SPACE COMPLEXITY

Measuring space

» The time complexity of an algorithm counts the

number of steps (i.e. configurations) in the trace.

* The

space complexity

of an algorithm counts the

maximal size of configurations in the trace.

« Space O(f) (where f

F22

: N— N) defined like for time.

Examples

« Symbolic multiplication is in quadratic space.

* BOOL-SAT is in linear space:
Given a boolean expression E , the Turing acceptor
lists its variables,
cycles through all valuations for them,
and accepts if some valuation satisfies E.

» SO0 already linear space captures an NP-complete problem,
which is probably not recognized in time O(n*) for any k.

F22

Polynomial space

« Space(f) stands for the collection of languages
recognized by a Turing machine in space O(f).

- Polynomial Space = space O(n*) for some k:
Uk O(nk)

» (PSpace) is the class of problems decidable by a Turing machine
in space O(n*) for some k.

F22

The Time Hierarchy Theorem (reminder)

| Time Hierarchy Theorem.

If t,T7: N—N are “reasonable” functions,

and t-logt = o(T), then then there are problems
decidable in Time(T) but notin Time(t).

F22

The Space Hierarchy Theorem

| Space Hierarchy Theorem.

If f: N— N is a “reasonable” function,
then there are problems in Space(f log(f))
that are not in Space(f).

» Simpler than the Time Hierarchy Theorem
because here the proof need not use asymptotic growth
for extra resources to build a universal interpreter for the class.

« Example: Space(nlogn) 2 Space(n).

F22

Relations between time and space complexity

* Intime f(n) we cannot use more than f(n) symbols,
so Time(f) C Space(f).

» Such inclusion is less evident for non-deterministic time:
NTime(f) C Space(f) .

 Proof: For a given input w of length n
we can scan in space f(n) a computation tree of height f(n) .

» The simulating acceptor has
one dedicated string of length f(n)
for the address of the currently inspected cfg,
and another containing the cfg itsel.

* In particular, NPTime C PSpace.

F22

Exponential blowup from space to time

« With k& states and a symbols there are k-a™ different cfgs of size
n+ 1.

» So an acceptor M over alphabet of size a running in space f(n)
may go through O(f(n)) different cfgs.

« If a cfg repeats on the trace for input w then
M would run indefinitely and will never accept w.
So we may limit searches for an accepting cfg to traces with no repeti-
tions.

«So Space(f(n)) C U, Time(a/™).

« Since o™ =26/ for ¢ =log a,
Space(O(f(n))) C Time(20U (),

» This motivates attention to a larger time-complexity class:

Acceptor M is in|exponential time | if

M terminates in fewer than o steps (some a, k).

« Sowe have PSpace C ExpTime

F22

A broad space/time hierarchy

« PTime C NPTime C PSpace C ExpTime
By the Time Hierarchy theorem PTime C ExpTime
» So at least one containment in the chain above is strict.

* Most people believe they all are strict, but so far this has not been
proved for any of the three.

F22 10

PSpace and non-determinism

» What about non-deterministic PSpace (notation: NPSpace)?
« In fact NPSpace C PSpace.

« Our proof of NTime(f) C Space(f) does not work here because a
nondeterministic computation in space f(n)
is a tree whose branches, i.e. it different computation-traces,
might go through 2/ different cfgs.

F22 11

Savitch’s Theorem

- Theorem: If f(n) > n then NSpace(f(n)) C Space(f(n)?) .

 For given acceptor M ,
consider the more general property Lead(c,c,t) :
M has a trace of length <t fromcfg ¢ to ¢ .

 An algorithm can recognize Lead(c,c,t) by searching for an interme-
diate cfg m
such that Lead(c,m,t/2) and Lead(m,c,t/2).

* This yields a recursive algorithm where the recursive stack
has depth O(log(a®™ = O(f(n)) .

* The size of each cfgis O(f(n),
so the total size of the stack is O(f(n)?).

* In particular, NPSpace = PSpace.

PSpace is about alternating roles

F22

» The | Geography

Game.

» Take turns proposing city names, subiject to:

» No city repeating

» Each name starts with the previous’ last letter.

Bloomington =

4

L

Nashville

El Paso

Ambherst

New York

13

The essence of a two-player game

» The computational core of a game is the switch between players.

» Generic players: Alice and Bob.

