertices are the elements of AAA

and there is an edge x ↔ yx ↔ yx ↔ y iff x(R)yx(R)yx(R)y.

F23 27

MASQUERADING AS EQUALITY

F23 28

Reflexive relations

• One useful type of relations consists of those who share the

essential properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is reflexive on AAA if xRxxRxxRx for all x ∈ Ax ∈ Ax ∈ A.

• Note that this property of RRR , standing alone.

F23 29

Examples

◮ Identity over a set AAA.

Examples

◮ Identity over a set AAA.

◮ 666 between integers

Examples

◮ Identity over a set AAA.

◮ 666 between integers

◮ Congruence between angles (over angles in geometry)

Examples

◮ Identity over a set AAA.

◮ 666 between integers

◮ Congruence between angles (over angles in geometry)

◮ is-connected-to (over vertices of an undirected graph)

Examples

◮ Identity over a set AAA.

◮ 666 between integers

◮ Congruence between angles (over angles in geometry)

◮ is-connected-to (over vertices of an undirected graph)

Non-examples:

◮ has-same-address-as (over people): Not everyone has an address!

Examples

◮ Identity over a set AAA.

◮ 666 between integers

◮ Congruence between angles (over angles in geometry)

◮ is-connected-to (over vertices of an undirected graph)

Non-examples:

◮ has-same-address-as (over people): Not everyone has an address!

◮ is-the-same-as-integer as a relation on the real numbers

Examples

◮ Identity over a set AAA.

◮ 666 between integers

◮ Congruence between angles (over angles in geometry)

◮ is-connected-to (over vertices of an undirected graph)

Non-examples:

◮ has-same-address-as (over people): Not everyone has an address!

◮ is-the-same-as-integer as a relation on the real numbers

◮ Inequality <<< between real numbers

F23 30

Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

Which are reflexive?

◮ has-same-prime-factors-as (over NNN) Yes

Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane)

Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane) Yes

Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane)

◮ has-common-border-with (between countries)

Which are reflexive?

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (over points in the plane)

◮ has-common-border-with (between countries)

No: no country has a common border with itself

F23 31

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Examples:

◮ Equality (over any set)

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Examples:

◮ Equality (over any set)

◮ has-same-prime-factors-as (over N)

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Examples:

◮ Equality (over any set)

◮ has-same-prime-factors-as (over N)

◮ is-connected-to (over vertices of an undirected graphs)

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Examples:

◮ Equality (over any set)

◮ has-same-prime-factors-as (over N)

◮ is-connected-to (over vertices of an undirected graphs)

◮ spouse-of, sibling-of, class-mate-of (over people)

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Non-examples:

◮ Weak inequality 666

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Non-examples:

◮ Weak inequality 666

◮ is-connected-to (over vertices of a directed graph)

Symmetric relations

R ⊆ A × AR ⊆ A × AR ⊆ A × A is symmetric if u R vu R vu R v implies v R uv R uv R u

Non-examples:

◮ Weak inequality 666

◮ is-connected-to (over vertices of a directed graph)

◮ parent-of, supervisor-of (over people)

F23 32

Which are symmetric?

◮ loves

Which are symmetric?

◮ loves Unfortunately not

Which are symmetric?

◮ loves

◮ earlier-than

Which are symmetric?

◮ loves

◮ earlier-than No

Which are symmetric?

◮ loves

◮ earlier-than

◮ cousin-of

Which are symmetric?

◮ loves

◮ earlier-than

◮ cousin-of Yes

F23 33

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Examples

◮ <<< over RRR

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Examples

◮ <<< over RRR

◮ divides over NNN

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Examples

◮ <<< over RRR

◮ divides over NNN

◮ ancestor-of (over people)

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Examples

◮ <<< over RRR

◮ divides over NNN

◮ ancestor-of (over people)

◮ connected-to (over vertices of a di-graph)

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Examples

◮ <<< over RRR

◮ divides over NNN

◮ ancestor-of (over people)

◮ connected-to (over vertices of a di-graph)

◮ ⊆⊆⊆ (over P(N)P(N)P(N))

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Non-examples:

◮ parent-of, cousin-of

Transitive relations

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is transitive

if xRyxRyxRy and yRzyRzyRz together imply xRzxRzxRz.

• Non-examples:

◮ parent-of, cousin-of

◮ within-walking-distance-of

F23 34

Which are transitive?

◮ substring-of

Which are transitive?

◮ substring-of Yes

Which are transitive?

◮ substring-of

◮ brother-in-law-of

Which are transitive?

◮ substring-of

◮ brother-in-law-of No

Which are transitive?

◮ substring-of

◮ brother-in-law-of

◮ relatively-prime-with

Which are transitive?

◮ substring-of

◮ brother-in-law-of

◮ relatively-prime-with No: Take 〈2, 3〉〈2, 3〉〈2, 3〉 and 〈3, 2〉〈3, 2〉〈3, 2〉)

F23 35

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Examples:

◮ is-connected-to (over an undirected graph)

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Examples:

◮ is-connected-to (over an undirected graph)

◮ has-same-prime-factors-as (over NNN)

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Examples:

◮ is-connected-to (over an undirected graph)

◮ has-same-prime-factors-as (over NNN)

◮ equi-distant-to-origin (between points in the plane)

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Non-examples

◮ is-descendant-of, self included (between people)

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Non-examples

◮ is-descendant-of, self included (between people)

◮ Identity on NNN as a relation on RRR

Equivalence relations

• Reflexivity, symmetry and transitivity

are the basic properties of equality.

• R ⊆ A × AR ⊆ A × AR ⊆ A × A is an equivalence relation

if it is reflexive on AAA , symmetric, and transitive.

• Non-examples

◮ is-descendant-of, self included (between people)

◮ Identity on NNN as a relation on RRR

◮ is-connected-to (between people)

F23 36

Which are equivalences

◮ differs-by-less-than-1 (over RRR)

Which are equivalences

◮ differs-by-less-than-1 (over RRR) Not transitive

Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people)

Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people) Yes

Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people)

◮ sibling-of (both parents)

Which are equivalences

◮ differs-by-less-than-1 (over RRR)

◮ born-on-same-date-as (between people)

◮ sibling-of (both parents) Not reflexive

F23 37

Equivalence approximates equality

• Intuitively, an equivalence unifies objects

that share some properties of interest.

Equivalence approximates equality

• Intuitively, an equivalence unifies objects

that share some properties of interest.

• We think of a cluster of equivalent objects as an equivalence-class.

Equivalence approximates equality

• Intuitively, an equivalence unifies objects

that share some properties of interest.

• We think of a cluster of equivalent objects as an equivalence-class.

• Such class can be identified by one of its members.

We’ll see that it does not matter which one. So we define:

• Given an equivalence ∼∼∼ over AAA , and x ∈ Ax ∈ Ax ∈ A,

the ∼∼∼-class of xxx is defined by

[x]∼ =df {y ∈ S | y ∼ x}[x]∼ =df {y ∈ S | y ∼ x}[x]∼ =df {y ∈ S | y ∼ x}

F23 38

Examples of equivalence-classes

• Over NNN , equality modulo 5, that is has-same-remainder-over-5-as.

[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}

Examples of equivalence-classes

• Over NNN , equality modulo 5, that is has-same-remainder-over-5-as.

[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}

• For points in the plane, equidistance-to-origin.

[(1, 0)]∼ =[(1, 0)]∼ =[(1, 0)]∼ = the unit circle.

Examples of equivalence-classes

• Over NNN , equality modulo 5, that is has-same-remainder-over-5-as.

[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}[3]∼ = {3, 8, 13, 18, . . .}

• For points in the plane, equidistance-to-origin.

[(1, 0)]∼ =[(1, 0)]∼ =[(1, 0)]∼ = the unit circle.

• Over an undirected graph, is-connected-to

[u]∼ =[u]∼ =[u]∼ = the connected component of uuu

F23 39

Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.

In fact a ∼ a′a ∼ a′a ∼ a′ iff [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼

Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.

In fact a ∼ a′a ∼ a′a ∼ a′ iff [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼

• ⇒:⇒:⇒: Suppose a ∼ a′a ∼ a′a ∼ a′, show [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼ ([a′]∼ ⊆ [a]∼[a′]∼ ⊆ [a]∼[a′]∼ ⊆ [a]∼ is similar).

Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.

In fact a ∼ a′a ∼ a′a ∼ a′ iff [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼

• ⇒:⇒:⇒: Suppose a ∼ a′a ∼ a′a ∼ a′, show [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼

x ∈ [a]∼x ∈ [a]∼x ∈ [a]∼ ⇒⇒⇒ x ∼ ax ∼ ax ∼ a (dfn of [a]∼[a]∼[a]∼)

⇒⇒⇒ x ∼ a′x ∼ a′x ∼ a′ (transitivity, since a ∼ a′a ∼ a′a ∼ a′

⇒⇒⇒ x ∈ [a′]∼x ∈ [a′]∼x ∈ [a′]∼

Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.

In fact a ∼ a′a ∼ a′a ∼ a′ iff [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼

• ⇒:⇒:⇒: Suppose a ∼ a′a ∼ a′a ∼ a′, show [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼

x ∈ [a]∼x ∈ [a]∼x ∈ [a]∼ ⇒⇒⇒ x ∼ ax ∼ ax ∼ a (dfn of [a]∼[a]∼[a]∼)

⇒⇒⇒ x ∼ a′x ∼ a′x ∼ a′ (transitivity, since a ∼ a′a ∼ a′a ∼ a′

⇒⇒⇒ x ∈ [a′]∼x ∈ [a′]∼x ∈ [a′]∼

• ⇐:⇐:⇐: Suppose [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼ show a ∼ a′a ∼ a′a ∼ a′

Class-naming is robust

• What if we “name” [a]∼[a]∼[a]∼ by a different a′a′a′ in it?

