SPACE COMPLEXITY

Measuring space

- The *time complexity* of an algorithm counts the *number* of steps (i.e. configurations) in the trace.
- The *space complexity* of an algorithm counts the *maximal size* of configurations in the trace.
- Space O(f) (where $f: \mathbb{N} \to \mathbb{N}$) defined like for time.

Examples

- Symbolic multiplication is in quadratic space.
- **BOOL-SAT** is in linear space:

Given a boolean expression E, the Turing acceptor lists its variables,

cycles through all valuations for them,

and accepts if some valuation satisfies E.

• So already linear space captures an NP-complete problem, which is probably not recognized in time $O(n^k)$ for any k.

Polynomial space

- Space(f) stands for the collection of languages recognized by a Turing machine in space O(f).
- Polynomial Space = space $O(n^k)$ for some k: $\bigcup_k O(n^k)$.
- (PSpace) is the class of problems decidable by a Turing machine in space $O(n^k)$ for some k.

The Time Hierarchy Theorem (reminder)

• Time Hierarchy Theorem.

If $t, T : \mathbb{N} \to \mathbb{N}$ are "reasonable" functions,

and $t \cdot \log t = o(T)$, then then there are problems decidable in Time(T) but not in Time(t).

The Space Hierarchy Theorem

• Space Hierarchy Theorem.

If $f : \mathbb{N} \to \mathbb{N}$ is a "reasonable" function, then there are problems in $\text{Space}(f \log(f))$ that are not in Space(f).

- Simpler than the Time Hierarchy Theorem because here the proof need not use asymptotic growth for extra resources to build a universal interpreter for the class.
- Example: Space $(n \log n) \supseteq$ Space(n).

Relations between time and space complexity

- In time f(n) we cannot use more than f(n) symbols, so $Time(f) \subseteq Space(f)$.
- Such inclusion is less evident for non-deterministic time: $NTime(f) \subseteq Space(f)$.
- Proof: For a given input w of length nwe can scan in space f(n) a computation tree of height f(n).
- The simulating acceptor has
 - one dedicated string of length f(n)
 - for the address of the currently inspected cfg,
 - and another containing the cfg itself.
- In particular, **NPTime** \subseteq **PSpace**.

Exponential blowup from space to time

- With k states and a symbols there are $k \cdot a^n$ different cfgs of size n+1.
- So an acceptor M over alphabet of size a running in space f(n) may go through O(f(n)) different cfgs.
- If a cfg repeats on the trace for input w then

M would run indefinitely and will never accept w.

So we may limit searches for an accepting cfg to traces with no repetitions.

- So Space $(f(n)) \subseteq \cup_a \operatorname{Time}(a^{f(n)})$.
- Since $a^{f(n)} = 2^{\ell \cdot f(n)}$ for $\ell = \log a$, $Space(O(f(n))) \subseteq Time(2^{O(f(n))}).$
- This motivates attention to a larger time-complexity class:

Acceptor *M* is in *exponential time* if

M terminates in fewer than a^{n^k} steps (some a, k).

• So we have **PSpace** \subseteq **ExpTime**

- **PTime** \subseteq **NPTime** \subseteq **PSpace** \subseteq **ExpTime**
- By the Time Hierarchy theorem **PTime** \subseteq **ExpTime**
- So at least one containment in the chain above is strict.
- Most people believe they all are strict, but so far this has not been proved for any of the three.

PSpace and non-determinism

- What about non-deterministic **PSpace** (notation: **NPSpace**)?
- In fact **NPSpace _ PSpace**.
- Our proof of NTime(f) ⊆ Space(f) does not work here because a nondeterministic computation in space f(n) is a tree whose branches, i.e. it different computation-traces, might go through 2^{f(n)} different cfgs.

- Theorem: If $f(n) \ge n$ then NSpace(f(n)) \subseteq Space($f(n)^2$).
- For given acceptor M,

consider the more general property Lead(c, c', t):

- M has a trace of length $\leq t$ from cfg c to c'.
- An algorithm can recognize Lead(c, c', t) by searching for an intermediate cfg m

such that Lead(c, m, t/2) and Lead(m, c', t/2).

- This yields a recursive algorithm where the recursive stack has depth $O(\log(a^{2^{f(n)}} = O(f(n)))$.
- The size of each cfg is O(f(n)), so the total size of the stack is $O(f(n)^2)$.
- In particular, **NPSpace** = **PSpace**.

PSpace is about alternating roles

- The Geography Game.
- Take turns proposing city names, subject to:
 - No city repeating
 - Each name starts with the previous' last letter.