Alice wins if she has a first move so that
for every first move of Bob
Alice has a second move so that
for every second move of Bob
Alice has a third move so that
for every third move of Bob
Alice has a fourth move so that
for every fourth move of Bob

Alice has a 17,019’th move that wins the game.

F22

14

Quantified boolean expressions

» Such role-changes are captured by

quantified boolean expressions (QBE’s).

» These are generated from 0, 1, variables, negation, conjunction, dis-

junction and:

» If E is a QBE, = a variable,

then Vx E and dxz E are QBE'’s.

« Vx E|x] is true under valuation V

if both E[0] and E[1] are true under V.

A QBE is[prenex]|if it is of the form Qqxz; ---; Qrxp F

where each); is 4 or V and

E' is a boolean expression (no quantifiers).

« Example: The prenex expression

VeVyVz (z=y)V(x=2)V(y=2)) istrue,
where x =y) abbreviates (zV y) A (Z V).

» Every QBE can be converted into an equivalent prenex QBE of no
larger size.

F22 16

The problem QSAT

A generalization of BOOL-SAT.
* Q-SAT: Q@Given a QBE, is it satisfiable

» Equivalently:
Given a QBE without unbounded variables, is it true
* This is an equivalent formulation:

A QBE E with un-quantified variables z; ...x;
is satisfiable iff the dxz,---2. E is satisfiable.

F22

17

Q-SAT is PSpace

» Enough to deal with prenex QBE with no un-quantified variable.

« To evaluate VzdyVz Flz,y,2| evaluate JyVzF[0,y,z] and then
dyvz F(1,y, 2|, etc.

* This is implementable in linear space.

F22 18

PSPACE COMPLETENESS

Reductions between PSpace problems

* Problem © is|PSpace-complete | if

» O isin PSpace, and
»P <, @ for every PSpace problem P.

* Note that the reduction is in PTime.

F22

A PSpace complete problem

* LBA-ACCEPTANCE :
Given an LBA M and a string w
does M accept w.

« Theorem LBA-ACCEPTANCE is PSpace complete.

* It is in linear space: the universal interpreter needs only
the instructions of M and the string w.

* It is complete under PTime reductions:
Suppose P is in space nF,
i.e. some acceptor M recognizes P in space < n* (some k),
i.e. M accepts an instance w of P in < |w|* space.

» Let p map each instance w of P
to the instance M, w’ of LBA-ACCEPT,
where w' is w padded with |w|* blanks.

F22

* This is a PTime mapping, and it is a reduction:

w e P IFF M accepts w
IFF M accepts w' on-site (since M is in space nF)
IFF p(I) € LBA-ACCEPT

22

QSAT is PSpace hard

 Reminder from the NP-hardness of BOOL-SAT ;

t
dummy repeat
a 1> 11,0 | 1| _| _| _| _| terminal configuration
qll>l1a]ol 2] | | _|_
qll>l1la]ol2l | | _|_
¢ lall>/1]1]0o 1| _|_|_|_
7 p > 1,101 | _| _|_
| r > 1,101 _| _| _|_
rll>lola]ole] | 1 | _
5 =10 10| 1| _| _| _| _| initial configuration

 Variables:

— x;, - the state of the i’th cfg is q.
—y;,; - the cursor of the i'th cfg is at ;.

— zijo . the j-th tape-symbol of the i’th cfg is o.

F22

So a cfg is given by the boolean values of Z, 7, 2.
Abbreviate this as X.

» One can now construct a boolean expression describing the grid.
lts size is polynomial in the input-size
because the height of the grid is linear
because we looked at linear time (after padding).

24

The very tall grid

» But the number of cfg’s in a trace for linear space
Is exponential in input size!
So the grid is a very tall rectangle.

» However, we can use a recursive program as we did for Savitch’s The-

orem.
« Write J,(X, X"
if cfg X leads to X' in 2! steps.
o Jo IS Dyy.
« Attempt for recurrence:
Jn[X, X = 3IM J[X,M] A J[M, X'

* Problem: The size of J;,; is > twice the size of J;.

The magic of boolean quantification

 We want J; to appear only once in defining J;4; .

» Take
Jt—l-l [X»)2,]

M VU,V

U=XAV=M) v U=MAV=X)
— Ji{U, V]

- So the size of the QBE J: is O(nF).