• The choice of “name” makes no difference!:

if a′ ∈ [a]∼a′ ∈ [a]∼a′ ∈ [a]∼ then [a′]∼ = [a]∼[a′]∼ = [a]∼[a′]∼ = [a]∼.

In fact a ∼ a′a ∼ a′a ∼ a′ iff [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼

• ⇒:⇒:⇒: Suppose a ∼ a′a ∼ a′a ∼ a′, show [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼

x ∈ [a]∼x ∈ [a]∼x ∈ [a]∼ ⇒⇒⇒ x ∼ ax ∼ ax ∼ a (dfn of [a]∼[a]∼[a]∼)

⇒⇒⇒ x ∼ a′x ∼ a′x ∼ a′ (transitivity, since a ∼ a′a ∼ a′a ∼ a′

⇒⇒⇒ x ∈ [a′]∼x ∈ [a′]∼x ∈ [a′]∼

• ⇐:⇐:⇐: Suppose [a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼[a]∼ ⊆ [a′]∼ show a ∼ a′a ∼ a′a ∼ a′

a ∼ aa ∼ aa ∼ a (reflexivity)

⇒⇒⇒ a ∈ [a]∼a ∈ [a]∼a ∈ [a]∼ (dfn of [a]∼[a]∼[a]∼)

⇒⇒⇒ a ∈ [a′]∼a ∈ [a′]∼a ∈ [a′]∼ (since [a]∼ = [a′]∼[a]∼ = [a′]∼[a]∼ = [a′]∼)

⇒⇒⇒ a ∼ a′a ∼ a′a ∼ a′ (dfn of [a′]∼[a′]∼[a′]∼)

Order relations

• Order relations are everywhere, starting with the order between integers.

• But they can be different in a variety of ways.

Order relations

• Order relations are everywhere, starting with the order between integers.

• But they can be different in a variety of ways.

◮ Integers have a successor, real numbers do not.

Order relations

• Order relations are everywhere, starting with the order between integers.

• But they can be different in a variety of ways.

◮ Integers have a successor, real numbers do not.

◮ NNN has a smallest element, ZZZ does not.

Order relations

• Order relations are everywhere, starting with the order between integers.

• But they can be different in a variety of ways.

◮ Integers have a successor, real numbers do not.

◮ NNN has a smallest element, ZZZ does not.

◮ Natural numbers always compare under 666 ,

but not every two sets compare under ⊆⊆⊆.

Order relations

• Order relations are everywhere, starting with the order between integers.

• But they can be different in a variety of ways.

◮ Integers have a successor, real numbers do not.

◮ NNN has a smallest element, ZZZ does not.

◮ Natural numbers always compare under 666 ,

but not every two sets compare under ⊆⊆⊆.

◮ QQQ has an element between any two elements, NNN does not.

F23 41

What is common to all order relations?

• Intuition of order is rooted in the natural order:

0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · · .

• Its most essential features are

◮ Asymmetry: uRvuRvuRv contradicts vRuvRuvRu

◮ Transitivity: uRvuRvuRv and vRwvRwvRw together imply uRwuRwuRw.

What is common to all order relations?

• Intuition of order is rooted in the natural order:

0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · ·0 < 1 < 2 < 3 · · · .

• Its most essential features are

◮ Asymmetry: uRvuRvuRv contradicts vRuvRuvRu

◮ Transitivity: uRvuRvuRv and vRwvRwvRw together imply uRwuRwuRw.

• But historically 666 was considered a more useful paradigm.

So the common characterization of “order” has shifted to be:

• A relation RRR over a set AAA is an order on AAA if it is

◮ Reflexive on AAA

◮ Transitive

◮ Anti-symmetric: uRvuRvuRv and vRuvRuvRu together imply u = vu = vu = v .

Order on strings

• We assume that each alphabet ΣΣΣ comes with some order ≺≺≺.

Order on strings

• We assume that each alphabet ΣΣΣ comes with some order ≺≺≺.

• ≺≺≺ can be extended to a size-lex order ≺≺≺ between strings. We let

σ1 · · · σp ≺ τ 1 · · · τ qσ1 · · · σp ≺ τ 1 · · · τ qσ1 · · · σp ≺ τ 1 · · · τ q if either p < qp < qp < q

or p = qp = qp = q and for some i < pi < pi < p, σ1 · · · σi = τ 1 · · · τ iσ1 · · · σi = τ 1 · · · τ iσ1 · · · σi = τ 1 · · · τ i and σi+1 ≺ τ i+1σi+1 ≺ τ i+1σi+1 ≺ τ i+1

• I.e. strings are ordered by length, and lexicographically within each length.

Order on strings

• We assume that each alphabet ΣΣΣ comes with some order ≺≺≺.

• ≺≺≺ can be extended to a size-lex order ≺≺≺ between strings. We let

σ1 · · · σp ≺ τ 1 · · · τ qσ1 · · · σp ≺ τ 1 · · · τ qσ1 · · · σp ≺ τ 1 · · · τ q if either p < qp < qp < q

or p = qp = qp = q and for some i < pi < pi < p, σ1 · · · σi = τ 1 · · · τ iσ1 · · · σi = τ 1 · · · τ iσ1 · · · σi = τ 1 · · · τ i and σi+1 ≺ τ i+1σi+1 ≺ τ i+1σi+1 ≺ τ i+1

• I.e. strings are ordered by length, and lexicographically within each length.

• Any set of strings can be listed in increasing ≺≺≺ order.

• This is not possible with usual lexicographic order:

For example, the one-letter Latin string bbb

is preceded by the infinitely many strings that start with aaa.

MAPPINGS

F23 44

Binary relations as input-output processes

• A relation from AAA to BBB can often be construed

as a process that takes elements of AAA as input

and yields corresponding output-values in BBB.

• For example, the relation parent-of can be construed

as yielding for any person each one of their children.

• Interpreting relations as processes is not always natural.

It is awkward to construe <<< on NNN

as a process that maps each xxx to each y > xy > xy > x.

F23 45

Mappings

• A relation R ⊆ A × BR ⊆ A × BR ⊆ A × B does not determine the sets AAA and BBB ,

because R ⊆ A′ × B′R ⊆ A′ × B′R ⊆ A′ × B′ for every A′ ⊇ AA′ ⊇ AA′ ⊇ A and B′ ⊇ BB′ ⊇ BB′ ⊇ B .

• For example, if RRR maps people to their ancestors aged 6 1506 1506 150

then it also maps people to their ancestor aged 6 2006 2006 200.

• We define a mapping as a triple (R, A, B)(R, A, B)(R, A, B) where R ⊆ A × BR ⊆ A × BR ⊆ A × B.

We write R : A ⇒ BR : A ⇒ BR : A ⇒ B to state that (A, R, B)(A, R, B)(A, R, B) is a mapping.

AAA is the domain of the mapping and BBB its range .

F23 46

Image under a mapping

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and x ∈ Ax ∈ Ax ∈ A then

R[x]R[x]R[x] is the image of xxx under RRR

Image under a mapping

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and x ∈ Ax ∈ Ax ∈ A then

R[x]R[x]R[x] is the image of xxx under RRR

• Also, if A0 ⊆ AA0 ⊆ AA0 ⊆ A then

R[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) y for some x ∈ A0 }x ∈ A0 }x ∈ A0 }
is the image of A0A0A0 under RRR .

Image under a mapping

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and x ∈ Ax ∈ Ax ∈ A then

R[x]R[x]R[x] is the image of xxx under RRR

• Also, if A0 ⊆ AA0 ⊆ AA0 ⊆ A then

R[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) yR[A0] =df { y ∈ B | x (R) y for some x ∈ A0 }x ∈ A0 }x ∈ A0 }
is the image of A0A0A0 under RRR .

• Example: Consider the relation
√

= {〈x2, x〉 | x ∈ R}√
= {〈x2, x〉 | x ∈ R}√
= {〈x2, x〉 | x ∈ R}.

Then
√

[4] = {2, −2}√
[4] = {2, −2}√
[4] = {2, −2} √

[0] = {0}√
[0] = {0}√
[0] = {0} √

[−4] = ∅√
[−4] = ∅√
[−4] = ∅

−1

0

1

−2

2

−1

0

1

−2

2

3

4

ZZ

F23 47

Operations on mappings

F23 48

Mapping inverse

• The inverse of a mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is the mapping R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A

where x (R−1) yx (R−1) yx (R−1) y iff y (R) xy (R) xy (R) x.

• The superscript −1−1−1 is borrowed from

the reciprocal function x−1 = 1/xx−1 = 1/xx−1 = 1/x over RRR.

F23 49

Examples

◮ Inverse of parent-of is child-of

◮ Inverse of loves is is-loved-by

◮ Inverse of has-SSN is is-SSN-of

◮ The inverse of <<< is >>>,

and the inverse of 666 is >>>.

F23 50

Inverting the inverse

• (R−1)−1 = R(R−1)−1 = R(R−1)−1 = R

• Proof. x (R−1)−1 yx (R−1)−1 yx (R−1)−1 y iff y (R−1) xy (R−1) xy (R−1) x

iff x (R) yx (R) yx (R) y

F23 51

Relational-composition

• The relational-composition of mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C

is the mapping (R ; Q) : A ⇒ C(R ; Q) : A ⇒ C(R ; Q) : A ⇒ C where

x (R ; Q) zx (R ; Q) zx (R ; Q) z iff for some y ∈ By ∈ By ∈ B both x R yx R yx R y and y Q zy Q zy Q z .

