SETS

RELATIONS, MAPPINGS, SIZE

What are sets

- A set is a collection into a whole of some well-recognized objects, dubbed the set's elements.
- We write $a \in S$ for "a is an element of S"

What are sets

- A set is a collection into a whole of some well-recognized objects, dubbed the set's elements.
- We write $a \in S$ for "a is an element of S"
- The concept of set is "defined" here in terms of "collection" and "whole", i.e. synonyms of "set"!
- Shouldn't concepts be defined using previously defined ones?

What are sets

- A set is a collection into a whole of some well-recognized objects, dubbed the set's elements.
- We write $a \in S$ for "a is an element of S"
- The concept of set is "defined" here in terms of "collection" and "whole", i.e. synonyms of "set"!
- Shouldn't concepts be defined using previously defined ones?

- Regressing this way cannot go on indefinitely: we must stop with concepts that are left *undefined*.
- We only explain those informally, hoping to establish some shared imagery, intuitions and understanding.
 "Set" is just such a concept.

Exhibiting sets

- Sets are determined by their elements.
 That is, if sets *A* and *B* have the same elements, then they are one and the same set, even if they are described in very different ways.
- This is the *Principle of Extensionality*

Exhibiting sets

- Sets are determined by their elements.
 That is, if sets *A* and *B* have the same elements, then they are one and the same set, even if they are described in very different ways.
- This is the *Principle of Extensionality*
- It implies that finite sets can be defined by exhibiting their elements: {a₁,..., a_k}.
 So {0,1}, {1,0} and {0,0,1} are all the same set.

- Some sets are commonly assumed as given, and assigned notations.
 - For an alphabet Σ , the set Σ^* of Σ -strings.

- Some sets are commonly assumed as given, and assigned notations.
 - For an alphabet Σ , the set Σ^* of Σ -strings.
 - ► The set {0.1} of *booleans*, denoted *Bool*.

- Some sets are commonly assumed as given, and assigned notations.
 - For an alphabet Σ , the set Σ^* of Σ -strings.
 - ► The set {0.1} of *booleans*, denoted *Bool*.
 - **nat** or \mathbb{N} : The set of natural numbers 0, 1, 2, 3...
 - int or \mathbb{Z} : The integers
 - ► Q: the rational numbers (Q for "quotients")
 - ▶ **R**: the real numbers (the "real number line")

- Some sets are commonly assumed as given, and assigned notations.
 - For an alphabet Σ , the set Σ^* of Σ -strings.
 - ► The set {0.1} of *booleans*, denoted *Bool*.
 - **nat** or \mathbb{N} : The set of natural numbers 0, 1, 2, 3...
 - int or \mathbb{Z} : The integers
 - ► Q: the rational numbers (Q for "quotients")
 - ▶ **R**: the real numbers (the "real number line")
 - ► The *empty set*, denoted Ø, which has no elements.

- Some sets are commonly assumed as given, and assigned notations.
 - For an alphabet Σ , the set Σ^* of Σ -strings.
 - ▶ The set {0.1} of *booleans*, denoted *Bool*.
 - **nat** or \mathbb{N} : The set of natural numbers 0, 1, 2, 3...
 - int or \mathbb{Z} : The integers
 - ▶ Q: the rational numbers (Q for "quotients")
 - ▶ **R**: the real numbers (the "real number line")
 - ► The *empty set*, denoted Ø, which has no elements.
- A set with exactly one element, however complex, is a singleton.
 Examples: {0}, {∅}, {{∅}}, {{∅}}

Abstraction notation

- Another approach to defining sets is to delineate them by certain properties, as in "the set of registered voters".
- Such definitions are captured by the notational convention

```
\{x \mid a \text{ property of } x\}.
```

- Between braces: (1) a declared variable, say $oldsymbol{x}$,

(2) a vertical bar (pronounced "such that")

(3) a property of \boldsymbol{x} .

Abstraction notation

- Another approach to defining sets is to delineate them by certain properties, as in "the set of registered voters".
- Such definitions are captured by the notational convention

```
\{x \mid a \text{ property of } x\}.
```

- Between braces: (1) a declared variable, say *x*,
 (2) a vertical bar (pronounced "such that")
 (3) a property of *x*.
- Example: $\{z \mid z = 2^x \text{ for some } x \in \mathbb{N}\}.$

More concisely: $\{2^x \mid x \in \mathbb{N}\}$.

Abstraction notation

- Another approach to defining sets is to delineate them by certain properties, as in *"the set of registered voters"*.
- Such definitions are captured by the notational convention

```
\{x \mid a \text{ property of } x\}.
```

Between braces: (1) a declared variable, say *x*,
 (2) a vertical bar (pronounced "such that")
 (3) a property of *x*.

- Example: {z | z = 2^x for some x ∈ N}.
 More concisely: {2^x | x ∈ N}.
- A set's elements can themselves be complex entities!
 Examples: {∅}, {ℕ}, {∅, {∅}}.

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers: [1..3] =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers: $[1..3] = \{1, 2, 3\}$

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers: (1..3) =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers: $(1..3) = \{2\}$

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers: [1..3] =

[1..3] =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

 $(p..q) = \{x \mid p < x < q\}$ (*open interval*) The latter is $[p..q] = \{x \mid p \leq x \leq q\}$ (closed interval) $[p..q) = \{x \mid p \leq x < q\}$ (left-closed interval) $[p..) = \{x \mid p \leq x\}$ (right-infinite interval) often written $[p..\infty)$.

• Examples for integers: $[1..3) = \{1, 2\}$

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

 $(p..q) = \{x \mid p < x < q\}$ (*open interval*) The latter is $[p..q] = \{x \mid p \leq x \leq q\}$ (closed interval) $[p..q) = \{x \mid p \leq x < q\}$ (left-closed interval) $[p..) = \{x \mid p \leq x\}$ (right-infinite interval) often written $[p..\infty)$.

• Examples for integers: (1..3] =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

 $(p..q) = \{x \mid p < x < q\}$ (*open interval*) The latter is $[p..q] = \{x \mid p \leq x \leq q\}$ (closed interval) $[p..q) = \{x \mid p \leq x < q\}$ (left-closed interval) $[p..) = \{x \mid p \leq x\}$ (right-infinite interval) often written $[p..\infty)$.

• Examples for integers: $(1..3] = \{2,3\}$

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

 $(p..q) = \{x \mid p < x < q\}$ (*open interval*) The latter is $[p..q] = \{x \mid p \leq x \leq q\}$ (closed interval) $[p..q) = \{x \mid p \leq x < q\}$ (left-closed interval) $[p..) = \{x \mid p \leq x\}$ (right-infinite interval) often written $[p..\infty)$.

• Examples for integers: [1..1] =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

 $(p..q) = \{x \mid p < x < q\}$ (*open interval*) The latter is $[p..q] = \{x \mid p \leq x \leq q\}$ (closed interval) $[p..q) = \{x \mid p \leq x < q\}$ (left-closed interval) $[p..) = \{x \mid p \leq x\}$ (right-infinite interval) often written $[p..\infty)$.

• Examples for integers: $[1..1] = \{1\}$

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers:

(1..1) =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers:

 $(1..1) = \emptyset$

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers:

[-1..1) =

 To denote intervals of integers or real numbers we indicate end-point's inclusion with a bracket, and exclusion with a parenthesis.

• Examples for integers:

 $[-1..1) = \{-1, 0\}$

Relations between sets

 We say that A is a subset of B and write A ⊆ B if every element of A is an element of B, that is x ∈ A implies x ∈ B.

Relations between sets

- We say that A is a subset of B and write A ⊆ B if every element of A is an element of B, that is x ∈ A implies x ∈ B.
- Examples:
 - $\blacktriangleright \mathbb{N} \subseteq \mathbb{Z}.$
 - For any set $A : A \subseteq A$ and $\emptyset \subseteq A$.
 - ► The set of elephants is a subset of the set of mammals.

Relations between sets

- We say that A is a subset of B and write A ⊆ B if every element of A is an element of B, that is x ∈ A implies x ∈ B.
- Examples:
 - ► $\mathbb{N} \subseteq \mathbb{Z}$.
 - For any set $A : A \subseteq A$ and $\emptyset \subseteq A$.
 - ► The set of elephants is a subset of the set of mammals.

7

• If $A \subseteq B$ and $B \subseteq A$

then A and B have the same elements. By Extensionality this implies A = B.

Puzzles

True or false?

$0 \in \{0,1\}$	$\mathbb{N} \subseteq \{\mathbb{N}\}$
$\{0\} \subseteq \{0,1\}$	$\mathbb{N} \in \{\mathbb{N}\}$
$\{0\} \in \{0,1\}$	$\emptyset \subseteq \{\emptyset\}$
$\{0,1,1\} \subseteq \{1,0\}$	$\{\emptyset\}\subseteq \emptyset$
$\{0,1\}\subseteq\mathbb{N}$	$\emptyset \in \emptyset$
$\{0,1\} \subseteq \{\mathbb{N}\}$	$\emptyset \in \{\emptyset\}$

The perils of abstraction

- In the template {x | ··· x ··· }, does x stand for "anything"?
- If that were so, we'd be able to define

 $R =_{\mathrm{df}} \{x \mid x \notin x\}$

That is, for all \boldsymbol{x}

 $x \in R$ iff $x \notin x$

• In particular, if we take $m{x}$ to be $m{R}$ then

 $R \in R$ iff $R \notin R$

A contradiction!

• This is known as **Russell's Paradox.**

The Separation Principle

- There is a circularity at the root of the definition of *R*: "all sets" includes the set *R* itself, which is defined in terms of "all sets."
- Work-around: Zermelo's Separation Principle:

For a <u>given</u> set S we may define $\{x \in S \mid \cdots x \cdots \}$.

We "separate" out the elements of S along the given property.

• This blocks Russell's paradox:

S would have to be "all sets", which is not admissible as a set.

Bertrand Russell and Ernst Zermelo

Russell (1872-1970)

Zermelo (1871-1953)
The Diagonal Method

• Russell's Paradox epitomizes a powerful line of reasoning.

To illustrate, let's call a book *modest* if its text does not mention its title. Question: Can we compile a catalog of all modest books?

- Suppose such a catalog existed, with title M say.
 A book is listed in M iff it does not mention itself.
 In particular, M is listed in M iff M is not listed in M.
- Consequence: There can be no catalog of all modest books!
- Where does the contradiction come from?

12

Contradictions via two-faced objects

- The catalog argument refers to each book in two ways: as a title, and as contents.
- Russell's Paradox refers to each set in two ways:

as a set of other objects, and as a possible element of other sets.

• This duality is the core of the **Self-reference Method**

AKA the **Diagonal Method**.

(A matrix's diagonal is where row #i meets column #i.)

• This duality is ingrained in computing:

a program is both a string and an algorithm.

13

Operations on sets

• $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ $A - B = \{x \mid x \in A \text{ and } x \notin B\}$

Operations on sets

- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - $A-B = \{x \mid x \in A \text{ and } x \notin B\}$
- When all sets considered are subsets of some set $\ oldsymbol{U}$,
 - we refer to U A as the **complement** of A, and write \overline{A} for it.