F22

26

LSpace: The complexity of the internet

Work-space

« How much space does a DFA use for input of size 10% ?

F22

28

Work-space

« How much space does a DFA use for input of size 10% ?

» The computation space of a machine is the space it owns,
l.e. that it can write on.

« Example: the computation space of a phone is its local memory, not
the entire internet.

» The computation space of a electronic camera is its hardware,
not its field of vision.

F22 29

Space complexity — redefined

« A variant of Turing machines:

» The input is read-only
» There is a read/write work-string (“work-tape”).

» Actions are triggered by the cursored symbols on the two strings.

» An action is a cursor-move on one of the strings,

or an overwrite of the work-cursor symbol.
* This is a trade-off between

» Extra flexibility of second string and

» less flexibility on the input string.
» Over-all computation power is the same:

» A normal Turing machine can simulate input-string + work-string
as input$work.

» A work-string machine can simulate a Turing machine
by preprocessing: the input is copied into the work-string.

» The point is to represent use of space more realistically,
in particular refer to sub-linear space complexity.

F22 31

Example

* Recognize {zcz|z€{a,b}*}
« Single string algorithm

» Go back and forth between the strings before and after c,
comparing one-symbol per cycle.

» Use markers to identify the latest compared symbols.
This algorithm is in quadratic time.
* Two-strings algorithm:
» Copy input-string to work-string up to c.
» Compare the work-string with the remaining input after c/

This algorithm is in linear time.

F22

32

Example 2: {a"p"c" | n > 0}

» Previous example needs an exact match.
What if we want to match only the counts?

« Example: Recognize {a"b"c" |n = 0}.
« Single-string algorithm:

» Scan the input n times
to count corresponding a,bc.

» Time: quadratic.
Space: linear.

F22

33

» Work-string algorithm:

» Use the work-string as a binary counter (or three in succession!)
logn bits are needed.
Incrementing a count takes < logn steps.

1. Scan the input, and use the counters to count the number of a,
then the number of b and of ¢’s, each counts in a separate counter.

» Compare the three counts. Accept if they are equal.

» Time: O(n - log n) + O(log®>n) = O(n - log n).
Space: O(logn)

F22 34

Example 2: {a"b"c"|n > 0}

» Previous example needs an exact match.
What if we want to match counts?

« Example: recognize {a"b"c" | n = 0}.
« Algorithm:

» Count on the work-string the number of a’s, in binary; place a
marker.

» Count beyond the marker the number of b’s; place new marker.
» Count bend marker the number of c’s.

» Compare the three counts. Accept if they are equal.

« This algorithm runs in space logarithmic in the size of the input.

F22 35

Logarithmic Space

* The problems decidable in logarithmic space:
LogSpace or just L.

« We have ¢#logn — gdllogc)(logn) — pk (| — dlogc).
* So LogSpace C PTime.

» Conclude:
L C P C NP C PSpace C ExpTime

We believe all are strict,
but none of the containments above is known for fact to be strict.

F22

36

*Surfing the web

 Gigantic read-only
+ modest local storage (addresses, auxiliary computing)
is all around.

» So LogSpace is nowadays the most important complexity class.

» Multi-cursor two-way automata are a natural model
of computing over large data.

« Example: with two cursors we can recognize {a"b" | n > 0} (which is
not regular).

 With three cursors we can recognize { a"b"c" | n>0},
which is not CF.

» A multi-cursor automaton can be simulated in log-space
using addresses for the cursors.

F22 37

* Theorem (Hartmanis) (~ 1960)
A language is in L
iff it is recognized by a multi-cursor two-way automaton.

« <—: We have seen that a multi-cursor automaton
can be simulated in log-space.

«—>: Simulate a Turing acceptor M over {0,1}
operating in space k - logn
by a k-cursor automaton.

» Example: Input is w = 00010110 (length 8).
Work-string z is of size O(logn) , say size 3.
A dedicated cursor on w keeps track of the binary value coded by
X.
E.g., if =110, i.e. binary for 6, then the dedicated cursor
would be at the sixth position of the input string:
00010110

» Another dedicated cursor keeps track of the

F22

position of the work cursor of M

If M’s work-string is 110 (the cursor at second position),
then this dedicated cursor would be at the second position
of the input string: 00010110.

 Simulating an overwrite by M on the work-string
requires additional cursors to keep track of powers of two.

39