Relational-composition

• The relational-composition of mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C

is the mapping (R ; Q) : A ⇒ C(R ; Q) : A ⇒ C(R ; Q) : A ⇒ C where

x (R ; Q) zx (R ; Q) zx (R ; Q) z iff for some y ∈ By ∈ By ∈ B both x R yx R yx R y and y Q zy Q zy Q z .

• Relational-composition interprets mappings as processes,

therefore following the procedural order.

The semi-colon notation reflects this interpretation.

F23 52

Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}

Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}
◮ Over RRR : (<) ; (<)(<) ; (<)(<) ; (<) is (<)(<)(<)

Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}
◮ Over RRR : (<) ; (<)(<) ; (<)(<) ; (<) is (<)(<)(<)

◮ Over subsets of NNN:

(⊆) ; (⊆)(⊆) ; (⊆)(⊆) ; (⊆) is ⊆⊆⊆

Examples

◮ Between people: mother-of ;;; parent-of is grandma-of.

◮ Over NNN : (6) ; (6)(6) ; (6)(6) ; (6) is 666;

but (<) ; (<)(<) ; (<)(<) ; (<) is {〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}{〈p, q〉 | q > p + 2}
◮ Over RRR : (<) ; (<)(<) ; (<)(<) ; (<) is (<)(<)(<)

◮ Over subsets of NNN:

(⊆) ; (⊆)(⊆) ; (⊆)(⊆) ; (⊆) is ⊆⊆⊆
but (⊂) ; (⊂)(⊂) ; (⊂)(⊂) ; (⊂) is “extending by at least 2 elements”.

F23 53

Inverse of a composition

• (R ; Q)−1 = Q−1 ; R−1(R ; Q)−1 = Q−1 ; R−1(R ; Q)−1 = Q−1 ; R−1

Proof. x (R ; Q)−1 zx (R ; Q)−1 zx (R ; Q)−1 z iff z (R ; Q) xz (R ; Q) xz (R ; Q) x (dfn of inverse)

iff z R yz R yz R y and y Q xy Q xy Q x some yyy (dfn of ;;;)

iff y R−1 zy R−1 zy R−1 z and x Q−1 yx Q−1 yx Q−1 y some yyy (dfn of inverse)

iff x (Q−1 ; R−1) zx (Q−1 ; R−1) zx (Q−1 ; R−1) z (dfn of compcompcomp)

F23 54

Properties of mappings

F23 55

Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Injective:]

For every y ∈ By ∈ By ∈ B there is at most one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Injective:]

For every y ∈ By ∈ By ∈ B there is at most one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

[Total:]

For every x ∈ Ax ∈ Ax ∈ A there is at least one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

Four input/output properties

We’ll consider four properties that mappings R : A ⇒ BR : A ⇒ BR : A ⇒ B may have.

[Univalent:]

For every x ∈ Ax ∈ Ax ∈ A there is at most one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Injective:]

For every y ∈ By ∈ By ∈ B there is at most one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

[Total:]

For every x ∈ Ax ∈ Ax ∈ A there is at least one y ∈ By ∈ By ∈ B such that x R yx R yx R y.

[Surjective:]

For every y ∈ By ∈ By ∈ B there is at least one x ∈ Ax ∈ Ax ∈ A such that x R yx R yx R y.

F23 56

Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Examples.

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is univalent:

every x ∈ Nx ∈ Nx ∈ N yields no other number than x2x2x2.

Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Examples.

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is univalent:

every x ∈ Nx ∈ Nx ∈ N yields no other number than x2x2x2.

◮ {〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z } is not univalent:

we have both 〈4, 2〉〈4, 2〉〈4, 2〉 and 〈4, −2〉〈4, −2〉〈4, −2〉.

Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Examples.

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is univalent:

every x ∈ Nx ∈ Nx ∈ N yields no other number than x2x2x2.

◮ {〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z }{〈x2, x〉 | x ∈ Z } is not univalent:

we have both 〈4, 2〉〈4, 2〉〈4, 2〉 and 〈4, −2〉〈4, −2〉〈4, −2〉.
◮ married-to is univalent assuming monogamy.

Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Non-examples.

◮ Neither has-as-parent nor has-as-child is univalent:

people have more than one parent, and can have more than one child.

Univalent mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent (or single-valued)

if x(R)yx(R)yx(R)y and x(R)y′x(R)y′x(R)y′ together imply y = y′y = y′y = y′.

NOT ALLOWEDx
y

y’

Non-examples.

◮ Neither has-as-parent nor has-as-child is univalent:

people have more than one parent, and can have more than one child.

◮ 666 on NNN : any x ∈ Nx ∈ Nx ∈ N is mapped to each y > xy > xy > x.

Composition of univalent mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are univalent

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

Composition of univalent mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are univalent

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Suppose x (R ; Q) zx (R ; Q) zx (R ; Q) z and x (R ; Q) z′x (R ; Q) z′x (R ; Q) z′ ,

that is x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x (R) y′ (Q) z′x (R) y′ (Q) z′x (R) y′ (Q) z′ for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B

Composition of univalent mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are univalent

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Suppose x (R ; Q) zx (R ; Q) zx (R ; Q) z and x (R ; Q) z′x (R ; Q) z′x (R ; Q) z′ ,

that is x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x (R) y′ (Q) z′x (R) y′ (Q) z′x (R) y′ (Q) z′ for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B

• Then y = y′y = y′y = y′ because RRR is univalent,

and so z = z′z = z′z = z′ because QQQ is univalent.

F23 58

Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWED

Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

◮ {〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N} is injective:

different squares have different roots.

Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

◮ {〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N} is injective:

different squares have different roots.

Non-examples:

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is not injective:

222 and −2−2−2 are mapped to the same number.

Injective mappings

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is injective if

x R yx R yx R y and x′ R yx′ R yx′ R y together imply x = x′x = x′x = x′
y

x

x’

NOT ALLOWEDExamples:

◮ The mapping from cars to their plate-number is injective:

No two cars have the same plate number.

◮ {〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N}{〈x2, x〉 | x ∈ N} is injective:

different squares have different roots.

Non-examples:

◮ {〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N}{〈x, x2〉 | x ∈ N} is not injective:

222 and −2−2−2 are mapped to the same number.

◮ The mapping from people to their name is not injective:

different people may have the same name.

F23 59

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R} No. Both 222 and −2−2−2 map to 4.

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R} Yes

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }

No. This maps both 888 and 999 to 11.

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}}

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}} Yes.

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}}
◮ The mapping from US residents to their SSN.

Which are injective?

◮ {〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}{〈x, x2〉 | x ∈ R}
◮ {〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}{〈x, x3〉 | x ∈ R}
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = first prime > x }> x }> x }
◮ {〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p ={〈n, p〉 | n ∈ N, p = the nnn’th prime }}}
◮ The mapping from US residents to their SSN.

Yes. No SSN is assigned to two different persons.

F23 60

Injective is the dual of univalent

◮ Univalent:

At most one output per input. NOT ALLOWEDx
y

y’

◮ Injective:

at most one input per output. y
x

x’

NOT ALLOWED

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is injective

Injective is the dual of univalent

◮ Univalent:

At most one output per input. NOT ALLOWEDx
y

y’

◮ Injective:

at most one input per output. y
x

x’

NOT ALLOWED

• R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is injective

• Proof. x (R) yx (R) yx (R) y plus x (R) y′x (R) y′x (R) y′ imply y = y′y = y′y = y′

iff

y (R−1) xy (R−1) xy (R−1) x plus y′ (R−1) xy′ (R−1) xy′ (R−1) x imply y = y′y = y′y = y′,

F23 61

Composition of injective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are injective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

Composition of injective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are injective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Assume x (R ; Q) zx (R ; Q) zx (R ; Q) z and x′ (R ; Q) zx′ (R ; Q) zx′ (R ; Q) z.

That is, x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x′ (R) y′ (Q) zx′ (R) y′ (Q) zx′ (R) y′ (Q) z for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B.

Composition of injective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are injective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Assume x (R ; Q) zx (R ; Q) zx (R ; Q) z and x′ (R ; Q) zx′ (R ; Q) zx′ (R ; Q) z.

That is, x (R) y (Q) zx (R) y (Q) zx (R) y (Q) z and x′ (R) y′ (Q) zx′ (R) y′ (Q) zx′ (R) y′ (Q) z for some y, y′ ∈ By, y′ ∈ By, y′ ∈ B.

• y = y′y = y′y = y′ because QQQ is injective,

and therefore x = x′x = x′x = x′ because RRR is injective.

F23 62

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Non−total

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

• Note: Totality is a property of the mapping,

not just the relation RRR .

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

• Note: Totality is a property of the mapping,

not just the relation RRR .

Examples.

◮ born-on over people.

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

• Note: Totality is a property of the mapping,

not just the relation RRR .

Examples.

◮ born-on over people.

◮ The mapping has-integer-value from real numbers to integers

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

• Note: Totality is a property of the mapping,

not just the relation RRR .

Examples.

◮ born-on over people.

◮ The mapping has-integer-value from real numbers to integers

Non-examples.

◮ The reciprocal mapping (1/x)(1/x)(1/x) on RRR has no output for input 000.

Total mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is total if

for each x ∈ Ax ∈ Ax ∈ A there is a yyy such that x (R) yx (R) yx (R) y.

A B

Total

• Note: Totality is a property of the mapping,

not just the relation RRR .

Examples.

◮ born-on over people.

◮ The mapping has-integer-value from real numbers to integers

Non-examples.

◮ The reciprocal mapping (1/x)(1/x)(1/x) on RRR has no output for input 000.

◮ The trigonometric mapping tantantan (tangent) has no output for input

kπ/2kπ/2kπ/2 for odd integers kkk.