14

U is the dual of \cap

• We have $\overline{A \cap B} = \overline{A} \cup \overline{B}$:

$x \notin A \cap B$ iff $x \notin A$ or $x \notin B$

"not both true" is the same as "at least one is false"

U is the dual of \cap

• We have $\overline{A \cap B} = \overline{A} \cup \overline{B}$:

$x \notin A \cap B$ iff $x \notin A$ or $x \notin B$

"not both true" is the same as "at least one is false"

• Complementing both sides we get:

 $A \cap B = \overline{\bar{A} \cup \bar{B}}$

\cup is the dual of \cap

• We have $\overline{A \cap B} = \overline{A} \cup \overline{B}$:

 $x \notin A \cap B$ iff $x \notin A$ or $x \notin B$

"not both true" is the same as "at least one is false"

- Complementing both sides we get: $A \cap B = \overline{\overline{A} \cup \overline{B}}$
- Similarly, we have $\overline{A \cup B} = \overline{A} \cap \overline{B}$:

 $x \notin A \cup B$ iff $x \notin A$ and $x \notin B$

"neither true" is the same as "both false"

\cup is the dual of \cap

• We have $\overline{A \cap B} = \overline{A} \cup \overline{B}$:

$x \notin A \cap B$ iff $x \notin A$ or $x \notin B$

"not both true" is the same as "at least one is false"

- Complementing both sides we get: $A \cap B = \overline{\overline{A} \cup \overline{B}}$
- Similarly, we have $\overline{A \cup B} = \overline{A} \cap \overline{B}$:

 $x \notin A \cup B$ iff $x \notin A$ and $x \notin B$

"neither true" is the same as "both false"

Complementing both sides we get:

 $A \cup B = \overline{\bar{A} \cap \bar{B}}$

• If *A* is a set, then the *power-set* of *A* is

 $\mathcal{P}(A) =_{\mathrm{df}} \{B \mid B \subseteq A\}$

- If *A* is a set, then the *power-set* of *A* is
- Examples:
 - $\mathcal{P}(A) =_{\mathrm{df}} \{ B \mid B \subseteq A \}$
 - $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

- If *A* is a set, then the *power-set* of *A* is
- Examples:
 - $\mathcal{P}(A) =_{\mathrm{df}} \{B \mid B \subseteq A\}$
 - $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

$$\mathcal{P}(\{a, b, c\}) = \{ \emptyset, \\ \{a\}, \{b\}, \{c\}, \\ \{a, b\}, \{a, c\}, \{b, c\}, \\ \{a, b, c\} \}$$

- If *A* is a set, then the *power-set* of *A* is
- Examples:
 - $\mathcal{P}(A) =_{\mathrm{df}} \{B \mid B \subseteq A\}$
 - $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

$$\begin{array}{ll} \bullet \ \mathcal{P}(\{a,b,c\}) &= \ \{ \ \emptyset, \\ & \{a\}, \{b\}, \{c\}, \\ & \{a,b\}, \{a,c\}, \{b,c\}, \\ & \{a,b,c\} \ \ \} \end{array}$$

• What is $\mathcal{P}(\emptyset)$?

- If *A* is a set, then the *power-set* of *A* is
- Examples:
 - $\mathcal{P}(A) =_{\mathrm{df}} \{B \mid B \subseteq A\}$
 - $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

$$\begin{array}{ll} \blacktriangleright \ \mathcal{P}(\{a,b,c\}) &= \ \{ \ \emptyset, \\ & \{a\}, \{b\}, \{c\}, \\ & \{a,b\}, \{a,c\}, \{b,c\}, \\ & \{a,b,c\} \ \ \} \end{array}$$

• What is $\mathcal{P}(\emptyset)$? $\mathcal{P}(\emptyset) = \{\emptyset\}$

- If *A* is a set, then the *power-set* of *A* is
- Examples:
 - $\mathcal{P}(A) =_{\mathrm{df}} \{B \mid B \subseteq A\}$
 - $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

$$\mathcal{P}(\{a, b, c\}) = \{ \emptyset, \\ \{a\}, \{b\}, \{c\}, \\ \{a, b\}, \{a, c\}, \{b, c\}, \\ \{a, b, c\} \}$$

- What is $\mathcal{P}(\emptyset)$? $\mathcal{P}(\emptyset) = \{\emptyset\}$
- ► What is *P*({1})?

- If *A* is a set, then the *power-set* of *A* is
- Examples:
 - $\mathcal{P}(A) =_{\mathrm{df}} \{B \mid B \subseteq A\}$
 - $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

►
$$\mathcal{P}(\{a, b, c\}) = \{\emptyset, \\ \{a\}, \{b\}, \{c\}, \\ \{a, b\}, \{a, c\}, \{b, c\}, \\ \{a, b, c\} \}$$

- What is $\mathcal{P}(\emptyset)$? $\mathcal{P}(\emptyset) = \{\emptyset\}$
- What is $\mathcal{P}(\{1\})$? $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$

16

Size of the power-set

• If a finite A has n elements,

then $\mathcal{P}(A)$ has 2^n elements:

Size of the power-set

• If a finite **A** has **n** elements,

then $\mathcal{P}(A)$ has 2^n elements:

• A subset $B \subseteq A$, is fixed by choosing, for each $x \in A$, whether or not $x \in B$.

17

• Each choice doubles the number of previous choices.

• Sets A, B are **disjoint** if $A \cap B = \emptyset$,

i.e. they have no element in common.

• Sets A, B are **disjoint** if $A \cap B = \emptyset$,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry

(Japan disallows dual citizenship...)

• Sets A, B are **disjoint** if $A \cap B = \emptyset$,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry (Japan disallows dual citizenship...)

• More generally, a *collection* C of sets is *disjoint* if $A \cap B = \emptyset$ for every distinct $A, B \in C$.

(The phrase *pairwise-disjoint* means the same thing.)

• Sets A, B are **disjoint** if $A \cap B = \emptyset$,

i.e. they have no element in common.

• Example:

The Canadian citizenry is disjoint from the Japanese citizenry (Japan disallows dual citizenship...)

• More generally, a *collection* C of sets is *disjoint* if $A \cap B = \emptyset$ for every distinct $A, B \in C$.

(The phrase *pairwise-disjoint* means the same thing.)

• Example: The collection of open intervals (0..1), (1..2), (2..3), (3..4), ...

18

A collection C of non-empty subsets of S is a partition of S if every x ∈ S is in exactly one A ∈ C.

- A collection C of non-empty subsets of S is a *partition of S* if every x ∈ S is in exactly one A ∈ C.
- Examples:

{a, b, c, d} can be partitioned into {a, b, c} and {d}.
How many partitions into 2 sets? into 3 sets? into 4?

- A collection C of non-empty subsets of S is a *partition of S* if every x ∈ S is in exactly one A ∈ C.
- Examples:
 - {a, b, c, d} can be partitioned into {a, b, c} and {d}.
 How many partitions into 2 sets? into 3 sets? into 4?
 - $\{a...z\}$ can be partitioned into the vowels and the consonants.

- A collection C of non-empty subsets of S is a partition of S if every x ∈ S is in exactly one A ∈ C.
- Examples:
 - {a, b, c, d} can be partitioned into {a, b, c} and {d}.
 How many partitions into 2 sets? into 3 sets? into 4?
 - ► **{a...z}** can be partitioned into the vowels and the consonants.
 - N can be partitioned into the prime numbers, composite numbers, and $\{0,1\}$.

Another partition: Singletons $\{0\}, \{1\}, \{2\}$

- A collection C of non-empty subsets of S is a partition of S if every x ∈ S is in exactly one A ∈ C.
- Examples:
 - {a, b, c, d} can be partitioned into {a, b, c} and {d}.
 How many partitions into 2 sets? into 3 sets? into 4?
 - ► {a...z} can be partitioned into the vowels and the consonants.
 - ▶ N can be partitioned into the prime numbers, composite numbers, and $\{0,1\}$.

Another partition: Singletons $\{0\}, \{1\}, \{2\}$

- Non-example:
 - English words fall into eight parts of speech,
 but this is not a partition: some words are both noun and verb.

• Which are partitions:

• Classify humanity by birth-year:

people born in 2023, 2022, ...

- Which are partitions:
 - Classify humanity by birth-year: people born in 2023, 2022, ...
 - ► Classify **R** into two:

finite decimal expansions & infinite decimal expansions

- Which are partitions:
 - Classify humanity by birth-year: people born in 2023, 2022, ...
 - ► Classify **R** into two:

finite decimal expansions & infinite decimal expansions

▶ Classify ℝ into the half-closed intervals
 [n..n+1), (n an integer).

RELATIONS

21

- Given any two objects *a*, *b*
 - we can form the **ordered-pair** $\langle a, b \rangle$.
 - \boldsymbol{a} and \boldsymbol{b} need not have anything in common, and may be identical.

- Given any two objects *a*, *b*
 - we can form the **ordered-pair** $\langle a, b \rangle$.
 - a and b need not have anything in common, and may be identical.
- Unlike the set $\{a, b\}$, order and repetition in $\langle a, b \rangle$ do matter:

 $\langle a,b\rangle = \langle c,d\rangle$ iff a = c and b = d.

Given any two objects *a*, *b*

we can form the **ordered-pair** $\langle a, b \rangle$.

- a and b need not have anything in common, and may be identical.
- Unlike the set $\{a, b\}$, order and repetition in $\langle a, b \rangle$ **do** matter: $\langle a, b \rangle = \langle c, d \rangle$ iff a = c and b = d.
- More generally, for each k≥ 1 we can form
 the ordered k-tuples (a₁,..., a_k) of the objects a₁,..., a_k.

• Given any two objects *a*, *b*

we can form the **ordered-pair** $\langle a, b \rangle$.

- a and b need not have anything in common, and may be identical.
- Unlike the set $\{a, b\}$, order and repetition in $\langle a, b \rangle$ **do** matter: $\langle a, b \rangle = \langle c, d \rangle$ iff a = c and b = d.
- More generally, for each k≥ 1 we can form
 the ordered k-tuples (a₁,..., a_k) of the objects a₁,..., a_k.
- As we did for sets, we take the formation of ordered-pairs and ordered tuples to be a basic, intuitively clear, operation.

22

Set-product

• Pairing of objects leads us to **set-product** of two sets A, B:

 $A \times B =_{\mathrm{df}} \{ \langle a, b \rangle \mid a \in A, b \in B \}$

Set-product

• Pairing of objects leads us to **set-product** of two sets A, B:

```
A \times B =_{\mathrm{df}} \{ \langle a, b \rangle \mid a \in A, b \in B \}
```

• If A has p elements and B has q elements,

then $A \times B$ has $p \cdot q$ elements.

• Examples.
Set-product

• Pairing of objects leads us to **set-product** of two sets A, B:

$$A imes B =_{ ext{df}} \{ \langle a, b
angle \mid a \in A, \ b \in B \}$$

• If A has p elements and B has q elements,

then $A \times B$ has $p \cdot q$ elements.

- Examples.
 - $\blacktriangleright \ \{a,b\} \times \{0,1,2\} = \{ \langle a,0\rangle, \ \langle a,1\rangle, \ \langle a,2\rangle, \ \langle b,0\rangle, \ \langle b,1\rangle, \ \langle b,2\rangle \}$

Set-product

• Pairing of objects leads us to **set-product** of two sets **A**, **B**:

```
A \times B =_{\mathrm{df}} \{ \langle a, b \rangle \mid a \in A, b \in B \}
```

• If A has p elements and B has q elements,

then $A \times B$ has $p \cdot q$ elements.

- Examples.
 - $\blacktriangleright \ \{a,b\} \times \{0,1,2\} = \{ \langle a,0\rangle, \ \langle a,1\rangle, \ \langle a,2\rangle, \ \langle b,0\rangle, \ \langle b,1\rangle, \ \langle b,2\rangle \}$
 - $\mathbb{R} \times \mathbb{R}$ is the real-number *plane*.
 - $\mathbb{Z} \times \mathbb{Z}$ is the integer grid.

Set-product

• Pairing of objects leads us to set-product of two sets A, B:

```
A \times B =_{\mathrm{df}} \{ \langle a, b \rangle \mid a \in A, b \in B \}
```

• If A has p elements and B has q elements,

then $A \times B$ has $p \cdot q$ elements.

- Examples.
 - $\blacktriangleright \ \{a,b\} \times \{0,1,2\} = \{ \langle a,0\rangle, \ \langle a,1\rangle, \ \langle a,2\rangle, \ \langle b,0\rangle, \ \langle b,1\rangle, \ \langle b,2\rangle \}$
 - $\mathbb{R} \times \mathbb{R}$ is the real-number *plane*.
 - $\mathbb{Z} \times \mathbb{Z}$ is the integer grid.
 - \blacktriangleright (US town-names) \times (US state-names).

Some elements: (Bloomington, Indiana), (Cambridge, Ohio), (Portland, Maine)

Binary relations

• Given sets A, B any set $R \subseteq A \times B$ is a **binary-relation from** A to B.