Bloomington	\Rightarrow	Nashville
	\Rightarrow	Erie
	\Rightarrow	El Paso
	\Rightarrow	Omaha
	\Rightarrow	Amherst
	\Rightarrow	Trenton
	\Rightarrow	New York
	\Rightarrow	Knoxville

The essence of a two-player game

- The computational core of a game is the switch between players.
- Generic players: Alice and Bob.
 - Alice wins if she has a first move so that
 - for every first move of Bob
 - Alice has a second move so that
 - for every second move of Bob
 - Alice has a third move so that
 - for every third move of Bob
 - Alice has a fourth move so that
 - for every fourth move of Bob
 - Alice has a 17,019'th move that wins the game.

Quantified boolean expressions

- Such role-changes are captured by *quantified boolean expressions (QBE's).*
- These are generated from 0, 1, variables, negation, conjunction, disjunction and:
 - ► If *E* is a QBE, *x* a variable, then $\forall x E$ and $\exists x E$ are QBE's.
- $\forall x E[x]$ is true under valuation V if both E[0] and E[1] are true under V.
- A QBE is *prenex* if it is of the form Q₁x₁ ··· ; Q_kx_k F where each Q_i is ∃ or ∀ and
 E is a boolean expression (no quantifiers).
- Example: The prenex expression

 $\forall x \forall y \forall z ((x = y) \lor (x = z) \lor (y = z))$ is true, where x = y abbreviates $(x \lor \overline{y}) \land (\overline{x} \lor y)$. • Every QBE can be converted into an equivalent *prenex* QBE of no larger size.

The problem **QSAT**

- A generalization of BOOL-SAT.
- Q-SAT : Given a QBE, is it satisfiable
- Equivalently:

Given a QBE without unbounded variables, is it true

• This is an equivalent formulation:

A QBE *E* with un-quantified variables $x_1 \dots x_k$ is satisfiable iff the $\exists x_1 \dots x_k E$ is satisfiable.

- Enough to deal with prenex QBE with no un-quantified variable.
- To evaluate $\forall x \exists y \forall z F[x, y, z]$ evaluate $\exists y \forall z F[0, y, z]$ and then $\exists y \forall z F[1, y, z]$, etc.
- This is implementable in linear space.

PSPACE COMPLETENESS

Reductions between PSpace problems

- Problem *Q* is *PSpace-complete* if
 - $\blacktriangleright Q$ is in PSpace, and
 - $\mathcal{P} \leq_p \mathcal{Q}$ for every PSpace problem \mathcal{P} .
- Note that the reduction is in **PTime**.

• LBA-ACCEPTANCE :

Given an LBA M and a string wdoes M accept w.

- **Theorem LBA-ACCEPTANCE** is PSpace complete.
- It is in linear space: the universal interpreter needs only the instructions of *M* and the string *w*.
- It is complete under PTime reductions:

Suppose \mathcal{P} is in space n^k ,

i.e. some acceptor M recognizes \mathcal{P} in space $\leq n^k$ (some k),

i.e. M accepts an instance w of \mathcal{P} in $\leq |w|^k$ space.

• Let ρ map each instance w of \mathcal{P} to the instance M, w' of LBA-ACCEPT, where w' is w padded with $|w|^k$ blanks. • This is a PTime mapping, and it is a reduction:

```
w \in \mathcal{P} IFF M accepts w
IFF M accepts w' on-site (since M is in space n^k)
IFF \rho(I) \in LBA-ACCEPT
```

QSAT is PSpace hard

• Reminder from the NP-hardness of **BOOL-SAT** :

- Variables:
 - $-x_{i,q}$: the state of the *i*'th cfg is *q*.
 - $-y_{i,j}$: the cursor of the *i*'th cfg is at *j*.
 - $-z_{i,j,\sigma}$: the *j*-th tape-symbol of the *i*'th cfg is σ .

So a cfg is given by the boolean values of $\vec{x}, \vec{y}, \vec{z}$. Abbreviate this as \vec{X} .

 One can now construct a boolean expression describing the grid. Its size is polynomial in the input-size because the height of the grid is linear because we looked at linear time (after padding).

The very tall grid

 But the number of cfg's in a trace for linear *space* is *exponential* in input size!

So the grid is a very tall rectangle.

- However, we can use a recursive program as we did for Savitch's Theorem.
- Write $J_t(\vec{X}, \vec{X'})$ if cfg \vec{X} leads to $\vec{X'}$ in 2^t steps.
- J_0 is D_M .
- Attempt for recurrence:

 $J_{t+1}[\vec{X}, \vec{X'}] \equiv \exists \vec{M} \ J_t[\vec{X}, \vec{M}] \land J_t[\vec{M}, \vec{X'}]$

• Problem: The size of J_{t+1} is \geq twice the size of J_t .

The magic of boolean quantification

- We want J_t to appear only once in defining J_{t+1} .
- Take

$$J_{t+1}[\vec{X}, \vec{X'}] \equiv \exists \vec{M} \forall \vec{U}, \vec{V}$$
$$(\vec{U} = \vec{X} \land \vec{V} = \vec{M}) \lor (\vec{U} = \vec{M} \land \vec{V} = \vec{X'})$$
$$\rightarrow \qquad J_t[U, V]$$

• So the size of the QBE J_{n^k} is $O(n^k)$.