F23 63

Composition of total mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are total

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

Composition of total mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are total

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. If x ∈ Ax ∈ Ax ∈ A then x (R), yx (R), yx (R), y for some y ∈ By ∈ By ∈ B,

since RRR is total.

So y (Q) zy (Q) zy (Q) z for some z ∈ Cz ∈ Cz ∈ C, since QQQ is total.

Put together, we obtain x (R ; Q) zx (R ; Q) zx (R ; Q) z for some zzz.

F23 64

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

B

Non−surjective

A

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Examples.

◮ The trigonometric function sin : R ⇒ [−1..1]sin : R ⇒ [−1..1]sin : R ⇒ [−1..1] .

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Examples.

◮ The trigonometric function sin : R ⇒ [−1..1]sin : R ⇒ [−1..1]sin : R ⇒ [−1..1] .

◮ The cubic function over RRR.

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Examples.

◮ The trigonometric function sin : R ⇒ [−1..1]sin : R ⇒ [−1..1]sin : R ⇒ [−1..1] .

◮ The cubic function over RRR.

◮ The mapping over humanity that maps people to their children

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Examples.

◮ The trigonometric function sin : R ⇒ [−1..1]sin : R ⇒ [−1..1]sin : R ⇒ [−1..1] .

◮ The cubic function over RRR.

◮ The mapping over humanity that maps people to their children

Non-Examples.

◮ The squaring function over NNN.

Surjective mappings

• A mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective (or onto)

if for each y ∈ By ∈ By ∈ B there is an xxx such that x (R) yx (R) yx (R) y.

BA

Surjective

• Surjectivity is the dual of totality:

R : A ⇒ BR : A ⇒ BR : A ⇒ B is total iff R−1 : B ⇒ AR−1 : B ⇒ AR−1 : B ⇒ A is surjective.

Examples.

◮ The trigonometric function sin : R ⇒ [−1..1]sin : R ⇒ [−1..1]sin : R ⇒ [−1..1] .

◮ The cubic function over RRR.

◮ The mapping over humanity that maps people to their children

Non-Examples.

◮ The squaring function over NNN.

◮ The mapping over humanity that maps people to their spouse

F23 65

Composition of surjective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are surjective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

Composition of surjective mappings

• If R : A ⇒ BR : A ⇒ BR : A ⇒ B and Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C are surjective

then so is R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C.

• Proof. Given that Q : B ⇒ CQ : B ⇒ CQ : B ⇒ C is surjective,

for every z ∈ Cz ∈ Cz ∈ C there is a y ∈ By ∈ By ∈ B such that y (Q) zy (Q) zy (Q) z.

• This implies, Since R : A ⇒ BR : A ⇒ BR : A ⇒ B is surjective,

that x (R) yx (R) yx (R) y for some x ∈ Ax ∈ Ax ∈ A.

• Thus x (R ; Q) zx (R ; Q) zx (R ; Q) z.

Since this holds for every z ∈ Cz ∈ Cz ∈ C, R ; Q : A ⇒ CR ; Q : A ⇒ CR ; Q : A ⇒ C is surjective.

F23 66

FUNCTIONS

F23 67

Functions: univalent and total

• When a mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent

we also say that it is a partial-function (from AAA to BBB),

and write R : A ⇀ BR : A ⇀ BR : A ⇀ B (note the maimed arrow).

Functions: univalent and total

• When a mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent

we also say that it is a partial-function (from AAA to BBB),

and write R : A ⇀ BR : A ⇀ BR : A ⇀ B (note the maimed arrow).

• When that mapping is also total

we say that it is a total-function (or function for short),

and write R : A → BR : A → BR : A → B.

Functions: univalent and total

• When a mapping R : A ⇒ BR : A ⇒ BR : A ⇒ B is univalent

we also say that it is a partial-function (from AAA to BBB),

and write R : A ⇀ BR : A ⇀ BR : A ⇀ B (note the maimed arrow).

• When that mapping is also total

we say that it is a total-function (or function for short),

and write R : A → BR : A → BR : A → B.

• A partial-function R : A ⇀ BR : A ⇀ BR : A ⇀ B is “partial” in that

it is not necessarily total (on BBB).

So every total-function is also a partial-function!

And a partial-function may be total or non-total .

F23 68

Functions and naming

• Univalence

is the most consequential property that a mapping can have:

it enables the naming of new mathematical objects!

Functions and naming

• Univalence

is the most consequential property that a mapping can have:

it enables the naming of new mathematical objects!

• If F : A → BF : A → BF : A → B and x (F) yx (F) yx (F) y we write F (x)F (x)F (x) for yyy.

Functions and naming

• Univalence

is the most consequential property that a mapping can have:

it enables the naming of new mathematical objects!

• If F : A → BF : A → BF : A → B and x (F) yx (F) yx (F) y we write F (x)F (x)F (x) for yyy.

• When F : A ⇀ BF : A ⇀ BF : A ⇀ B (i.e. totality not assumed),

we still write F (x)F (x)F (x) for the yyy satisfying x (F) yx (F) yx (F) y ,

and say that FFF is undefined if no such yyy exists.

F23 69

Explicit function definitions

• Consider a function definition: F (x, y) = 2 · x + yF (x, y) = 2 · x + yF (x, y) = 2 · x + y.

Here FFF is defined in terms of 2, addition, and multiplication.

Explicit function definitions

• Consider a function definition: F (x, y) = 2 · x + yF (x, y) = 2 · x + yF (x, y) = 2 · x + y.

Here FFF is defined in terms of 2, addition, and multiplication.

• An explicit definition of a function F : A ⇒ BF : A ⇒ BF : A ⇒ B from objects c1, c2 . . . ∈ Ac1, c2 . . . ∈ Ac1, c2 . . . ∈ A

and functions g1, g2 . . .g1, g2 . . .g1, g2 . . . over AAA can be given by an equation

F (x1, . . . , xk) = EF (x1, . . . , xk) = EF (x1, . . . , xk) = E

where EEE is an “algebraic expression” built from

the cicici’s, gjgjgj’s and variables x1 . . . xkx1 . . . xkx1 . . . xk

by function application.

Explicit function definitions

• Consider a function definition: F (x, y) = 2 · x + yF (x, y) = 2 · x + yF (x, y) = 2 · x + y.

Here FFF is defined in terms of 2, addition, and multiplication.

• An explicit definition of a function F : A ⇒ BF : A ⇒ BF : A ⇒ B from objects c1, c2 . . . ∈ Ac1, c2 . . . ∈ Ac1, c2 . . . ∈ A

and functions g1, g2 . . .g1, g2 . . .g1, g2 . . . over AAA can be given by an equation

F (x1, . . . , xk) = EF (x1, . . . , xk) = EF (x1, . . . , xk) = E

where EEE is an “algebraic expression” built from

the cicici’s, gjgjgj’s and variables x1 . . . xkx1 . . . xkx1 . . . xk

by function application.

• To refer to a function on the fly, without naming it,

we use the “maps-to” notation: x 7→ Ex 7→ Ex 7→ E.

Example: x 7→ 2x + 1x 7→ 2x + 1x 7→ 2x + 1.

F23 70

Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

• Predecessor over the integers: x 7→ x−1x 7→ x−1x 7→ x−1 .

Cut-off predecessor over NNN : x 7→x 7→x 7→ if x = 0x = 0x = 0 then 000 else x−1x−1x−1.

Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

• Predecessor over the integers: x 7→ x−1x 7→ x−1x 7→ x−1 .

Cut-off predecessor over NNN : x 7→x 7→x 7→ if x = 0x = 0x = 0 then 000 else x−1x−1x−1.

• A function F : A → BF : A → BF : A → B for which F (x) = bF (x) = bF (x) = b

for a fixed b ∈ Bb ∈ Bb ∈ B is a constant-function .

Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

• Predecessor over the integers: x 7→ x−1x 7→ x−1x 7→ x−1 .

Cut-off predecessor over NNN : x 7→x 7→x 7→ if x = 0x = 0x = 0 then 000 else x−1x−1x−1.

• A function F : A → BF : A → BF : A → B for which F (x) = bF (x) = bF (x) = b

for a fixed b ∈ Bb ∈ Bb ∈ B is a constant-function .

• For any set AAA the identity function over AAA IdA : A → AIdA : A → AIdA : A → A defined by

x 7→ xx 7→ xx 7→ x.

Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

• Predecessor over the integers: x 7→ x−1x 7→ x−1x 7→ x−1 .

Cut-off predecessor over NNN : x 7→x 7→x 7→ if x = 0x = 0x = 0 then 000 else x−1x−1x−1.

• A function F : A → BF : A → BF : A → B for which F (x) = bF (x) = bF (x) = b

for a fixed b ∈ Bb ∈ Bb ∈ B is a constant-function .

• For any set AAA the identity function over AAA IdA : A → AIdA : A → AIdA : A → A defined by

x 7→ xx 7→ xx 7→ x.

• The reciprocal-function over R+R+
R+ x 7→ 1/xx 7→ 1/xx 7→ 1/x is a total-function.

Examples of total-functions

• over the set of people:

F (p) =F (p) =F (p) = the (biological) mother of ppp.

• Predecessor over the integers: x 7→ x−1x 7→ x−1x 7→ x−1 .

Cut-off predecessor over NNN : x 7→x 7→x 7→ if x = 0x = 0x = 0 then 000 else x−1x−1x−1.

• A function F : A → BF : A → BF : A → B for which F (x) = bF (x) = bF (x) = b

for a fixed b ∈ Bb ∈ Bb ∈ B is a constant-function .

• For any set AAA the identity function over AAA IdA : A → AIdA : A → AIdA : A → A defined by

x 7→ xx 7→ xx 7→ x.