Binary relations

- Given sets A, B any set $R \subseteq A \times B$ is a **binary-relation from** A to B.
- When $\langle a, b \rangle \in R$ we also write (in infix) a R b or — if clearer — a(R) b.
- A relation from a set *A* to itself is a *relation over A*.

Binary relations

- Given sets A, B any set $R \subseteq A \times B$ is a **binary-relation from** A to B.
- When $\langle a, b \rangle \in R$ we also write (in infix) a R b or — if clearer — a(R) b.
- A relation from a set *A* to itself is a *relation over A*.
- With few exceptions we use the usual *infix notation*: For ⟨a,b⟩ ∈ R we write a Rb.

• Size order over the real numbers: $\{\langle x, y \rangle \mid x, y \in \mathbb{R}, x < y\}$.

- Size order over the real numbers: $\{\langle x, y \rangle \mid x, y \in \mathbb{R}, x < y\}$.
- Divisibility over the integers:
 - $p \mid q$ when p divides q. Eg: $3 \mid 21$.

- Size order over the real numbers: $\{\langle x, y \rangle \mid x, y \in \mathbb{R}, x < y\}$.
- Divisibility over the integers:
 - $p \mid q$ when p divides q. Eg: $3 \mid 21$.
- ► Relatively prime:

 $\{\langle p,q \rangle \mid p,q \text{ have no common divisor }\}$. Eg: 8 and 15

- Size order over the real numbers: $\{\langle x, y \rangle \mid x, y \in \mathbb{R}, x < y\}$.
- Divisibility over the integers:
 - $p \mid q$ when p divides q. Eg: $3 \mid 21$.
- ► Relatively prime:

 $\{\langle p,q \rangle \mid p,q \text{ have no common divisor }\}$. Eg: 8 and 15

► Kinship relations: *parent-of*, *granddaughter-of*, *sibling-of*.

- Size order over the real numbers: $\{\langle x, y \rangle \mid x, y \in \mathbb{R}, x < y\}$.
- Divisibility over the integers:
 - $p \mid q$ when p divides q. Eg: $3 \mid 21$.
- ► Relatively prime:

 $\{\langle p,q \rangle \mid p,q \text{ have no common divisor }\}$. Eg: 8 and 15

- ► Kinship relations: *parent-of*, *granddaughter-of*, *sibling-of*.
- Reporting relation in an organization.

- Size order over the real numbers: $\{\langle x, y \rangle \mid x, y \in \mathbb{R}, x < y\}.$
- Divisibility over the integers:
 - $p \mid q$ when p divides q. Eg: $3 \mid 21$.
- ► Relatively prime:

 $\{\langle p,q \rangle \mid p,q \text{ have no common divisor }\}$. Eg: 8 and 15

- ► Kinship relations: *parent-of*, *granddaughter-of*, *sibling-of*.
- Reporting relation in an organization.
- Dependency relation between components of software modules.

***** Renatus Cartesius

- René Descartes, 1596-1650
- https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
- The unity of Mathematics!

Visual representation by di-graphs

• Any binary relation $R \subseteq A \times A$

can be represented as a directed-graph without multiple edges:

The vertices are the elements of A

and there is an edge $x \leftrightarrow y$ iff x(R)y.

MASQUERADING AS EQUALITY

Reflexive relations

- One useful type of relations consists of those who share the essential properties of equality.
- $R \subseteq A \times A$ is **reflexive on** A if xRx for all $x \in A$.
- Note that this property of R, standing alone.

• Identity over a set A.

- Identity over a set A.
- ► ≤ between integers

- Identity over a set A.
- ► ≤ between integers
- ► Congruence between angles (over angles in geometry)

- Identity over a set A.
- ► ≤ between integers
- Congruence between angles (over angles in geometry)
- *is-connected-to* (over vertices of an undirected graph)

- Identity over a set A.
- ► ≤ between integers
- Congruence between angles (over angles in geometry)
- *is-connected-to* (over vertices of an undirected graph)

Non-examples:

► *has-same-address-as* (over people): Not everyone has an address!

- Identity over a set A.
- ► ≤ between integers
- Congruence between angles (over angles in geometry)
- *is-connected-to* (over vertices of an undirected graph)

Non-examples:

- ► *has-same-address-as* (over people): Not everyone has an address!
- ► *is-the-same-as-integer* as a relation on the real numbers

- Identity over a set A.
- ► ≤ between integers
- Congruence between angles (over angles in geometry)
- *is-connected-to* (over vertices of an undirected graph)

Non-examples:

- ► *has-same-address-as* (over people): Not everyone has an address!
- ► *is-the-same-as-integer* as a relation on the real numbers
- ► Inequality < between real numbers

► has-same-prime-factors-as (over N)

► has-same-prime-factors-as (over **N**) Yes

- ► has-same-prime-factors-as (over **N**)
- equi-distant-to-origin (over points in the plane)

- ► has-same-prime-factors-as (over N)
- *equi-distant-to-origin* (over points in the plane) Yes

- ► has-same-prime-factors-as (over N)
- equi-distant-to-origin (over points in the plane)
- has-common-border-with (between countries)

- ► has-same-prime-factors-as (over N)
- equi-distant-to-origin (over points in the plane)
- has-common-border-with (between countries)

No: no country has a common border with itself

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

Examples:

► Equality (over any set)

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

- ► Equality (over any set)
- ► has-same-prime-factors-as (over N)

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

- ► Equality (over any set)
- ► has-same-prime-factors-as (over N)
- *is-connected-to* (over vertices of an undirected graphs)

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

- ► Equality (over any set)
- ► has-same-prime-factors-as (over ℕ)
- *is-connected-to* (over vertices of an undirected graphs)
- spouse-of, sibling-of, class-mate-of (over people)

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

Non-examples:

 \blacktriangleright Weak inequality \leq

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

Non-examples:

- Weak inequality \leq
- *is-connected-to* (over vertices of a directed graph)
Symmetric relations

 $R \subseteq A \times A$ is **symmetric** if u R v implies v R u

Non-examples:

- Weak inequality \leq
- *is-connected-to* (over vertices of a directed graph)

32

parent-of, *supervisor-of* (over people)

► loves

► *loves* Unfortunately not

- ► loves
- ► earlier-than

- ► loves
- ► earlier-than No

- ► loves
- ► earlier-than
- ► cousin-of

- ► loves
- ► earlier-than
- ► *cousin-of* Yes

33

• $R \subseteq A \times A$ is **transitive**

• $R \subseteq A \times A$ is **transitive**

- Examples
 - ► < over ℝ

• $R \subseteq A \times A$ is **transitive**

- Examples
 - ► < over ℝ
 - ► *divides* over **N**

• $R \subseteq A \times A$ is **transitive**

- Examples
 - ► < over ℝ
 - ► *divides* over **N**
 - ancestor-of (over people)

• $R \subseteq A \times A$ is **transitive**

- Examples
 - ► < over ℝ
 - ► *divides* over **N**
 - ancestor-of (over people)
 - connected-to (over vertices of a di-graph)

• $R \subseteq A \times A$ is **transitive**

- Examples
 - ► < over ℝ
 - ► *divides* over **N**
 - ancestor-of (over people)
 - connected-to (over vertices of a di-graph)
 - ▶ ⊆ (over $\mathcal{P}(\mathbb{N})$)

• $R \subseteq A \times A$ is **transitive**

- Non-examples:
 - ► parent-of, cousin-of

• $R \subseteq A \times A$ is **transitive**

if xRy and yRz together imply xRz.

34

- Non-examples:
 - ► parent-of, cousin-of
 - within-walking-distance-of

substring-of

► *substring-of* Yes

- substring-of
- ► brother-in-law-of

- substring-of
- ► brother-in-law-of No

- substring-of
- ► brother-in-law-of
- relatively-prime-with

- substring-of
- ► brother-in-law-of
- *relatively-prime-with* No: Take $\langle 2, 3 \rangle$ and $\langle 3, 2 \rangle$)

35

• *Reflexivity, symmetry* and *transitivity*

are the basic properties of equality.

• $R \subseteq A \times A$ is an **equivalence** relation

• *Reflexivity, symmetry* and *transitivity*

are the basic properties of equality.

• $R \subseteq A \times A$ is an equivalence relation

- Examples:
 - *is-connected-to* (over an undirected graph)

Reflexivity, symmetry and transitivity

are the basic properties of equality.

• $R \subseteq A \times A$ is an **equivalence** relation

- Examples:
 - *is-connected-to* (over an undirected graph)
 - ► has-same-prime-factors-as (over **N**)

• *Reflexivity, symmetry* and *transitivity*

are the basic properties of equality.

• $R \subseteq A \times A$ is an equivalence relation

- Examples:
 - *is-connected-to* (over an undirected graph)
 - ► has-same-prime-factors-as (over N)
 - equi-distant-to-origin (between points in the plane)

• *Reflexivity, symmetry* and *transitivity*

are the basic properties of equality.

• $R \subseteq A \times A$ is an **equivalence** relation

- Non-examples
 - *is-descendant-of*, self included (between people)

• *Reflexivity, symmetry* and *transitivity*

are the basic properties of equality.

• $R \subseteq A \times A$ is an equivalence relation

- Non-examples
 - *is-descendant-of*, self included (between people)
 - \blacktriangleright Identity on $\mathbb N$ as a relation on $\mathbb R$

• **Reflexivity, symmetry** and **transitivity**

are the basic properties of equality.

• $R \subseteq A \times A$ is an **equivalence** relation

if it is reflexive on A, symmetric, and transitive.

- Non-examples
 - *is-descendant-of*, self included (between people)
 - \blacktriangleright Identity on $\mathbb N$ as a relation on $\mathbb R$
 - *is-connected-to* (between people)

36

► differs-by-less-than-1 (over **R**)

► *differs-by-less-than-1* (over **R**) Not transitive

- ► differs-by-less-than-1 (over ℝ)
- born-on-same-date-as (between people)

- ► *differs-by-less-than-1* (over **R**)
- born-on-same-date-as (between people)
 Yes

- ► *differs-by-less-than-1* (over **R**)
- born-on-same-date-as (between people)
- sibling-of (both parents)

- ► *differs-by-less-than-1* (over **R**)
- born-on-same-date-as (between people)
- sibling-of (both parents)Not reflexive

37

Equivalence approximates equality

 Intuitively, an equivalence unifies objects that share some properties of interest.

Equivalence approximates equality

- Intuitively, an equivalence unifies objects that share some properties of interest.
- We think of a cluster of equivalent objects as an equivalence-class.
Equivalence approximates equality

- Intuitively, an equivalence unifies objects that share some properties of interest.
- We think of a cluster of equivalent objects as an equivalence-class.
- Such class can be identified by one of its members.

We'll see that it does not matter which one. So we define:

• Given an equivalence \sim over A, and $x \in A$,

the \sim -class of x is defined by

 $[x]_{\sim} =_{\mathrm{df}} \{y \in S \mid y \sim x\}$

38

Examples of equivalence-classes

• Over \mathbb{N} , equality modulo 5, that is *has-same-remainder-over-5-as*.

 $[3]_{\sim} = \{3, 8, 13, 18, \ldots\}$

Examples of equivalence-classes

- Over N, equality modulo 5, that is *has-same-remainder-over-5-as*.
 [3]_~ = {3, 8, 13, 18, ...}
- For points in the plane, *equidistance-to-origin*.

 $[(1,0)]_{\sim} =$ the unit circle.

Examples of equivalence-classes

- Over N, equality modulo 5, that is *has-same-remainder-over-5-as*.
 [3]_~ = {3, 8, 13, 18, ...}
- For points in the plane, *equidistance-to-origin*.
 [(1,0)]_∼ = the unit circle.
- Over an undirected graph, *is-connected-to*

 $[u]_{\sim} =$ the connected component of u

39

- What if we "name" $[a]_{\sim}$ by a different a' in it?
- The choice of "name" makes no difference!:

if $a' \in [a]_{\sim}$ then $[a']_{\sim} = [a]_{\sim}$.

In fact $a \sim a'$ iff $[a]_{\sim} = [a']_{\sim}$

- What if we "name" $[a]_{\sim}$ by a different a' in it?
- The choice of "name" makes no difference!:
 - if $a' \in [a]_{\sim}$ then $[a']_{\sim} = [a]_{\sim}$.