LSpace: The complexity of the internet

• How much space does a DFA use for input of size 10^{25} ?

Work-space

- How much space does a DFA use for input of size 10^{25} ?
- The computation space of a machine is the space it owns, i.e. that it can write on.
- Example: the computation space of a phone is its local memory, not the entire internet.
- The computation space of a electronic camera is its hardware, not its field of vision.

Space complexity — redefined

- A variant of Turing machines:
 - The input is read-only
 - There is a read/write work-string ("work-tape").
 - Actions are triggered by the cursored symbols on the two strings.
 - An action is a cursor-move on one of the strings, or an overwrite of the work-cursor symbol.
- This is a trade-off between
 - Extra flexibility of second string and
 - less flexibility on the input string.
- Over-all computation power is the same:
 - A normal Turing machine can simulate input-string + work-string
 - as input\$work.

- A work-string machine can simulate a Turing machine by preprocessing: the input is copied into the work-string.
- The point is to represent use of space more realistically, in particular refer to sub-linear space complexity.

Example

- Recognize $\{x c x \mid x \in \{a, b\}^*\}$
- Single string algorithm
 - Go back and forth between the strings before and after c, comparing one-symbol per cycle.
 - Use markers to identify the latest compared symbols.

This algorithm is in quadratic time.

- Two-strings algorithm:
 - ► Copy input-string to work-string up to c.
 - Compare the work-string with the remaining input after c/

This algorithm is in linear time.

Example 2: $\{a^nb^nc^n \mid n \ge 0\}$

- Previous example needs an exact match.
 What if we want to match only the counts?
- Example: Recognize $\{a^nb^nc^n \mid n \ge 0\}$.
- Single-string algorithm:
 - Scan the input *n* times
 to count corresponding a, bc.
- Time: quadratic.
 - Space: linear.

- Work-string algorithm:
 - Use the work-string as a binary counter (or three in succession!)
 log n bits are needed.

Incrementing a count takes $\leq \log n$ steps.

- 1. Scan the input, and use the counters to count the number of a, then the number of b and of c's, each counts in a separate counter.
 - Compare the three counts. Accept if they are equal.
- Time: $O(n \cdot \log n) + O(\log^2 n) = O(n \cdot \log n)$. Space: $O(\log n)$

Example 2: $\{a^nb^nc^n \mid n \ge 0\}$

- Previous example needs an exact match.
 What if we want to match counts?
- Example: recognize $\{a^n b^n c^n \mid n \ge 0\}$.
- Algorithm:
 - Count on the work-string the number of a's, in binary; place a marker.
 - Count beyond the marker the number of b's; place new marker.
 - ► Count bend marker the number of c's.
 - Compare the three counts. Accept if they are equal.
- This algorithm runs in space logarithmic in the size of the input.

Logarithmic Space

- The problems decidable in logarithmic space:
 LogSpace or just L.
- We have $c^{d \cdot \log n} = 2^{d(\log c)(\log n)} = n^k (k = d \log c).$
- So LogSpace **_** PTime.
- Conclude:

$L \subseteq P \subseteq NP \subseteq PSpace \subseteq ExpTime$

We believe all are strict,

but none of the containments above is known for fact to be strict.

*Surfing the web

- Gigantic read-only
 - + modest local storage (addresses, auxiliary computing) is all around.
- So LogSpace is nowadays the most important complexity class.
- *Multi-cursor two-way automata* are a natural model of computing over large data.
- Example: with two cursors we can recognize {aⁿbⁿ | n ≥ 0} (which is not regular).
- With three cursors we can recognize { aⁿbⁿcⁿ | n ≥ 0 }, which is not CF.
- A multi-cursor automaton can be simulated in log-space using addresses for the cursors.

Theorem (Hartmanis) (~ 1960)
 A language is in L

iff it is recognized by a multi-cursor two-way automaton.

- We have seen that a multi-cursor automaton can be simulated in log-space.
- →: Simulate a Turing acceptor M over {0,1}
 operating in space k ⋅ log n
 by a k-cursor automaton.
- Example: Input is w = 00010110 (length 8).
 Work-string x is of size O(log n), say size 3.
 A dedicated cursor on w keeps track of the binary value coded by x.

E.g., if x = 110, i.e. binary for 6, then the dedicated cursor would be at the sixth position of the input string: 00010110

- Another dedicated cursor keeps track of the position of the work cursor of *M*:
 If *M*'s work-string is 110 (the cursor at second position),
 then *this* dedicated cursor would be at the second position of the input string: 00010110.
- Simulating an overwrite by M on the work-string requires additional cursors to keep track of powers of two.