• The reciprocal-function over R+R+
R+ x 7→ 1/xx 7→ 1/xx 7→ 1/x is a total-function.

• F (n) =F (n) =F (n) = the first prime number > n> n> n.

That this function is total is akin to saying that

there are infinitely many primes.

F23 71

Examples of partial-functions

Examples of partial-functions

• The reciprocal function over RRR

(it is undefined for 0).

Examples of partial-functions

• The reciprocal function over RRR

(it is undefined for 0).

• Over the set of people: p 7→p 7→p 7→ the spouse of ppp

(not every person is married).

Examples of partial-functions

• The reciprocal function over RRR

(it is undefined for 0).

• Over the set of people: p 7→p 7→p 7→ the spouse of ppp

(not every person is married).

• Over P(N)P(N)P(N) : A 7→A 7→A 7→ the smallest element of AAA

(Undefined for ∅∅∅.)

Examples of partial-functions

• The reciprocal function over RRR

(it is undefined for 0).

• Over the set of people: p 7→p 7→p 7→ the spouse of ppp

(not every person is married).

• Over P(N)P(N)P(N) : A 7→A 7→A 7→ the smallest element of AAA

(Undefined for ∅∅∅.)

• For any sets A, BA, BA, B we have an empty partial-function ∅ : A ⇀ B∅ : A ⇀ B∅ : A ⇀ B .

That is, ∅(x)∅(x)∅(x) is undefined for all x ∈ Ax ∈ Ax ∈ A.

F23 72

Functions of several arguments

• Let F : A × B ⇀ CF : A × B ⇀ CF : A × B ⇀ C.

We write F (a, b)F (a, b)F (a, b) for F (〈a, b〉)F (〈a, b〉)F (〈a, b〉).

• This convention can be applied to functions with more than two arguments.

Functions of several arguments

• Let F : A × B ⇀ CF : A × B ⇀ CF : A × B ⇀ C.

We write F (a, b)F (a, b)F (a, b) for F (〈a, b〉)F (〈a, b〉)F (〈a, b〉).

• This convention can be applied to functions with more than two arguments.

• Example: Addition, multiplication and exponentiation

are binary functions over RRR.

Functions of several arguments

• Let F : A × B ⇀ CF : A × B ⇀ CF : A × B ⇀ C.

We write F (a, b)F (a, b)F (a, b) for F (〈a, b〉)F (〈a, b〉)F (〈a, b〉).

• This convention can be applied to functions with more than two arguments.

• Example: Addition, multiplication and exponentiation

are binary functions over RRR.

• We use infix notation for most binary functions: x+yx+yx+y for +(x, y)+(x, y)+(x, y).

F23 73

Bijections

• An injective function is an injection.

• A surjective function is a surjection.

Bijections

• An injective function is an injection.

• A surjective function is a surjection.

• If f : A → Bf : A → Bf : A → B is both injective and surjective

then it is a bijection and we write f : A ∼= Bf : A ∼= Bf : A ∼= B .

Bijections

• An injective function is an injection.

• A surjective function is a surjection.

• If f : A → Bf : A → Bf : A → B is both injective and surjective

then it is a bijection and we write f : A ∼= Bf : A ∼= Bf : A ∼= B .

• So a bijection has all four I/O properties:

univalent, injective, total and surjective.

Bijections

• An injective function is an injection.

• A surjective function is a surjection.

• If f : A → Bf : A → Bf : A → B is both injective and surjective

then it is a bijection and we write f : A ∼= Bf : A ∼= Bf : A ∼= B .

• So a bijection has all four I/O properties:

univalent, injective, total and surjective.

• If there is a bijection from AAA to BBB

then we write A ∼= BA ∼= BA ∼= B and say that AAA and BBB are equipollent.

F23 74

Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

◮ The mapping x 7→ 1/xx 7→ 1/xx 7→ 1/x over the positive real numbers.

Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

◮ The mapping x 7→ 1/xx 7→ 1/xx 7→ 1/x over the positive real numbers.

◮ The successor-modulo-12 function over [0..11][0..11][0..11] .

Examples

◮ In a concert hall filled to capacity

the function that maps each person to their seat.

◮ The mapping x 7→ 1/xx 7→ 1/xx 7→ 1/x over the positive real numbers.

◮ The successor-modulo-12 function over [0..11][0..11][0..11] .

◮ Let d(x) = 2xd(x) = 2xd(x) = 2x .

d : R ⇀ Rd : R ⇀ Rd : R ⇀ R is a bijection.

d : N ⇀ Nd : N ⇀ Nd : N ⇀ N is not: it is not surjective.

d : N ⇀ Evend : N ⇀ Evend : N ⇀ Even is a bijection.

F23 75

Closure properties of bijections

• Theorem. The inverse of a bijection F : A ⇒ BF : A ⇒ BF : A ⇒ B is a bijection.

Closure properties of bijections

• Theorem. The inverse of a bijection F : A ⇒ BF : A ⇒ BF : A ⇒ B is a bijection.

• Proof. A bijection f : A ⇒ Bf : A ⇒ Bf : A ⇒ B is univalent, total, injective and surjective,

so f−1 : B ⇒ Af−1 : B ⇒ Af−1 : B ⇒ A is injective, surjective, univalent and total.

Closure properties of bijections

• Theorem. The inverse of a bijection F : A ⇒ BF : A ⇒ BF : A ⇒ B is a bijection.

• Proof. A bijection f : A ⇒ Bf : A ⇒ Bf : A ⇒ B is univalent, total, injective and surjective,

so f−1 : B ⇒ Af−1 : B ⇒ Af−1 : B ⇒ A is injective, surjective, univalent and total.

• Theorem The composition of bijections f : A ⇒ Bf : A ⇒ Bf : A ⇒ B and g : B ⇒ Cg : B ⇒ Cg : B ⇒ C

is a bijection (f ; g) : A ⇒ C(f ; g) : A ⇒ C(f ; g) : A ⇒ C.

Closure properties of bijections

• Theorem. The inverse of a bijection F : A ⇒ BF : A ⇒ BF : A ⇒ B is a bijection.

• Proof. A bijection f : A ⇒ Bf : A ⇒ Bf : A ⇒ B is univalent, total, injective and surjective,

so f−1 : B ⇒ Af−1 : B ⇒ Af−1 : B ⇒ A is injective, surjective, univalent and total.

• Theorem The composition of bijections f : A ⇒ Bf : A ⇒ Bf : A ⇒ B and g : B ⇒ Cg : B ⇒ Cg : B ⇒ C

is a bijection (f ; g) : A ⇒ C(f ; g) : A ⇒ C(f ; g) : A ⇒ C.

• Proof. We saw above that the properties univalent, total,

injective and surjective are all closed under composition.

F23 76

Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

◮ Reflexive: For each AAA we have IdA : A ∼= AIdA : A ∼= AIdA : A ∼= A.

Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

◮ Reflexive: For each AAA we have IdA : A ∼= AIdA : A ∼= AIdA : A ∼= A.

◮ Symmetric: If f : A ∼= Bf : A ∼= Bf : A ∼= B then f−1 : B ∼= Af−1 : B ∼= Af−1 : B ∼= A.

Equipollence is an equivalence

• Theorem ∼=∼=∼= is reflexive, symmetric and transitive.

• Proof. ∼=∼=∼= is

◮ Reflexive: For each AAA we have IdA : A ∼= AIdA : A ∼= AIdA : A ∼= A.

◮ Symmetric: If f : A ∼= Bf : A ∼= Bf : A ∼= B then f−1 : B ∼= Af−1 : B ∼= Af−1 : B ∼= A.

◮ Transitive: If F : A ∼= BF : A ∼= BF : A ∼= B and G : B ∼= CG : B ∼= CG : B ∼= C then F ; G : A ∼= CF ; G : A ∼= CF ; G : A ∼= C.

F23 77

SET SIZE

F23 78

Comparing set size

• When we say that a set SSS “is smaller than” BBB

we commonly mean that

◮ The count p ∈ Np ∈ Np ∈ N of AAA ’s elements

is <<< than the count qqq of BBB .

Comparing set size

• When we say that a set SSS “is smaller than” BBB

we commonly mean that

◮ The count p ∈ Np ∈ Np ∈ N of AAA ’s elements

is <<< than the count qqq of BBB .

• “Counting” AAA means defining a bijection j : {1, . . . , p} → Aj : {1, . . . , p} → Aj : {1, . . . , p} → A.

Comparing set size

• When we say that a set SSS “is smaller than” BBB

we commonly mean that

◮ The count p ∈ Np ∈ Np ∈ N of AAA ’s elements

is <<< than the count qqq of BBB .

• “Counting” AAA means defining a bijection j : {1, . . . , p} → Aj : {1, . . . , p} → Aj : {1, . . . , p} → A.

• This size-comparison of AAA and BBB makes a detour via NNN.

Is that detour useful? necessary?

Comparing set size

• When we say that a set SSS “is smaller than” BBB

we commonly mean that

◮ The count p ∈ Np ∈ Np ∈ N of AAA ’s elements

is <<< than the count qqq of BBB .

• “Counting” AAA means defining a bijection j : {1, . . . , p} → Aj : {1, . . . , p} → Aj : {1, . . . , p} → A.

• This size-comparison of AAA and BBB makes a detour via NNN.

Is that detour useful? necessary?

It is a strole of genius for finite sets.

It is not necessary.

It hinders generalization of size to infinite sets!

F23 79

Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

• One option is clear: A ⊆ BA ⊆ BA ⊆ B .

What if AAA is not related to BBB ?

Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

• One option is clear: A ⊆ BA ⊆ BA ⊆ B .