In fact $a \sim a'$ iff $[a]_{\sim} = [a']_{\sim}$

• \Rightarrow : Suppose $a \sim a'$, show $[a]_{\sim} \subseteq [a']_{\sim}$ ($[a']_{\sim} \subseteq [a]_{\sim}$ is similar).

- What if we "name" $[a]_{\sim}$ by a different a' in it?
- The choice of "name" makes no difference!:

if $a' \in [a]_{\sim}$ then $[a']_{\sim} = [a]_{\sim}$. In fact $a \sim a'$ iff $[a]_{\sim} = [a']_{\sim}$

• \Rightarrow : Suppose $a \sim a'$, show $[a]_{\sim} \subseteq [a']_{\sim}$ $x \in [a]_{\sim} \Rightarrow x \sim a$ (dfn of $[a]_{\sim}$) $\Rightarrow x \sim a'$ (transitivity, since $a \sim a'$ $\Rightarrow x \in [a']_{\sim}$

- What if we "name" $[a]_{\sim}$ by a different a' in it?
- The choice of "name" makes no difference!:
 - if $a' \in [a]_{\sim}$ then $[a']_{\sim} = [a]_{\sim}$.

In fact $a \sim a'$ iff $[a]_{\sim} = [a']_{\sim}$

- \Rightarrow : Suppose $a \sim a'$, show $[a]_{\sim} \subseteq [a']_{\sim}$ $x \in [a]_{\sim} \Rightarrow x \sim a$ (dfn of $[a]_{\sim}$) $\Rightarrow x \sim a'$ (transitivity, since $a \sim a'$ $\Rightarrow x \in [a']_{\sim}$
- \Leftarrow : Suppose $[a]_{\sim} \subseteq [a']_{\sim}$ show $a \sim a'$

- What if we "name" $[a]_{\sim}$ by a different a' in it?
- The choice of "name" makes no difference!:
 - if $a' \in [a]_{\sim}$ then $[a']_{\sim} = [a]_{\sim}$.

In fact $a \sim a'$ iff $[a]_{\sim} = [a']_{\sim}$

•
$$\Rightarrow$$
: Suppose $a \sim a'$, show $[a]_{\sim} \subseteq [a']_{\sim}$
 $x \in [a]_{\sim} \Rightarrow x \sim a$ (dfn of $[a]_{\sim}$)
 $\Rightarrow x \sim a'$ (transitivity, since $a \sim a'$
 $\Rightarrow x \in [a']_{\sim}$

•
$$\Leftarrow$$
: Suppose $[a]_{\sim} \subseteq [a']_{\sim}$ show $a \sim a'$
 $a \sim a$ (reflexivity)
 $\Rightarrow a \in [a]_{\sim}$ (dfn of $[a]_{\sim}$)
 $\Rightarrow a \in [a']_{\sim}$ (since $[a]_{\sim} = [a']_{\sim}$)
 $\Rightarrow a \sim a'$ (dfn of $[a']_{\sim}$)

- Order relations are everywhere, starting with the order between integers.
- But they can be different in a variety of ways.

- Order relations are everywhere, starting with the order between integers.
- But they can be different in a variety of ways.
 - ► Integers have a successor, real numbers do not.

- Order relations are everywhere, starting with the order between integers.
- But they can be different in a variety of ways.
 - ► Integers have a successor, real numbers do not.
 - \mathbb{N} has a smallest element, \mathbb{Z} does not.

- Order relations are everywhere, starting with the order between integers.
- But they can be different in a variety of ways.
 - ► Integers have a successor, real numbers do not.
 - \mathbb{N} has a smallest element, \mathbb{Z} does not.
 - Natural numbers always compare under ≤, but not every two sets compare under ⊆.

- Order relations are everywhere, starting with the order between integers.
- But they can be different in a variety of ways.
 - ► Integers have a successor, real numbers do not.
 - \mathbb{N} has a smallest element, \mathbb{Z} does not.
 - Natural numbers always compare under ≤, but not every two sets compare under ⊆.
 - \blacktriangleright Q has an element between any two elements, N does not.

41

What is common to all order relations?

• Intuition of order is rooted in the natural order:

 $0 < 1 < 2 < 3 \cdots$

.

- Its most essential features are
 - ► Asymmetry: uRv contradicts vRu
 - **Transitivity:** uRv and vRw together imply uRw.

What is common to all order relations?

• Intuition of order is rooted in the natural order:

 $0 < 1 < 2 < 3 \cdots$

- Its most essential features are
 - ► Asymmetry: uRv contradicts vRu
 - **Transitivity:** uRv and vRw together imply uRw.
- But historically ≤ was considered a more useful paradigm.
 So the common characterization of "order" has shifted to be:
- A relation R over a set A is an order on A if it is
 - Reflexive on A
 - ► Transitive
 - **Anti-symmetric:** uRv and vRu together imply u = v.

Order on strings

• We assume that each alphabet Σ comes with some order $\prec.$

Order on strings

- We assume that each alphabet Σ comes with some order \prec .
- I.e. strings are ordered by length, and lexicographically within each length.

Order on strings

- We assume that each alphabet Σ comes with some order \prec .
- ≺ can be extended to a size-lex order ≺ between strings. We let
 σ₁ ··· σ_p ≺ τ₁ ··· τ_q if either p < q
 or p = q and for some i < p, σ₁ ··· σ_i = τ₁ ··· τ_i and σ_{i+1} ≺ τ_{i+1}
- I.e. strings are ordered by length, and lexicographically within each length.
- Any set of strings can be listed in increasing ≺ order.
- This is not possible with usual lexicographic order:

For example, the one-letter Latin string **b**

is preceded by the infinitely many strings that start with **a**.

MAPPINGS

44

Binary relations as input-output processes

- A relation from A to B can often be construed as a process that takes elements of A as input and yields corresponding output-values in B.
- For example, the relation *parent-of* can be construed as yielding for any person each one of their children.
- Interpreting relations as processes is not always natural.
 It is awkward to construe < on ℕ as a process that maps each *x* to each *y > x*.

45

Mappings

- A relation $R \subseteq A \times B$ does not determine the sets A and B, because $R \subseteq A' \times B'$ for every $A' \supseteq A$ and $B' \supseteq B$.
- For example, if *R* maps people to their ancestors aged ≤ 150 then it also maps people to their ancestor aged ≤ 200.
- We define a *mapping* as a triple (R, A, B) where R ⊆ A × B.
 We write R: A ⇒ B to state that (A, R, B) is a mapping.
 A is the *domain* of the mapping and B its *range*.

Image under a mapping

• If $R: A \Rightarrow B$ and $x \in A$ then

R[x] is the **image of** x **under** R

Image under a mapping

- If $R: A \Rightarrow B$ and $x \in A$ then R[x] is the *image of x under R*
- Also, if $A_0 \subseteq A$ then $R[A_0] =_{df} \{ y \in B \mid x(R)y \text{ for some } x \in A_0 \}$ is the *image* of A_0 under R.

Image under a mapping

- If $R: A \Rightarrow B$ and $x \in A$ then R[x] is the *image of x under R*
- Also, if $A_0 \subseteq A$ then $R[A_0] =_{df} \{ y \in B \mid x(R)y \text{ for some } x \in A_0 \}$ is the *image* of A_0 under R.
- Example: Consider the relation $\sqrt{=} \{\langle x^2, x \rangle \mid x \in \mathbb{R}\}.$ Then $\sqrt{[4]} = \{2, -2\}$ $\sqrt{[0]} = \{0\}$ $\sqrt{[-4]} = \emptyset$

Operations on mappings

Mapping inverse

- The *inverse* of a mapping $R: A \Rightarrow B$ is the mapping $R^{-1}: B \Rightarrow A$ where $x(R^{-1})y$ iff y(R)x.
- The superscript -1 is borrowed from the reciprocal function $x^{-1} = 1/x$ over \mathbb{R} .

- ► Inverse of *parent-of* is *child-of*
- ► Inverse of *loves* is *is-loved-by*
- ► Inverse of *has-SSN* is *is-SSN-of*
- ► The inverse of < is >, and the inverse of ≤ is ≥.

Inverting the inverse

- $(R^{-1})^{-1} = R$
- **Proof.** $x (R^{-1})^{-1} y$ iff $y (R^{-1}) x$ iff x (R) y

Relational-composition

• The relational-composition of mappings $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ is the mapping $(R;Q): A \Rightarrow C$ where x(R;Q)z iff for some $y \in B$ both x R y and y Q z.

Relational-composition

- The *relational-composition* of mappings $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ is the mapping $(R;Q): A \Rightarrow C$ where x(R;Q)z iff for some $y \in B$ both xRy and yQz.
- Relational-composition interprets mappings as processes, therefore following the procedural order.

The semi-colon notation reflects this interpretation.

► Between people: *mother-of* ; *parent-of* is *grandma-of*.

- ► Between people: *mother-of* ; *parent-of* is *grandma-of*.
- ► Over \mathbb{N} : (≤);(≤) is ≤; but (<);(<) is { $\langle p,q \rangle \mid q \ge p+2$ }

- ► Between people: *mother-of* ; *parent-of* is *grandma-of*.
- ► Over \mathbb{N} : (\leqslant);(\leqslant) is \leqslant ; but (<);(<) is { $\langle p,q \rangle \mid q \ge p+2$ }
- Over \mathbb{R} : (<);(<) is (<)

- ► Between people: *mother-of* ; *parent-of* is *grandma-of*.
- ► Over \mathbb{N} : (≤);(≤) is ≤; but (<);(<) is { $\langle p,q \rangle \mid q \ge p+2$ }
- Over \mathbb{R} : (<);(<) is (<)
- Over subsets of \mathbb{N} : (\subseteq); (\subseteq) is \subseteq

- ► Between people: *mother-of* ; *parent-of* is *grandma-of*.
- ► Over \mathbb{N} : (≤);(≤) is ≤; but (<);(<) is { $\langle p,q \rangle \mid q \ge p+2$ }
- Over \mathbb{R} : (<);(<) is (<)
- ▶ Over subsets of N:
 (⊆); (⊆) is ⊆
 but (⊂); (⊂) is "extending by at least 2 elements".
Inverse of a composition

• $(R;Q)^{-1} = Q^{-1}; R^{-1}$ Proof. $x(R;Q)^{-1}z$ iff z(R;Q)x (dfn of inverse) iff zRy and yQx some y (dfn of ;) iff $yR^{-1}z$ and $xQ^{-1}y$ some y (dfn of inverse) iff $x(Q^{-1}; R^{-1})z$ (dfn of comp)

Properties of mappings

We'll consider four properties that mappings $R: A \Rightarrow B$ may have.

[Univalent:]

For every $x \in A$ there is at most one $y \in B$ such that x R y.

We'll consider four properties that mappings $R: A \Rightarrow B$ may have.

[Univalent:]

For every $x \in A$ there is at most one $y \in B$ such that x R y.

[Injective:]

For every $y \in B$ there is at most one $x \in A$ such that x R y.

We'll consider four properties that mappings $R: A \Rightarrow B$ may have.

[Univalent:]

For every $x \in A$ there is at most one $y \in B$ such that x R y.

[Injective:]

```
For every y \in B there is at most one x \in A such that x R y.
```

[Total:]

For every $x \in A$ there is at least one $y \in B$ such that x R y.

We'll consider four properties that mappings $R: A \Rightarrow B$ may have.

[Univalent:]

For every $x \in A$ there is at most one $y \in B$ such that x R y.

[Injective:]

```
For every y \in B there is at most one x \in A such that x R y.
```

[Total:]

For every $x \in A$ there is at least one $y \in B$ such that x R y.

[Surjective:]

For every $y \in B$ there is at least one $x \in A$ such that x R y.

• A mapping $R: A \Rightarrow B$ is **univalent** (or **single-valued**) if x(R)y and x(R)y' together imply y = y'.

• A mapping $R: A \Rightarrow B$ is **univalent** (or **single-valued**) if x(R)y and x(R)y' together imply y = y'.

Examples.

▶ $\{\langle x, x^2 \rangle \mid x \in \mathbb{N}\}$ is univalent: every $x \in \mathbb{N}$ yields no other number than x^2 .

• A mapping $R: A \Rightarrow B$ is **univalent** (or **single-valued**) if x(R)y and x(R)y' together imply y = y'.

Examples.

- $\{\langle x, x^2 \rangle \mid x \in \mathbb{N}\}$ is univalent: every $x \in \mathbb{N}$ yields no other number than x^2 .
- ► $\{\langle x^2, x \rangle \mid x \in \mathbb{Z}\}$ is not univalent: we have both $\langle 4, 2 \rangle$ and $\langle 4, -2 \rangle$.

• A mapping $R: A \Rightarrow B$ is **univalent** (or **single-valued**) if x(R)y and x(R)y' together imply y = y'.

Examples.

- $\{\langle x, x^2 \rangle \mid x \in \mathbb{N}\}$ is univalent: every $x \in \mathbb{N}$ yields no other number than x^2 .
- ► $\{\langle x^2, x \rangle \mid x \in \mathbb{Z}\}$ is not univalent: we have both $\langle 4, 2 \rangle$ and $\langle 4, -2 \rangle$.
- married-to is univalent assuming monogamy.

• A mapping $R: A \Rightarrow B$ is **univalent** (or **single-valued**) if x(R)y and x(R)y' together imply y = y'.

Non-examples.

Neither has-as-parent nor has-as-child is univalent:

people have more than one parent, and can have more than one child.

• A mapping $R: A \Rightarrow B$ is **univalent** (or **single-valued**) if x(R)y and x(R)y' together imply y = y'.

Non-examples.

- Neither *has-as-parent* nor *has-as-child* is univalent: people have more than one parent, and can have more than one child.
- ▶ \leqslant on \mathbb{N} : any $x \in \mathbb{N}$ is mapped to each $y \ge x$.

Composition of univalent mappings

• If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are univalent then so is $R; Q: A \Rightarrow C$.

Composition of univalent mappings

- If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are univalent then so is $R; Q: A \Rightarrow C$.
- **Proof.** Suppose x(R;Q)z and x(R;Q)z', that is x(R)y(Q)z and x(R)y'(Q)z' for some $y, y' \in B$

Composition of univalent mappings

- If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are univalent then so is $R; Q: A \Rightarrow C$.
- **Proof.** Suppose x(R;Q)z and x(R;Q)z', that is x(R)y(Q)z and x(R)y'(Q)z' for some $y,y' \in B$
- Then y = y' because R is univalent, and so z = z' because Q is univalent.

• $R: A \Rightarrow B$ is *injective* if x R y and x' R y together imply x = x'

NOT ALLOWED

• $R: A \Rightarrow B$ is *injective* if x R y and x' R y together imply x = x'

Examples:

NOT ALLOWED

 The mapping from cars to their plate-number is injective: No two cars have the same plate number.

• $R: A \Rightarrow B$ is *injective* if x R y and x' R y together imply x = x'

Examples:

NOT ALLOWED

- The mapping from cars to their plate-number is injective: No two cars have the same plate number.
- {⟨x², x⟩ | x ∈ ℕ} is injective:
 different squares have different roots.

• $R: A \Rightarrow B$ is *injective* if x R y and x' R y together imply x = x'

Examples:

NOT ALLOWED

- The mapping from cars to their plate-number is injective: No two cars have the same plate number.
- {⟨x², x⟩ | x ∈ ℕ} is injective:
 different squares have different roots.

Non-examples:

- $\{\langle x, x^2 \rangle \mid x \in \mathbb{N}\}$ is not injective:
 - 2 and -2 are mapped to the same number.

• $R: A \Rightarrow B$ is *injective* if x R y and x' R y together imply x = x'

Examples:

NOT ALLOWED

- The mapping from cars to their plate-number is injective: No two cars have the same plate number.
- {⟨x², x⟩ | x ∈ ℕ} is injective:
 different squares have different roots.

Non-examples:

- $\{\langle x, x^2 \rangle \mid x \in \mathbb{N}\}$ is not injective:
 - 2 and -2 are mapped to the same number.
- The mapping from people to their name is not injective: different people may have the same name.

 $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$

► $\{\langle x, x^2 \rangle \mid x \in \mathbb{R}\}$ No. Both 2 and -2 map to 4.

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$ Yes

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$
- ▶ { $\langle n, p \rangle \mid n \in \mathbb{N}, p = \text{ first prime } \geq x$ }

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{ \langle x, x^3 \rangle \mid x \in \mathbb{R} \}$
- ► { $\langle n, p \rangle \mid n \in \mathbb{N}, p = \text{ first prime } \geqslant x$ } No. This maps both 8 and 9 to 11.

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$
- ▶ { $\langle n, p \rangle \mid n \in \mathbb{N}, p = \text{ first prime } \geq x$ }
- ▶ { $\langle n, p \rangle | n \in \mathbb{N}, p = \text{the } n$ 'th prime }

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$
- ▶ { $\langle n, p \rangle \mid n \in \mathbb{N}, p = \text{ first prime } \geq x$ }
- ► { $\langle n, p \rangle$ | $n \in \mathbb{N}$, p = the n'th prime } Yes.

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$
- ▶ { $\langle n, p \rangle | n \in \mathbb{N}, p = \text{ first prime } \geq x$ }
- ▶ { $\langle n, p \rangle | n \in \mathbb{N}, p = \text{the } n$ 'th prime }
- ► The mapping from US residents to their SSN.

- $\blacktriangleright \ \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$
- $\blacktriangleright \ \{\langle x, x^3 \rangle \mid x \in \mathbb{R}\}$
- ▶ { $\langle n, p \rangle | n \in \mathbb{N}, p = \text{ first prime } \geq x$ }
- ▶ { $\langle n, p \rangle | n \in \mathbb{N}, p = \text{the } n$ 'th prime }
- The mapping from US residents to their SSN.
 Yes. No SSN is assigned to two different persons.

Injective is the dual of univalent

• $R: A \Rightarrow B$ is univalent iff $R^{-1}: B \Rightarrow A$ is injective

Injective is the dual of univalent

• $R: A \Rightarrow B$ is univalent iff $R^{-1}: B \Rightarrow A$ is injective

• Proof. x(R)y plus x(R)y' imply y = y'iff $y(R^{-1})x$ plus $y'(R^{-1})x$ imply y = y',

Composition of injective mappings

• If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are injective then so is $R; Q: A \Rightarrow C$.

Composition of injective mappings

- If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are injective then so is $R; Q: A \Rightarrow C$.
- **Proof.** Assume x(R;Q)z and x'(R;Q)z. That is, x(R)y(Q)z and x'(R)y'(Q)z for some $y,y' \in B$.

Composition of injective mappings

- If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are injective then so is $R; Q: A \Rightarrow C$.
- **Proof.** Assume x(R;Q)z and x'(R;Q)z. That is, x(R)y(Q)z and x'(R)y'(Q)z for some $y,y' \in B$.
- y = y' because Q is injective, and therefore x = x' because R is injective.

Total mappings

• A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.

• A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.

- A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.
- Note: Totality is a property of the mapping, not just the relation *R*.

- A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.
- Note: Totality is a property of the mapping, not just the relation *R*.

Examples.

► *born-on* over people.

- A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.
- Note: Totality is a property of the mapping, not just the relation R.

Α

Examples.

- ► *born-on* over people.
- ► The mapping *has-integer-value* from real numbers to integers

- A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.
- Note: Totality is a property of the mapping, not just the relation *R*.

Examples.

- ► *born-on* over people.
- ► The mapping *has-integer-value* from real numbers to integers

Non-examples.

• The reciprocal mapping (1/x) on \mathbb{R} has no output for input 0.

- A mapping $R: A \Rightarrow B$ is **total** if for each $x \in A$ there is a y such that x(R)y.
- Note: Totality is a property of the mapping, not just the relation *R*.

Examples.

- ► *born-on* over people.
- ► The mapping *has-integer-value* from real numbers to integers

Non-examples.

- The reciprocal mapping (1/x) on \mathbb{R} has no output for input 0.
- The trigonometric mapping tan (tangent) has no output for input $k\pi/2$ for odd integers k.

Composition of total mappings

• If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are total then so is $R; Q: A \Rightarrow C$.

Composition of total mappings

- If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are total then so is $R; Q: A \Rightarrow C$.
- **Proof.** If $x \in A$ then x(R), y for some $y \in B$, since R is total.

So y(Q)z for some $z \in C$, since Q is total. Put together, we obtain x(R;Q)z for some z.

• A mapping $R: A \Rightarrow B$ is **surjective** (or **onto**) if for each $y \in B$ there is an x such that x(R)y.

• A mapping $R: A \Rightarrow B$ is **surjective** (or **onto**) if for each $y \in B$ there is an x such that x(R)y.

- A mapping $R: A \Rightarrow B$ is **surjective** (or **onto**) if for each $y \in B$ there is an x such that x(R)y.
- Surjectivity is the dual of totality: $R: A \Rightarrow B$ is total iff $R^{-1}: B \Rightarrow A$ is surjective.

- A mapping $R: A \Rightarrow B$ is **surjective** (or **onto**) if for each $y \in B$ there is an x such that x(R)y.
- Surjectivity is the dual of totality: $R: A \Rightarrow B$ is total iff $R^{-1}: B \Rightarrow A$ is surjective.

Examples.

▶ The trigonometric function $\sin : \mathbb{R} \Rightarrow [-1..1]$.

- A mapping $R: A \Rightarrow B$ is *surjective* (or *onto*) if for each $y \in B$ there is an x such that x(R)y.
- Surjectivity is the dual of totality: $R: A \Rightarrow B$ is total iff $R^{-1}: B \Rightarrow A$ is surjective.

Examples.

- ▶ The trigonometric function \sin : $\mathbb{R} \Rightarrow [-1..1]$.
- The cubic function over \mathbb{R} .

- A mapping $R: A \Rightarrow B$ is *surjective* (or *onto*) if for each $y \in B$ there is an x such that x(R)y.
- Surjectivity is the dual of totality: $R: A \Rightarrow B$ is total iff $R^{-1}: B \Rightarrow A$ is surjective.

Examples.

- ▶ The trigonometric function \sin : $\mathbb{R} \Rightarrow [-1..1]$.
- The cubic function over \mathbb{R} .
- ► The mapping over humanity that maps people to their children

- A mapping $R: A \Rightarrow B$ is *surjective* (or *onto*) if for each $y \in B$ there is an x such that x(R)y.
- Surjectivity is the dual of totality: $R: A \Rightarrow B$ is total iff $R^{-1}: B \Rightarrow A$ is surjective.

Examples.

- The trigonometric function $\sin : \mathbb{R} \Rightarrow [-1..1]$.
- The cubic function over \mathbb{R} .
- ► The mapping over humanity that maps people to their children

Non-Examples.

• The squaring function over \mathbb{N} .

B

- A mapping $R: A \Rightarrow B$ is *surjective* (or *onto*) if for each $y \in B$ there is an x such that x(R)y.
- Surjectivity is the dual of totality: $R: A \Rightarrow B$ is total iff $R^{-1}: B \Rightarrow A$ is surjective.

Examples.

- The trigonometric function $\sin : \mathbb{R} \Rightarrow [-1..1]$.
- The cubic function over \mathbb{R} .
- ► The mapping over humanity that maps people to their children

Non-Examples.

- The squaring function over \mathbb{N} .
- ► The mapping over humanity that maps people to their spouse

B

Composition of surjective mappings

• If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are surjective then so is $R; Q: A \Rightarrow C$.

Composition of surjective mappings

- If $R: A \Rightarrow B$ and $Q: B \Rightarrow C$ are surjective then so is $R; Q: A \Rightarrow C$.
- **Proof.** Given that $Q: B \Rightarrow C$ is surjective, for every $z \in C$ there is a $y \in B$ such that y(Q)z.
- This implies, Since $R : A \Rightarrow B$ is surjective, that x(R)y for some $x \in A$.
- Thus x(R;Q)z.

Since this holds for every $z \in C$, $R; Q : A \Rightarrow C$ is surjective.