What if AAA is not related to BBB ?

• Dfn. An embedding of AAA in BBB is an injection j : A → Bj : A → Bj : A → B .

Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

• One option is clear: A ⊆ BA ⊆ BA ⊆ B .

What if AAA is not related to BBB ?

• Dfn. An embedding of AAA in BBB is an injection j : A → Bj : A → Bj : A → B .

• If such an embedding exists, we write A 4 BA 4 BA 4 B.

Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

• One option is clear: A ⊆ BA ⊆ BA ⊆ B .

What if AAA is not related to BBB ?

• Dfn. An embedding of AAA in BBB is an injection j : A → Bj : A → Bj : A → B .

• If such an embedding exists, we write A 4 BA 4 BA 4 B.

Think of it as assigning a “name” in BBB to each element of AAA .

Comparing size, in general

• Show “set AAA is no larger than set BBB” without counting.

• One option is clear: A ⊆ BA ⊆ BA ⊆ B .

What if AAA is not related to BBB ?

• Dfn. An embedding of AAA in BBB is an injection j : A → Bj : A → Bj : A → B .

• If such an embedding exists, we write A 4 BA 4 BA 4 B.

Think of it as assigning a “name” in BBB to each element of AAA .

• The composition of injections is an injection, so:

Theorem. 444 is transitive: If A 4 B 4 CA 4 B 4 CA 4 B 4 C then A 4 CA 4 CA 4 C.

F23 80

Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

• For a seated class, the mapping from students to chairs they occupy

is an embedding from the set of students to the set of chairs.i

Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

• For a seated class, the mapping from students to chairs they occupy

is an embedding from the set of students to the set of chairs.i

• IdEven : Even 4 NIdEven : Even 4 NIdEven : Even 4 N

Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

• For a seated class, the mapping from students to chairs they occupy

is an embedding from the set of students to the set of chairs.i

• IdEven : Even 4 NIdEven : Even 4 NIdEven : Even 4 N

• The injection x 7→ 2xx 7→ 2xx 7→ 2x embeds NNN in EvenEvenEven.

Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

• For a seated class, the mapping from students to chairs they occupy

is an embedding from the set of students to the set of chairs.i

• IdEven : Even 4 NIdEven : Even 4 NIdEven : Even 4 N

• The injection x 7→ 2xx 7→ 2xx 7→ 2x embeds NNN in EvenEvenEven.

• x 7→ x/1000x 7→ x/1000x 7→ x/1000 is an embedding of (0..1000](0..1000](0..1000] in (0..1](0..1](0..1].

Examples

• For any set AAA IdA : A 4 AIdA : A 4 AIdA : A 4 A

(IdAIdAIdA is the identity function on AAA)

• For a seated class, the mapping from students to chairs they occupy

is an embedding from the set of students to the set of chairs.i

• IdEven : Even 4 NIdEven : Even 4 NIdEven : Even 4 N

• The injection x 7→ 2xx 7→ 2xx 7→ 2x embeds NNN in EvenEvenEven.

• x 7→ x/1000x 7→ x/1000x 7→ x/1000 is an embedding of (0..1000](0..1000](0..1000] in (0..1](0..1](0..1].

• [1..∞) 4 (0..1][1..∞) 4 (0..1][1..∞) 4 (0..1] by the embedding x 7→ 1/xx 7→ 1/xx 7→ 1/x.

F23 81

Examples

Over the set RRR of real numbers:

◮ Stretch: For a, b > 0a, b > 0a, b > 0 we have (0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)

by the injection x 7→ bx/ax 7→ bx/ax 7→ bx/a.

Examples

Over the set RRR of real numbers:

◮ Stretch: For a, b > 0a, b > 0a, b > 0 we have (0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)

by the injection x 7→ bx/ax 7→ bx/ax 7→ bx/a.

◮ Displacement: (a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d) by the injection x 7→ x + dx 7→ x + dx 7→ x + d

Examples

Over the set RRR of real numbers:

◮ Stretch: For a, b > 0a, b > 0a, b > 0 we have (0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)

by the injection x 7→ bx/ax 7→ bx/ax 7→ bx/a.

◮ Displacement: (a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d) by the injection x 7→ x + dx 7→ x + dx 7→ x + d

Examples

Over the set RRR of real numbers:

◮ Stretch: For a, b > 0a, b > 0a, b > 0 we have (0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)(0 .. a) 4 (0 .. b)

by the injection x 7→ bx/ax 7→ bx/ax 7→ bx/a.

◮ Displacement: (a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d)(a .. b) 4 (a+d .. b+d) by the injection x 7→ x + dx 7→ x + dx 7→ x + d

F23 82

Using transitivity of 444

◮ For a < b, c < da < b, c < da < b, c < d (a .. b) 4 (c..d)(a .. b) 4 (c..d)(a .. b) 4 (c..d) :

(a .. b)(a .. b)(a .. b) 444 (0 .. b−a)(0 .. b−a)(0 .. b−a) (displace by −a−a−a)

444 (0..d−c(0..d−c(0..d−c (stretch)

444 (c..d)(c..d)(c..d) (displace)

Using transitivity of 444

◮ For a < b, c < da < b, c < da < b, c < d (a .. b) 4 (c..d)(a .. b) 4 (c..d)(a .. b) 4 (c..d) :

(a .. b)(a .. b)(a .. b) 444 (0 .. b−a)(0 .. b−a)(0 .. b−a) (displace by −a−a−a)

444 (0..d−c(0..d−c(0..d−c (stretch)

444 (c..d)(c..d)(c..d) (displace)

◮ Do we have [0..1] 4 (0..1)[0..1] 4 (0..1)[0..1] 4 (0..1) ?

Using transitivity of 444

◮ For a < b, c < da < b, c < da < b, c < d (a .. b) 4 (c..d)(a .. b) 4 (c..d)(a .. b) 4 (c..d) :

(a .. b)(a .. b)(a .. b) 444 (0 .. b−a)(0 .. b−a)(0 .. b−a) (displace by −a−a−a)

444 (0..d−c(0..d−c(0..d−c (stretch)

444 (c..d)(c..d)(c..d) (displace)

◮ Do we have [0..1] 4 (0..1)[0..1] 4 (0..1)[0..1] 4 (0..1) ?

◮ (1..2) 4 [1..2] 4 (0..3)(1..2) 4 [1..2] 4 (0..3)(1..2) 4 [1..2] 4 (0..3) (by identities)

(1..2) 4 [1..2] 4 (1..2)(1..2) 4 [1..2] 4 (1..2)(1..2) 4 [1..2] 4 (1..2) (Stretch)

F23 83

Equipollence

• Recall that AAA is equipollent with BBB when there is a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

◮ Example: NNN is equipollent to the set EEE of even naturals

since x 7→ 2xx 7→ 2xx 7→ 2x is a bijection.

Equipollence

• Recall that AAA is equipollent with BBB when there is a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

◮ Example: NNN is equipollent to the set EEE of even naturals

since x 7→ 2xx 7→ 2xx 7→ 2x is a bijection.

• If j : A ∼= Bj : A ∼= Bj : A ∼= B then A 4 BA 4 BA 4 B since jjj is an injection,

and B 4 AB 4 AB 4 A since j−1j−1j−1 is an injection.

Equipollence

• Recall that AAA is equipollent with BBB when there is a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

◮ Example: NNN is equipollent to the set EEE of even naturals

since x 7→ 2xx 7→ 2xx 7→ 2x is a bijection.

• If j : A ∼= Bj : A ∼= Bj : A ∼= B then A 4 BA 4 BA 4 B since jjj is an injection,

and B 4 AB 4 AB 4 A since j−1j−1j−1 is an injection.

• Surprisingly, the converse also holds:

Cantor-Bernstein-Schröder Theorem. (1896/97)

If A 4 BA 4 BA 4 B and B 4 AB 4 AB 4 A then A ∼= BA ∼= BA ∼= B .

F23 84

Using CBS

1. The CBS Theorem is useful in proving set equipollence,

because mutual embeddings are often easier to find than a bijection.

2. We showed that all real number intervals are embedable in each other.

So by CBS they are all equipollent to each other.

Not a big deal, you say, because the embedding are in fact bijections.

Not so fast...

Using CBS

1. The CBS Theorem is useful in proving set equipollence,

because mutual embeddings are often easier to find than a bijection.

2. We showed that all real number intervals are embedable in each other.

So by CBS they are all equipollent to each other.

Not a big deal, you say, because the embedding are in fact bijections.

Not so fast...

3. {0, 1}∗ ∼= N{0, 1}∗ ∼= N{0, 1}∗ ∼= N :

◮ f : {0, 1}∗ 4 Nf : {0, 1}∗ 4 Nf : {0, 1}∗ 4 N

where f(w)f(w)f(w) is the numeric value of 1w1w1w.

Using CBS

1. The CBS Theorem is useful in proving set equipollence,

because mutual embeddings are often easier to find than a bijection.

2. We showed that all real number intervals are embedable in each other.

So by CBS they are all equipollent to each other.

Not a big deal, you say, because the embedding are in fact bijections.

Not so fast...

3. {0, 1}∗ ∼= N{0, 1}∗ ∼= N{0, 1}∗ ∼= N :

◮ f : {0, 1}∗ 4 Nf : {0, 1}∗ 4 Nf : {0, 1}∗ 4 N

where f(w)f(w)f(w) is the numeric value of 1w1w1w.

◮ g : N 4 {0, 1}∗g : N 4 {0, 1}∗g : N 4 {0, 1}∗

where ggg is the injection n 7→n 7→n 7→ binary numeral for nnn.

F23 85

Countable sets

• A set AAA is denumerable if A ∼= NA ∼= NA ∼= N.