FUNCTIONS

Functions: univalent and total

 When a mapping R: A ⇒ B is univalent we also say that it is a *partial-function* (from A to B), and write R: A → B (note the maimed arrow).

Functions: univalent and total

- When a mapping R: A ⇒ B is univalent we also say that it is a *partial-function* (from A to B), and write R: A → B (note the maimed arrow).
- When that mapping is also total we say that it is a *total-function* (or *function* for short), and write *R* : *A* → *B*.

Functions: univalent and total

- When a mapping R: A ⇒ B is univalent we also say that it is a *partial-function* (from A to B), and write R: A → B (note the maimed arrow).
- When that mapping is also total we say that it is a *total-function* (or *function* for short), and write *R* : *A* → *B*.
- A partial-function *R*: *A* → *B* is "partial" in that it is *not necessarily* total (on *B*).
 So every total-function is also a partial-function!
 And a partial-function may be total or *non-total*.

Univalence

is the most consequential property that a mapping can have: it enables the naming of new mathematical objects!

Functions and naming

• Univalence

is the most consequential property that a mapping can have: it enables the naming of new mathematical objects!

• If $F: A \to B$ and x(F)y we write F(x) for y.

Functions and naming

Univalence

is the most consequential property that a mapping can have: it enables the naming of new mathematical objects!

- If $F: A \to B$ and x(F)y we write F(x) for y.
- When F: A → B (i.e. totality not assumed), we still write F(x) for the y satisfying x(F) y, and say that F is undefined if no such y exists.

Explicit function definitions

• Consider a function definition: $F(x,y) = 2 \cdot x + y$.

Here F is defined in terms of 2, addition, and multiplication.

Explicit function definitions

- Consider a function definition: $F(x, y) = 2 \cdot x + y$. Here F is defined in terms of 2, addition, and multiplication.
- An *explicit definition* of a function $F : A \Rightarrow B$ from objects $c_1, c_2 \ldots \in A$ and functions $g_1, g_2 \ldots$ over A can be given by an equation

 $F(x_1,\ldots,x_k)=E$

where E is an "algebraic expression" built from the c_i 's, g_j 's and variables $x_1 \dots x_k$ by function application.

Explicit function definitions

- Consider a function definition: $F(x, y) = 2 \cdot x + y$. Here F is defined in terms of 2, addition, and multiplication.
- An *explicit definition* of a function $F : A \Rightarrow B$ from objects $c_1, c_2 \ldots \in A$ and functions $g_1, g_2 \ldots$ over A can be given by an equation

 $F(x_1,\ldots,x_k)=E$

where E is an "algebraic expression" built from the c_i 's, g_j 's and variables $x_1 \dots x_k$ by function application.

To refer to a function on the fly, without naming it, we use the *"maps-to"* notation: *x* → *E*. Example: *x* → 2*x* + 1.

• over the set of people:

F(p) = the (biological) mother of p.

• over the set of people:

F(p) = the (biological) mother of p.

• Predecessor over the integers: $x \mapsto x-1$. Cut-off predecessor over \mathbb{N} : $x \mapsto$ if x = 0 then 0 else x-1.

- over the set of people: F(p) = the (biological) mother of p.
- Predecessor over the integers: $x \mapsto x-1$. Cut-off predecessor over \mathbb{N} : $x \mapsto$ if x = 0 then 0 else x-1.
- A function $F : A \to B$ for which F(x) = bfor a fixed $b \in B$ is a **constant-function**.

- over the set of people: F(p) = the (biological) mother of p.
- Predecessor over the integers: $x \mapsto x-1$. Cut-off predecessor over \mathbb{N} : $x \mapsto$ if x = 0 then 0 else x-1.
- A function $F : A \to B$ for which F(x) = bfor a fixed $b \in B$ is a *constant-function*.
- For any set A the *identity function* over $A \operatorname{Id}_A : A \to A$ defined by $x \mapsto x$.

- over the set of people: F(p) = the (biological) mother of p.
- Predecessor over the integers: $x \mapsto x-1$. Cut-off predecessor over \mathbb{N} : $x \mapsto$ if x = 0 then 0 else x-1.
- A function $F : A \to B$ for which F(x) = bfor a fixed $b \in B$ is a **constant-function**.
- For any set A the *identity function* over $A \operatorname{Id}_A : A \to A$ defined by $x \mapsto x$.
- The reciprocal-function over \mathbb{R}^+ $x \mapsto 1/x$ is a total-function.

- over the set of people: F(p) = the (biological) mother of p.
- Predecessor over the integers: $x \mapsto x-1$. Cut-off predecessor over \mathbb{N} : $x \mapsto$ if x = 0 then 0 else x-1.
- A function $F : A \to B$ for which F(x) = bfor a fixed $b \in B$ is a **constant-function**.
- For any set A the *identity function* over $A \operatorname{Id}_A : A \to A$ defined by $x \mapsto x$.
- The reciprocal-function over \mathbb{R}^+ $x \mapsto 1/x$ is a total-function.
- F(n) = the first prime number ≥ n. That this function is total is akin to saying that there are infinitely many primes.

Examples of partial-functions

 The reciprocal function over R (it is undefined for 0).
Examples of partial-functions

- The reciprocal function over R (it is undefined for 0).
- Over the set of people: *p* → the spouse of *p* (not every person is married).

Examples of partial-functions

- The reciprocal function over R (it is undefined for 0).
- Over the set of people: $p \mapsto$ the spouse of p (not every person is married).
- Over *P*(ℕ) : *A* → the smallest element of *A* (Undefined for Ø.)

Examples of partial-functions

- The reciprocal function over R (it is undefined for 0).
- Over the set of people: *p* → the spouse of *p* (not every person is married).
- Over *P*(ℕ) : *A* → the smallest element of *A* (Undefined for Ø.)
- For any sets A, B we have an *empty partial-function* $\emptyset : A \rightharpoonup B$. That is, $\emptyset(x)$ is undefined for all $x \in A$.

Functions of several arguments

- Let $F : A \times B \rightarrow C$. We write F(a, b) for $F(\langle a, b \rangle)$.
- This convention can be applied to functions with more than two arguments.

Functions of several arguments

- Let $F : A \times B \rightarrow C$. We write F(a, b) for $F(\langle a, b \rangle)$.
- This convention can be applied to functions with more than two arguments.
- Example: Addition, multiplication and exponentiation are binary functions over R.

Functions of several arguments

- Let $F : A \times B \rightarrow C$. We write F(a, b) for $F(\langle a, b \rangle)$.
- This convention can be applied to functions with more than two arguments.
- Example: Addition, multiplication and exponentiation are binary functions over R.
- We use infix notation for most binary functions: x+y for +(x,y).

- An injective function is an *injection*.
- A surjective function is a *surjection*.

- An injective function is an *injection*.
- A surjective function is a *surjection*.
- If $f: A \to B$ is both injective and surjective then it is a **bijection** and we write $f: A \cong B$.

- An injective function is an *injection*.
- A surjective function is a *surjection*.
- If $f: A \to B$ is both injective and surjective then it is a **bijection** and we write $f: A \cong B$.
- So a bijection has all four I/O properties: univalent, injective, total and surjective.

- An injective function is an *injection*.
- A surjective function is a *surjection*.
- If $f: A \to B$ is both injective and surjective then it is a **bijection** and we write $f: A \cong B$.
- So a bijection has all four I/O properties: univalent, injective, total and surjective.
- If there is a bijection from A to Bthen we write $A \cong B$ and say that A and B are *equipollent*.

 In a concert hall filled to capacity the function that maps each person to their seat.

- In a concert hall filled to capacity the function that maps each person to their seat.
- The mapping $x \mapsto 1/x$ over the positive real numbers.

- In a concert hall filled to capacity the function that maps each person to their seat.
- The mapping $x \mapsto 1/x$ over the positive real numbers.
- The successor-modulo-12 function over [0..11].

- In a concert hall filled to capacity the function that maps each person to their seat.
- The mapping $x \mapsto 1/x$ over the positive real numbers.
- The successor-modulo-12 function over [0..11].
- Let d(x) = 2x.
- $d: \mathbb{R} \rightarrow \mathbb{R}$ is a bijection.
- $d: \mathbb{N} \rightarrow \mathbb{N}$ is not: it is not surjective.
- $d: \mathbb{N} \rightarrow Even$ is a bijection.

• **Theorem.** The inverse of a bijection $F : A \Rightarrow B$ is a bijection.

- **Theorem.** The inverse of a bijection $F : A \Rightarrow B$ is a bijection.
- Proof. A bijection f: A ⇒ B is univalent, total, injective and surjective, so f⁻¹: B ⇒ A is injective, surjective, univalent and total.

- **Theorem.** The inverse of a bijection $F : A \Rightarrow B$ is a bijection.
- Proof. A bijection f: A ⇒ B is univalent, total, injective and surjective, so f⁻¹: B ⇒ A is injective, surjective, univalent and total.
- Theorem The composition of bijections $f : A \Rightarrow B$ and $g : B \Rightarrow C$ is a bijection $(f;g) : A \Rightarrow C$.

- **Theorem.** The inverse of a bijection $F : A \Rightarrow B$ is a bijection.
- Proof. A bijection f: A ⇒ B is univalent, total, injective and surjective, so f⁻¹: B ⇒ A is injective, surjective, univalent and total.
- Theorem The composition of bijections $f: A \Rightarrow B$ and $g: B \Rightarrow C$ is a bijection $(f;g): A \Rightarrow C$.
- **Proof.** We saw above that the properties univalent, total, injective and surjective are all closed under composition.

- **Theorem** *≌* is reflexive, symmetric and transitive.
- **Proof.** ≅ is

- **Theorem** *≌* is reflexive, symmetric and transitive.
- **Proof.** ≃ is
 - Reflexive: For each A we have $Id_A : A \cong A$.

- **Theorem** *≌* is reflexive, symmetric and transitive.
- **Proof.** ≃ is
 - Reflexive: For each A we have $Id_A : A \cong A$.
 - Symmetric: If $f: A \cong B$ then $f^{-1}: B \cong A$.

- **Theorem** *≌* is reflexive, symmetric and transitive.
- **Proof.** ≅ is
 - Reflexive: For each A we have $Id_A : A \cong A$.
 - Symmetric: If $f: A \cong B$ then $f^{-1}: B \cong A$.
 - ▶ Transitive: If $F : A \cong B$ and $G : B \cong C$ then $F : G : A \cong C$.

SET SIZE

- When we say that a set S "is smaller than" B we commonly mean that
 - The count $p \in \mathbb{N}$ of A 's elements
 - is < than the count q of B.

- When we say that a set S "is smaller than" B we commonly mean that
 - The count $p \in \mathbb{N}$ of A 's elements
 - is < than the count q of B.
- "Counting" A means defining a bijection $j: \{1, \ldots, p\} \rightarrow A$.

- When we say that a set S "is smaller than" B we commonly mean that
 - The count $p \in \mathbb{N}$ of A 's elements
 - is < than the count q of B.
- "Counting" A means defining a bijection $j: \{1, \ldots, p\} \rightarrow A$.
- This size-comparison of *A* and *B* makes a *detour* via N.
 Is that detour useful? necessary?

- When we say that a set S "is smaller than" B we commonly mean that
 - The count $p \in \mathbb{N}$ of A 's elements
 - is < than the count q of B.
- "Counting" A means defining a bijection $j: \{1, \ldots, p\} \rightarrow A$.
- This size-comparison of *A* and *B* makes a *detour* via N.
 Is that detour useful? necessary?

It is a strole of genius for finite sets.

It is not necessary.

It hinders generalization of size to infinite sets!

• Show "set A is no larger than set B" without counting.

- Show "set A is no larger than set B" without counting.
- One option is clear: $A \subseteq B$. What if A is not related to B?

- Show "set A is no larger than set B" without counting.
- One option is clear: A ⊆ B.
 What if A is not related to B?
- **Dfn.** An **embedding** of A in B is an injection $j: A \rightarrow B$.

- Show "set A is no larger than set B" without counting.
- One option is clear: A ⊆ B.
 What if A is not related to B?
- Dfn. An embedding of A in B is an injection $j: A \rightarrow B$.
- If such an embedding exists, we write $A \preccurlyeq B$.

- Show "set A is no larger than set B" without counting.
- One option is clear: A ⊆ B.
 What if A is not related to B?
- Dfn. An embedding of A in B is an injection $j: A \rightarrow B$.
- If such an embedding exists, we write $A \preccurlyeq B$.

Think of it as assigning a "name" in B to each element of A.

- Show "set A is no larger than set B" without counting.
- One option is clear: A ⊆ B.
 What if A is not related to B?
- **Dfn.** An **embedding** of A in B is an injection $j: A \rightarrow B$.
- If such an embedding exists, we write $A \preccurlyeq B$.

Think of it as assigning a "name" in B to each element of A.

• The composition of injections is an injection, so: **Theorem.** \preccurlyeq is transitive: If $A \preccurlyeq B \preccurlyeq C$ then $A \preccurlyeq C$.

• For any set $A \quad \operatorname{Id}_A : A \preccurlyeq A$

 $(Id_A \text{ is the identity function on } A)$

- For any set A Id_A: A ≼ A
 (Id_A is the identity function on A)
- For a seated class, the mapping from students to chairs they occupy is an embedding from the set of students to the set of chairs.i

- For any set A Id_A: A ≼ A
 (Id_A is the identity function on A)
- For a seated class, the mapping from students to chairs they occupy is an embedding from the set of students to the set of chairs.i
- Id_{Even} : Even $\preccurlyeq \mathbb{N}$
- For any set A Id_A: A ≼ A
 (Id_A is the identity function on A)
- For a seated class, the mapping from students to chairs they occupy is an embedding from the set of students to the set of chairs.i
- Id_{Even} : Even $\preccurlyeq \mathbb{N}$
- The injection $x \mapsto 2x$ embeds N in *Even*.

- For any set A Id_A: A ≼ A
 (Id_A is the identity function on A)
- For a seated class, the mapping from students to chairs they occupy is an embedding from the set of students to the set of chairs.i
- Id_{Even} : Even $\preccurlyeq \mathbb{N}$
- The injection $x \mapsto 2x$ embeds \mathbb{N} in *Even*.
- $x \mapsto x/1000$ is an embedding of (0..1000] in (0..1].

- For any set A Id_A: A ≼ A
 (Id_A is the identity function on A)
- For a seated class, the mapping from students to chairs they occupy is an embedding from the set of students to the set of chairs.i
- Id_{Even} : Even $\preccurlyeq \mathbb{N}$
- The injection $x \mapsto 2x$ embeds \mathbb{N} in *Even*.
- $x \mapsto x/1000$ is an embedding of (0..1000] in (0..1].
- $[1..\infty) \preccurlyeq (0..1]$ by the embedding $x \mapsto 1/x$.

Over the set \mathbb{R} of real numbers:

• Stretch: For a, b > 0 we have $(0 ... a) \preccurlyeq (0 ... b)$ by the injection $x \mapsto bx/a$.

Over the set \mathbb{R} of real numbers:

- Stretch: For a, b > 0 we have $(0 \dots a) \preccurlyeq (0 \dots b)$ by the injection $x \mapsto bx/a$.
- Displacement: $(a \dots b) \preccurlyeq (a+d \dots b+d)$ by the injection $x \mapsto x+d$

Over the set \mathbb{R} of real numbers:

- Stretch: For a, b > 0 we have $(0 \dots a) \preccurlyeq (0 \dots b)$ by the injection $x \mapsto bx/a$.
- Displacement: $(a \dots b) \preccurlyeq (a+d \dots b+d)$ by the injection $x \mapsto x+d$

Over the set \mathbb{R} of real numbers:

- ▶ Stretch: For a, b > 0 we have $(0..a) \preccurlyeq (0..b)$ by the injection $x \mapsto bx/a$.
- Displacement: $(a \dots b) \preccurlyeq (a+d \dots b+d)$ by the injection $x \mapsto x+d$

Using transitivity of *≼*

► For a < b, c < d $(a .. b) \preccurlyeq (c..d)$: $(a .. b) \preccurlyeq (0 .. b - a)$ (displace by -a) $\preccurlyeq (0..d - c$ (stretch) $\preccurlyeq (c..d)$ (displace)

Using transitivity of *≼*

► For a < b, c < d $(a..b) \preccurlyeq (c..d)$: $(a..b) \preccurlyeq (0..b-a)$ (displace by -a) $\preccurlyeq (0..d-c$ (stretch) $\preccurlyeq (c..d)$ (displace)

• Do we have $[0..1] \preccurlyeq (0..1)$?

Using transitivity of *≼*

- ► For a < b, c < d $(a..b) \preccurlyeq (c..d)$: $(a..b) \preccurlyeq (0..b-a)$ (displace by -a) $\preccurlyeq (0..d-c$ (stretch) $\preccurlyeq (c..d)$ (displace)
- ▶ Do we have $[0..1] \preccurlyeq (0..1)$?
- ► $(1..2) \preccurlyeq [1..2] \preccurlyeq (0..3)$ (by identities) $\preccurlyeq (1..2)$ (Stretch)

Equipollence

- Recall that A is equipollent with B when there is a bijection $j: A \cong B$.
 - Example: \mathbb{N} is equipollent to the set E of even naturals since $x \mapsto 2x$ is a bijection.

Equipollence

- Recall that A is **equipollent** with B when there is a bijection $j: A \cong B$.
 - Example: \mathbb{N} is equipollent to the set E of even naturals since $x \mapsto 2x$ is a bijection.
- If $j: A \cong B$ then $A \preccurlyeq B$ since j is an injection, and $B \preccurlyeq A$ since j^{-1} is an injection.

Equipollence

- Recall that A is **equipollent** with B when there is a bijection $j: A \cong B$.
 - Example: \mathbb{N} is equipollent to the set E of even naturals since $x \mapsto 2x$ is a bijection.
- If $j: A \cong B$ then $A \preccurlyeq B$ since j is an injection, and $B \preccurlyeq A$ since j^{-1} is an injection.
- Surprisingly, the converse also holds:

Cantor-Bernstein-Schröder Theorem. (1896/97) If $A \preccurlyeq B$ and $B \preccurlyeq A$ then $A \cong B$.

Using CBS

- 1. The CBS Theorem is useful in proving set equipollence, because mutual embeddings are often easier to find than a bijection.
- We showed that all real number intervals are embedable in each other.
 So by CBS they are all equipollent to each other.
 Not a big deal, you say, because the embedding are in fact bijections.
 Not so fast...

Using CBS

- 1. The CBS Theorem is useful in proving set equipollence, because mutual embeddings are often easier to find than a bijection.
- We showed that all real number intervals are embedable in each other. So by CBS they are all equipollent to each other. Not a big deal, you say, because the embedding are in fact bijections. Not so fast...
- 3. $\{0,1\}^* \cong \mathbb{N}$:
 - $\blacktriangleright f: \ \{0,1\}^* \preccurlyeq \mathbb{N}$

where f(w) is the numeric value of 1w.

Using CBS

- 1. The CBS Theorem is useful in proving set equipollence, because mutual embeddings are often easier to find than a bijection.
- We showed that all real number intervals are embedable in each other. So by CBS they are all equipollent to each other. Not a big deal, you say, because the embedding are in fact bijections. Not so fast...
- 3. $\{0,1\}^* \cong \mathbb{N}$:
 - $f: \{0,1\}^* \preccurlyeq \mathbb{N}$

where f(w) is the numeric value of 1w.

► g : $\mathbb{N} \preccurlyeq \{0,1\}^*$

where g is the injection $n \mapsto$ binary numeral for n.

Countable sets

- A set A is **denumerable** if $A \cong \mathbb{N}$.
- A is **countable** if $A \preccurlyeq \mathbb{N}$.

Countable sets

- A set A is **denumerable** if $A \cong \mathbb{N}$.
- A is **countable** if $A \preccurlyeq \mathbb{N}$.
- So A is countable iff it is either finite or denumerable.

1. The set \mathbb{Z} of integers: $\mathbb{Z} \cong \mathbb{N}$ by the bijection $x \mapsto \text{ if } x \ge 0$ then 2x else -2x - 1. I.e. \mathbb{Z} is listed as $0, -1, 1, -2, 2, -3, \dots$

1. The set \mathbb{Z} of integers: $\mathbb{Z} \cong \mathbb{N}$ by the bijection $x \mapsto \text{ if } x \ge 0$ then 2x else -2x - 1. I.e. \mathbb{Z} is listed as 0, -1, 1, -2, 2, -3, ...

2. $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$.

- 1. The set \mathbb{Z} of integers: $\mathbb{Z} \cong \mathbb{N}$ by the bijection $x \mapsto \text{ if } x \ge 0$ then 2x else -2x - 1. I.e. \mathbb{Z} is listed as 0, -1, 1, -2, 2, -3, ...
- 2. $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$.
 - $\mathbb{N} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection $n \mapsto \langle 0, n \rangle$

- 1. The set \mathbb{Z} of integers: $\mathbb{Z} \cong \mathbb{N}$ by the bijection $x \mapsto \text{ if } x \ge 0$ then 2x else -2x - 1. I.e. \mathbb{Z} is listed as 0, -1, 1, -2, 2, -3, ...
- 2. $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$.
 - $\mathbb{N} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection $n \mapsto \langle 0, n \rangle$
 - $\mathbb{N} \times \mathbb{N} \preccurlyeq \mathbb{N}$ by the injection $\langle p, q \rangle \mapsto 2^p \cdot 3^q$

- 1. The set \mathbb{Z} of integers: $\mathbb{Z} \cong \mathbb{N}$ by the bijection $x \mapsto \text{ if } x \ge 0$ then 2x else -2x - 1. I.e. \mathbb{Z} is listed as 0, -1, 1, -2, 2, -3, ...
- 2. $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$.
 - $\mathbb{N} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection $n \mapsto \langle 0, n \rangle$
 - $\mathbb{N} \times \mathbb{N} \preccurlyeq \mathbb{N}$ by the injection $\langle p, q \rangle \mapsto 2^p \cdot 3^q$
 - So $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ by CBS.

1. \mathbb{Q}^+ is the set of positive rational numbers.

- 1. \mathbb{Q}^+ is the set of positive rational numbers.
 - ▶ $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ by the identity function on \mathbb{N} .

- 1. \mathbb{Q}^+ is the set of positive rational numbers.
 - ▶ $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ by the identity function on \mathbb{N} .
 - $\blacktriangleright \mathbb{Q} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection

(Example: 0.75 is mapped to $\langle 3, 4 \rangle$.)

- 1. \mathbb{Q}^+ is the set of positive rational numbers.
 - $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ by the identity function on \mathbb{N} .
 - $\blacktriangleright \mathbb{Q} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection

(Example: 0.75 is mapped to $\langle 3, 4 \rangle$.)

• But we already know that $\mathbb{N} \times \mathbb{N} \preccurlyeq \mathbb{N}$, so $\mathbb{Q} \preccurlyeq \mathbb{N}$.

- 1. \mathbb{Q}^+ is the set of positive rational numbers.
 - $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ by the identity function on \mathbb{N} .
 - $\mathbb{Q} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection

(Example: 0.75 is mapped to $\langle 3, 4 \rangle$.)

- But we already know that $\mathbb{N} \times \mathbb{N} \preccurlyeq \mathbb{N}$, so $\mathbb{Q} \preccurlyeq \mathbb{N}$.
- Since $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ and $\mathbb{Q}^+ \preccurlyeq \mathbb{N}$ it follows by CBS that $\mathbb{Q}^+ \cong \mathbb{N}$.

- 1. \mathbb{Q}^+ is the set of positive rational numbers.
 - $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ by the identity function on \mathbb{N} .
 - ▶ $\mathbb{Q} \preccurlyeq \mathbb{N} \times \mathbb{N}$ by the injection

(Example: 0.75 is mapped to $\langle 3, 4 \rangle$.)

- But we already know that $\mathbb{N} \times \mathbb{N} \preccurlyeq \mathbb{N}$, so $\mathbb{Q} \preccurlyeq \mathbb{N}$.
- Since $\mathbb{N} \preccurlyeq \mathbb{Q}^+$ and $\mathbb{Q}^+ \preccurlyeq \mathbb{N}$ it follows by CBS that $\mathbb{Q}^+ \cong \mathbb{N}$.
- 2. Seems like all infinite sets are countable. Are they?