• AAA is countable if A 4 NA 4 NA 4 N.

Countable sets

• A set AAA is denumerable if A ∼= NA ∼= NA ∼= N.

• AAA is countable if A 4 NA 4 NA 4 N.

• So AAA is countable iff it is either finite or denumerable.

F23 86

Examples of denumerable sets.

1. The set ZZZ of integers:

Z ∼= NZ ∼= NZ ∼= N by the bijection

x 7→x 7→x 7→ if x > 0x > 0x > 0 then 2x2x2x else −2x − 1−2x − 1−2x − 1 .

I.e. ZZZ is listed as 0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3,

Examples of denumerable sets.

1. The set ZZZ of integers:

Z ∼= NZ ∼= NZ ∼= N by the bijection

x 7→x 7→x 7→ if x > 0x > 0x > 0 then 2x2x2x else −2x − 1−2x − 1−2x − 1 .

I.e. ZZZ is listed as 0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3,

2. N ∼= N × NN ∼= N × NN ∼= N × N .

Examples of denumerable sets.

1. The set ZZZ of integers:

Z ∼= NZ ∼= NZ ∼= N by the bijection

x 7→x 7→x 7→ if x > 0x > 0x > 0 then 2x2x2x else −2x − 1−2x − 1−2x − 1 .

I.e. ZZZ is listed as 0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3,

2. N ∼= N × NN ∼= N × NN ∼= N × N .

◮ N 4 N × NN 4 N × NN 4 N × N by the injection n 7→ 〈0, n〉n 7→ 〈0, n〉n 7→ 〈0, n〉

Examples of denumerable sets.

1. The set ZZZ of integers:

Z ∼= NZ ∼= NZ ∼= N by the bijection

x 7→x 7→x 7→ if x > 0x > 0x > 0 then 2x2x2x else −2x − 1−2x − 1−2x − 1 .

I.e. ZZZ is listed as 0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3,

2. N ∼= N × NN ∼= N × NN ∼= N × N .

◮ N 4 N × NN 4 N × NN 4 N × N by the injection n 7→ 〈0, n〉n 7→ 〈0, n〉n 7→ 〈0, n〉
◮ N × N 4 NN × N 4 NN × N 4 N by the injection 〈p, q〉 7→ 2p · 3q〈p, q〉 7→ 2p · 3q〈p, q〉 7→ 2p · 3q

Examples of denumerable sets.

1. The set ZZZ of integers:

Z ∼= NZ ∼= NZ ∼= N by the bijection

x 7→x 7→x 7→ if x > 0x > 0x > 0 then 2x2x2x else −2x − 1−2x − 1−2x − 1 .

I.e. ZZZ is listed as 0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3, ...0, −1, 1, −2, 2, −3,

2. N ∼= N × NN ∼= N × NN ∼= N × N .

◮ N 4 N × NN 4 N × NN 4 N × N by the injection n 7→ 〈0, n〉n 7→ 〈0, n〉n 7→ 〈0, n〉
◮ N × N 4 NN × N 4 NN × N 4 N by the injection 〈p, q〉 7→ 2p · 3q〈p, q〉 7→ 2p · 3q〈p, q〉 7→ 2p · 3q

◮ So N ∼= N × NN ∼= N × NN ∼= N × N by CBS.

F23 87

1. Q+Q+
Q+ is the set of positive rational numbers.

1. Q+Q+
Q+ is the set of positive rational numbers.

◮ N 4 Q+N 4 Q+
N 4 Q+ by the identity function on NNN.

1. Q+Q+
Q+ is the set of positive rational numbers.

◮ N 4 Q+N 4 Q+
N 4 Q+ by the identity function on NNN.

◮ Q 4 N × NQ 4 N × NQ 4 N × N by the injection

that maps x ∈ Q+x ∈ Q+x ∈ Q+ to the pair 〈p, q〉〈p, q〉〈p, q〉 where x = p
q

x = p
qx = p
q p, qp, qp, q are rela-

tively prime.

(Example: 0.75 is mapped to 〈3, 4〉〈3, 4〉〈3, 4〉.)

1. Q+Q+
Q+ is the set of positive rational numbers.

◮ N 4 Q+N 4 Q+
N 4 Q+ by the identity function on NNN.

◮ Q 4 N × NQ 4 N × NQ 4 N × N by the injection

that maps x ∈ Q+x ∈ Q+x ∈ Q+ to the pair 〈p, q〉〈p, q〉〈p, q〉 where x = p
q

x = p
qx = p
q p, qp, qp, q are rela-

tively prime.

(Example: 0.75 is mapped to 〈3, 4〉〈3, 4〉〈3, 4〉.)
◮ But we already know that N × N 4 NN × N 4 NN × N 4 N, so Q 4 NQ 4 NQ 4 N.

1. Q+Q+
Q+ is the set of positive rational numbers.

◮ N 4 Q+N 4 Q+
N 4 Q+ by the identity function on NNN.

◮ Q 4 N × NQ 4 N × NQ 4 N × N by the injection

that maps x ∈ Q+x ∈ Q+x ∈ Q+ to the pair 〈p, q〉〈p, q〉〈p, q〉 where x = p
q

x = p
qx = p
q p, qp, qp, q are rela-

tively prime.

(Example: 0.75 is mapped to 〈3, 4〉〈3, 4〉〈3, 4〉.)
◮ But we already know that N × N 4 NN × N 4 NN × N 4 N, so Q 4 NQ 4 NQ 4 N.

◮ Since N 4 Q+N 4 Q+
N 4 Q+ and Q+

4 NQ+
4 NQ+
4 N it follows by CBS that Q+ ∼= NQ+ ∼= NQ+ ∼= N .

1. Q+Q+
Q+ is the set of positive rational numbers.

◮ N 4 Q+N 4 Q+
N 4 Q+ by the identity function on NNN.

◮ Q 4 N × NQ 4 N × NQ 4 N × N by the injection

that maps x ∈ Q+x ∈ Q+x ∈ Q+ to the pair 〈p, q〉〈p, q〉〈p, q〉 where x = p
q

x = p
qx = p
q p, qp, qp, q are rela-

tively prime.

(Example: 0.75 is mapped to 〈3, 4〉〈3, 4〉〈3, 4〉.)
◮ But we already know that N × N 4 NN × N 4 NN × N 4 N, so Q 4 NQ 4 NQ 4 N.

◮ Since N 4 Q+N 4 Q+
N 4 Q+ and Q+

4 NQ+
4 NQ+
4 N it follows by CBS that Q+ ∼= NQ+ ∼= NQ+ ∼= N .

2. Seems like all infinite sets are countable. Are they?

F23 88

The size of P(A)P(A)P(A)

• Not all infinite sets are countable!

• Cantor’s Theorem (1891)

For all sets AAA : P(A) 64 AP(A) 64 AP(A) 64 A .

• Proof. We show that for ever set AAA and function g : A → P(A)g : A → P(A)g : A → P(A) ,

ggg is not surjective.

I.e. no way to name each B ⊆ AB ⊆ AB ⊆ A by an element of AAA .

The size of P(A)P(A)P(A)

• Not all infinite sets are countable!

• Cantor’s Theorem (1891)

For all sets AAA : P(A) 64 AP(A) 64 AP(A) 64 A .

• Proof. We show that for ever set AAA and function g : A → P(A)g : A → P(A)g : A → P(A) ,

ggg is not surjective.

I.e. no way to name each B ⊆ AB ⊆ AB ⊆ A by an element of AAA .

◮ Let D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)},

i.e. x ∈ Dx ∈ Dx ∈ D iff x 6∈ g(x)x 6∈ g(x)x 6∈ g(x).

We show that DDD cannot be in the image of ggg .

The size of P(A)P(A)P(A)

• Not all infinite sets are countable!

• Cantor’s Theorem (1891)

For all sets AAA : P(A) 64 AP(A) 64 AP(A) 64 A .

• Proof. We show that for ever set AAA and function g : A → P(A)g : A → P(A)g : A → P(A) ,

ggg is not surjective.

I.e. no way to name each B ⊆ AB ⊆ AB ⊆ A by an element of AAA .

◮ Let D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)},

i.e. x ∈ Dx ∈ Dx ∈ D iff x 6∈ g(x)x 6∈ g(x)x 6∈ g(x).

We show that DDD cannot be in the image of ggg .

◮ If we had D = g(d)D = g(d)D = g(d) for some d ∈ Ad ∈ Ad ∈ A

then taking ddd for xxx above, we’d get

d ∈ Dd ∈ Dd ∈ D iff d 6∈ g(d) = Dd 6∈ g(d) = Dd 6∈ g(d) = D, a contradiction. QED.

The size of P(A)P(A)P(A)

• Not all infinite sets are countable!

• Cantor’s Theorem (1891)

For all sets AAA : P(A) 64 AP(A) 64 AP(A) 64 A .

• Proof. We show that for ever set AAA and function g : A → P(A)g : A → P(A)g : A → P(A) ,

ggg is not surjective.

I.e. no way to name each B ⊆ AB ⊆ AB ⊆ A by an element of AAA .

◮ Let D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)}D =df {x ∈ A | x 6∈ g(x)},

i.e. x ∈ Dx ∈ Dx ∈ D iff x 6∈ g(x)x 6∈ g(x)x 6∈ g(x).

We show that DDD cannot be in the image of ggg .

◮ If we had D = g(d)D = g(d)D = g(d) for some d ∈ Ad ∈ Ad ∈ A

then taking ddd for xxx above, we’d get

d ∈ Dd ∈ Dd ∈ D iff d 6∈ g(d) = Dd 6∈ g(d) = Dd 6∈ g(d) = D, a contradiction. QED.