- Not all infinite sets are countable!
- Cantor's Theorem (1891) For all sets $A: \mathcal{P}(A) \not\preccurlyeq A$
- **Proof.** We show that for ever set A and function $g: A \to \mathcal{P}(A)$, g is not surjective.

I.e. no way to name each $B \subseteq A$ by an element of A.

- Not all infinite sets are countable!
- Cantor's Theorem (1891) For all sets $A : \mathcal{P}(A) \not\preccurlyeq A$
- **Proof.** We show that for ever set A and function $g: A \to \mathcal{P}(A)$, g is not surjective.
 - I.e. no way to name each $B \subseteq A$ by an element of A.
 - Let $D =_{\mathrm{df}} \{x \in A \mid x \notin g(x)\},\$
 - i.e. $x \in D$ IFF $x \notin g(x)$.

We show that D cannot be in the image of g.

- Not all infinite sets are countable!
- Cantor's Theorem (1891) For all sets $A : \mathcal{P}(A) \not\preccurlyeq A$
- **Proof.** We show that for ever set A and function $g: A \to \mathcal{P}(A)$, g is not surjective.
 - I.e. no way to name each $B \subseteq A$ by an element of A.
 - Let $D =_{\mathrm{df}} \{x \in A \mid x \notin g(x)\},\$
 - i.e. $x \in D$ IFF $x \notin g(x)$.

We show that D cannot be in the image of g.

▶ If we had D = g(d) for some $d \in A$ then taking d for x above, we'd get $d \in D$ IFF $d \notin g(d) = D$, a contradiction. QED.

- Not all infinite sets are countable!
- Cantor's Theorem (1891) For all sets $A: \mathcal{P}(A) \not\preccurlyeq A$.
- **Proof.** We show that for ever set A and function $g: A \to \mathcal{P}(A)$, g is not surjective.
 - I.e. no way to name each $B \subseteq A$ by an element of A.
 - Let $D =_{\mathrm{df}} \{x \in A \mid x \notin g(x)\},\$
 - i.e. $x \in D$ IFF $x \notin g(x)$.

We show that D cannot be in the image of g.

- ▶ If we had D = g(d) for some $d \in A$ then taking d for x above, we'd get $d \in D$ IFF $d \notin g(d) = D$, a contradiction. QED.
- In particular, $\mathcal{P}(\mathbb{N}) \not\cong \mathbb{N}$, that is: $\mathcal{P}(\mathbb{N})$ is not countable!

Comments on Cantor's Theorem

- Of course, $f: A \preccurlyeq \mathcal{P}(A)$ where f is the embedding
- Compare:

For all A we have $A \prec \mathcal{P}(A)$ (strict size-increase) For all n we have $n \ll 2^n$ (big jump)

Comments on Cantor's Theorem

- Of course, $f: A \preccurlyeq \mathcal{P}(A)$ where f is the embedding $x \mapsto \{x\}$
- Compare:

For all A we have $A \prec \mathcal{P}(A)$ (strict size-increase) For all n we have $n \ll 2^n$ (big jump)

Comments on Cantor's Theorem

- Of course, $f: A \preccurlyeq \mathcal{P}(A)$ where f is the embedding $x \mapsto \{x\}$
- Compare:

For all A we have $A \prec \mathcal{P}(A)$ (strict size-increase) For all n we have $n \ll 2^n$ (big jump)

The set *P^{fin}*(ℕ) of *finite* subsets of ℕ is *≼* {0,1}* by our familiar embedding, e.g. {0,2,3} → 1011.
 But {0,1}* *≼* ℕ so *P^{fin}*(ℕ) *≼* ℕ by CBS.
• $\mathbb{R} \cong (0..1)$, so enough to show $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$.

- $\mathbb{R} \cong (0..1)$, so enough to show $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$. $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$:
 - Given $a \in (0..1)$ write a as an *infinite* binary fraction $0.d_0d_1d_2...$ For example, 1/4 = 0.01 = 0.001111....

Such an expansion is unique to a.

- $\mathbb{R} \cong (0..1)$, so enough to show $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$. $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$:
 - Given $a \in (0..1)$ write a as an *infinite* binary fraction $0.d_0d_1d_2...$ For example, 1/4 = 0.01 = 0.001111.... Such an expansion is unique to a.
 - Map the binary expansion to the set $\{n \mid d_n = 1\}$. For example 1/4 is mapped to the set $\{2, 3, 4, \ldots\}$.

- $\mathbb{R} \cong (0..1)$, so enough to show $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$. $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$:
 - Given $a \in (0..1)$ write a as an *infinite* binary fraction $0.d_0d_1d_2...$ For example, 1/4 = 0.01 = 0.001111...

Such an expansion is unique to a.

- Map the binary expansion to the set $\{n \mid d_n = 1\}$. For example 1/4 is mapped to the set $\{2, 3, 4, \ldots\}$.
- $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$:
 - ▶ Map $A \subseteq \mathbb{N}$ to the real number with *decimal* expansion $0.d_0d_1d_2...$ where $d_i = 0$ if $d_i \in A$ and = 0 otherwise.

That real number is unique to A.

- $\mathbb{R} \cong (0..1)$, so enough to show $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$. $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$:
 - Given $a \in (0..1)$ write a as an *infinite* binary fraction $0.d_0d_1d_2...$ For example, 1/4 = 0.01 = 0.001111...

Such an expansion is unique to a.

- Map the binary expansion to the set $\{n \mid d_n = 1\}$. For example 1/4 is mapped to the set $\{2, 3, 4, \ldots\}$.
- $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$:
 - ▶ Map $A \subseteq \mathbb{N}$ to the real number with *decimal* expansion $0.d_0d_1d_2...$ where $d_i = 0$ if $d_i \in A$ and = 0 otherwise.

That real number is unique to A.

► For example, the set *Even* is mapped to the real number 0.101010 · · · (in decimal).

- $\mathbb{R} \cong (0..1)$, so enough to show $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$. $(0..1) \preccurlyeq \mathcal{P}(\mathbb{N})$:
 - Given $a \in (0..1)$ write a as an *infinite* binary fraction $0.d_0d_1d_2...$ For example, 1/4 = 0.01 = 0.001111...

Such an expansion is unique to a.

- Map the binary expansion to the set $\{n \mid d_n = 1\}$. For example 1/4 is mapped to the set $\{2, 3, 4, \ldots\}$.
- $\mathcal{P}(\mathbb{N}) \preccurlyeq (0..1)$:
 - ▶ Map $A \subseteq \mathbb{N}$ to the real number with *decimal* expansion $0.d_0d_1d_2...$ where $d_i = 0$ if $d_i \in A$ and = 0 otherwise.

That real number is unique to A.

- ► For example, the set *Even* is mapped to the real number 0.101010 · · · (in decimal).
- By CBS conclude $\mathbb{R} \cong (0..1) \cong \mathcal{P}(\mathbb{N}).$

• Given injections $f: A \to B$ and $g: B \to A$ we construct a bijection $j: A \cong B$.

- Given injections $f: A \to B$ and $g: B \to A$ we construct a bijection $j: A \cong B$.
- For $a \in A$ there is a chain

$$a \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} b_2 \xrightarrow{g} a_2 \xrightarrow{f} b_3 \cdots$$

- Given injections $f: A \to B$ and $g: B \to A$ we construct a bijection $j: A \cong B$.
- We might also go backwards:

 $\cdots a_{-2} \xrightarrow{f} b_{-2} \xrightarrow{g} a_{-1} \xrightarrow{f} b_{-1} \xrightarrow{g} a \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} b_2 \xrightarrow{g} a_2 \xrightarrow{f} b_3 \cdots$

- Given injections $f: A \to B$ and $g: B \to A$ we construct a bijection $j: A \cong B$.
- We might also go backwards:

 $\cdots a_{-2} \xrightarrow{f} b_{-2} \xrightarrow{g} a_{-1} \xrightarrow{f} b_{-1} \xrightarrow{g} a \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} b_2 \xrightarrow{g} a_2 \xrightarrow{f} b_3 \cdots$

• Similarly, each $b \in B$ starts a chain $b \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} a_2 \xrightarrow{f} b_2 \xrightarrow{g} a_3 \cdots$, which might be extended also to the left.

- Given injections $f: A \to B$ and $g: B \to A$ we construct a bijection $j: A \cong B$.
- We might also go backwards:

 $\cdots a_{-2} \xrightarrow{f} b_{-2} \xrightarrow{g} a_{-1} \xrightarrow{f} b_{-1} \xrightarrow{g} a \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} b_2 \xrightarrow{g} a_2 \xrightarrow{f} b_3 \cdots$

- Similarly, each $b \in B$ starts a chain $b \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} a_2 \xrightarrow{f} b_2 \xrightarrow{g} a_3 \cdots$, which might be extended also to the left.
- Every $x \in A \cup B$ is in some chain. Repetitions, e.g. $a \xrightarrow{f} b \xrightarrow{g} a \xrightarrow{f} b \cdots$ are harmless.

• For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

The chain above

 $a_{-2} \xrightarrow{f} b_{-2} \xrightarrow{g} a_{-1} \xrightarrow{f} b_{-1} \xrightarrow{g} a \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} b_2 \xrightarrow{g} a_2 \xrightarrow{f} b_3 \cdots$

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

The chain above yields $f_c: A_c \cong B_c$:

 $a_{-2} \xrightarrow{f} b_{-2} \qquad a_{-1} \xrightarrow{f} b_{-1} \qquad a \xrightarrow{f} b_1 \qquad a_1 \xrightarrow{f} b_2 \qquad a_2 \xrightarrow{f} b_3 \cdots$

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

The chain above yields $f_c: A_c \cong B_c$:

 $a_{-2} \xrightarrow{f} b_{-2} \qquad a_{-1} \xrightarrow{f} b_{-1} \qquad a \xrightarrow{f} b_1 \qquad a_1 \xrightarrow{f} b_2 \qquad a_2 \xrightarrow{f} b_3 \cdots$

• If C starts with $b \in B$ then

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

The chain above yields $f_c: A_c \cong B_c$:

 $a_{-2} \xrightarrow{f} b_{-2} \qquad a_{-1} \xrightarrow{f} b_{-1} \qquad a \xrightarrow{f} b_1 \qquad a_1 \xrightarrow{f} b_2 \qquad a_2 \xrightarrow{f} b_3 \cdots$

• If C starts with $b \in B$ then

the chain above

 $b \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} a_2 \xrightarrow{f} b_2 \xrightarrow{g} a_3 \cdots$

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

The chain above yields $f_c: A_c \cong B_c$:

 $a_{-2} \xrightarrow{f} b_{-2} \qquad a_{-1} \xrightarrow{f} b_{-1} \qquad a \xrightarrow{f} b_1 \qquad a_1 \xrightarrow{f} b_2 \qquad a_2 \xrightarrow{f} b_3 \cdots$

• If C starts with $b \in B$ then

the chain above yields $g_c: B_c \cong A_c$:

 $b \stackrel{g}{\rightarrow} a_1 \qquad b_1 \stackrel{g}{\rightarrow} a_2 \qquad b_2 \stackrel{g}{\rightarrow} a_3 \cdots$ and so $(g_c)^{-1}: A_c \cong B_c$

- For a chain C let $A_c = A \cap C$, $B_c = B \cap C$, and f_c, g_c be the restrictions of f, g to C.
- If C is infinite to the left, or starts with $a \in A$ then $f_c: A_c \cong B_c$:

The chain above yields $f_c: A_c \cong B_c$:

 $a_{-2} \xrightarrow{f} b_{-2} \qquad a_{-1} \xrightarrow{f} b_{-1} \qquad a \xrightarrow{f} b_1 \qquad a_1 \xrightarrow{f} b_2 \qquad a_2 \xrightarrow{f} b_3 \cdots$

• If C starts with $b \in B$ then

the chain above yields $g_c: B_c \cong A_c$:

The union (over all chains) of these bijections is a bijection from A to B.
QED.