– In particular, P(N) 6∼= NP(N) 6∼= NP(N) 6∼= N, that is: P(N)P(N)P(N) is not countable!

F23 89

Comments on Cantor’s Theorem

• Of course, f : A 4 P(A)f : A 4 P(A)f : A 4 P(A)

where fff is the embedding

• Compare:

For all AAA we have A ≺ P(A)A ≺ P(A)A ≺ P(A) (strict size-increase)

For all nnn we have n ≪ 2nn ≪ 2nn ≪ 2n (big jump)

Comments on Cantor’s Theorem

• Of course, f : A 4 P(A)f : A 4 P(A)f : A 4 P(A)

where fff is the embedding x 7→ {x}x 7→ {x}x 7→ {x}

• Compare:

For all AAA we have A ≺ P(A)A ≺ P(A)A ≺ P(A) (strict size-increase)

For all nnn we have n ≪ 2nn ≪ 2nn ≪ 2n (big jump)

Comments on Cantor’s Theorem

• Of course, f : A 4 P(A)f : A 4 P(A)f : A 4 P(A)

where fff is the embedding x 7→ {x}x 7→ {x}x 7→ {x}

• Compare:

For all AAA we have A ≺ P(A)A ≺ P(A)A ≺ P(A) (strict size-increase)

For all nnn we have n ≪ 2nn ≪ 2nn ≪ 2n (big jump)

• The set Pfin(N)Pfin(N)Pfin(N) of finite subsets of NNN is 4 {0, 1}∗4 {0, 1}∗4 {0, 1}∗

by our familiar embedding, e.g. {0, 2, 3} 7→ 1011{0, 2, 3} 7→ 1011{0, 2, 3} 7→ 1011.

But {0, 1}∗ 4 N{0, 1}∗ 4 N{0, 1}∗ 4 N so Pfin(N) 4 NPfin(N) 4 NPfin(N) 4 N by CBS.

F23 90

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

• R ∼= (0..1)R ∼= (0..1)R ∼= (0..1), so enough to show (0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N) and P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1).

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

• R ∼= (0..1)R ∼= (0..1)R ∼= (0..1), so enough to show (0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N) and P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1).

(0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N):

◮ Given a ∈ (0..1)a ∈ (0..1)a ∈ (0..1) write aaa as an infinite binary fraction 0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2

For example, 1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111... .

Such an expansion is unique to aaa.

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

• R ∼= (0..1)R ∼= (0..1)R ∼= (0..1), so enough to show (0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N) and P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1).

(0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N):

◮ Given a ∈ (0..1)a ∈ (0..1)a ∈ (0..1) write aaa as an infinite binary fraction 0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2

For example, 1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111... .

Such an expansion is unique to aaa.

◮ Map the binary expansion to the set {n | dn = 1}{n | dn = 1}{n | dn = 1}.

For example 1/41/41/4 is mapped to the set {2, 3, 4, . . .}.{2, 3, 4, . . .}.{2, 3, 4, . . .}.

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

• R ∼= (0..1)R ∼= (0..1)R ∼= (0..1), so enough to show (0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N) and P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1).

(0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N):

◮ Given a ∈ (0..1)a ∈ (0..1)a ∈ (0..1) write aaa as an infinite binary fraction 0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2

For example, 1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111... .

Such an expansion is unique to aaa.

◮ Map the binary expansion to the set {n | dn = 1}{n | dn = 1}{n | dn = 1}.

For example 1/41/41/4 is mapped to the set {2, 3, 4, . . .}.{2, 3, 4, . . .}.{2, 3, 4, . . .}.

• P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1):

◮ Map A ⊆ NA ⊆ NA ⊆ N to the real number with decimal expansion

0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2 . . . where di = 0di = 0di = 0 if di ∈ Adi ∈ Adi ∈ A and = 0= 0= 0 otherwise.

That real number is unique to AAA.

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

• R ∼= (0..1)R ∼= (0..1)R ∼= (0..1), so enough to show (0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N) and P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1).

(0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N):

◮ Given a ∈ (0..1)a ∈ (0..1)a ∈ (0..1) write aaa as an infinite binary fraction 0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2

For example, 1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111... .

Such an expansion is unique to aaa.

◮ Map the binary expansion to the set {n | dn = 1}{n | dn = 1}{n | dn = 1}.

For example 1/41/41/4 is mapped to the set {2, 3, 4, . . .}.{2, 3, 4, . . .}.{2, 3, 4, . . .}.

• P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1):

◮ Map A ⊆ NA ⊆ NA ⊆ N to the real number with decimal expansion

0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2 . . . where di = 0di = 0di = 0 if di ∈ Adi ∈ Adi ∈ A and = 0= 0= 0 otherwise.

That real number is unique to AAA.

◮ For example, the set EvenEvenEven is mapped

to the real number 0.101010 · · ·0.101010 · · ·0.101010 · · · (in decimal).

⋆ R ∼= P(N)R ∼= P(N)R ∼= P(N)

• R ∼= (0..1)R ∼= (0..1)R ∼= (0..1), so enough to show (0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N) and P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1).

(0..1) 4 P(N)(0..1) 4 P(N)(0..1) 4 P(N):

◮ Given a ∈ (0..1)a ∈ (0..1)a ∈ (0..1) write aaa as an infinite binary fraction 0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2

For example, 1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111...1/4 = 0.01 = 0.001111... .

Such an expansion is unique to aaa.

◮ Map the binary expansion to the set {n | dn = 1}{n | dn = 1}{n | dn = 1}.

For example 1/41/41/4 is mapped to the set {2, 3, 4, . . .}.{2, 3, 4, . . .}.{2, 3, 4, . . .}.

• P(N) 4 (0..1)P(N) 4 (0..1)P(N) 4 (0..1):

◮ Map A ⊆ NA ⊆ NA ⊆ N to the real number with decimal expansion

0.d0d1d2 . . .0.d0d1d2 . . .0.d0d1d2 . . . where di = 0di = 0di = 0 if di ∈ Adi ∈ Adi ∈ A and = 0= 0= 0 otherwise.

That real number is unique to AAA.

◮ For example, the set EvenEvenEven is mapped

to the real number 0.101010 · · ·0.101010 · · ·0.101010 · · · (in decimal).

• By CBS conclude R ∼= (0..1) ∼= P(N)R ∼= (0..1) ∼= P(N)R ∼= (0..1) ∼= P(N).

F23 91

⋆ Proof of CBS

• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A

we construct a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

⋆ Proof of CBS

• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A

we construct a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

• For a ∈ Aa ∈ Aa ∈ A there is a chain

· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

⋆ Proof of CBS

• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A

we construct a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

• We might also go backwards:

· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

⋆ Proof of CBS

• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A

we construct a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

• We might also go backwards:

· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

• Similarly, each b ∈ Bb ∈ Bb ∈ B starts a chain b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··,
which might be extended also to the left.

⋆ Proof of CBS

• Given injections f : A → Bf : A → Bf : A → B and g : B → Ag : B → Ag : B → A

we construct a bijection j : A ∼= Bj : A ∼= Bj : A ∼= B.

• We might also go backwards:

· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··· · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

• Similarly, each b ∈ Bb ∈ Bb ∈ B starts a chain b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··,
which might be extended also to the left.

• Every x ∈ A ∪ Bx ∈ A ∪ Bx ∈ A ∪ B is in some chain.

Repetitions, e.g. a
f→ b

g→ a
f→ b · · ·a

f→ b
g→ a

f→ b · · ·a
f→ b

g→ a
f→ b · · · are harmless.

F23 92

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

The chain above yields (fc) : Ac
∼= Bc(fc) : Ac
∼= Bc(fc) : Ac
∼= Bc:

a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · · ·a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · · ·

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

The chain above yields fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc:

a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

The chain above yields fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc:

a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

• If CCC starts with b ∈ Bb ∈ Bb ∈ B then

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

The chain above yields fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc:

a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

• If CCC starts with b ∈ Bb ∈ Bb ∈ B then

the chain above (ḡ : Ac
∼= Bc(ḡ : Ac
∼= Bc(ḡ : Ac
∼= Bc

b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

The chain above yields fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc:

a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

• If CCC starts with b ∈ Bb ∈ Bb ∈ B then

the chain above yields gc : Bc
∼= Acgc : Bc
∼= Acgc : Bc
∼= Ac:

b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··
and so (gc)

−1 : Ac
∼= Bc(gc)

−1 : Ac
∼= Bc(gc)

−1 : Ac
∼= Bc

⋆ A bijection within each chain

• For a chain CCC let Ac = A ∩ CAc = A ∩ CAc = A ∩ C, Bc = B ∩ CBc = B ∩ CBc = B ∩ C,

and fc, gcfc, gcfc, gc be the restrictions of f, gf, gf, g to CCC .

• If CCC is infinite to the left, or starts with a ∈ Aa ∈ Aa ∈ A then

fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc :

The chain above yields fc : Ac
∼= Bcfc : Ac
∼= Bcfc : Ac
∼= Bc:

a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··a−2

f→ b−2

g→ a−1

f→ b−1

g→ a
f→ b1

g→ a1

f→ b2

g→ a2

f→ b3 · ··

• If CCC starts with b ∈ Bb ∈ Bb ∈ B then

the chain above yields gc : Bc
∼= Acgc : Bc
∼= Acgc : Bc
∼= Ac:

b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··b
g→ a1

f→ b1

g→ a2

f→ b2

g→ a3 · ··
and so (gc)

−1 : Ac
∼= Bc(gc)

−1 : Ac
∼= Bc(gc)

−1 : Ac
∼= Bc

• The union (over all chains) of these bijections is a bijection from AAA to BBB.

QED.

F23 93

