
SPACE COMPLEXITY



Measuring space

• The time complexity of an algorithm counts the

number of steps (i.e. configurations) in the trace.

• The space complexity of an algorithm counts the

maximal size of configurations in the trace.

• Space O(f)O(f)O(f) (where f : N→Nf : N→Nf : N→N) defined like for time.
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Examples

• Symbolic multiplication is in quadratic space.

• BOOL-SATBOOL-SATBOOL-SAT is in linear space:

Given a boolean expression EEE , the Turing acceptor

lists its variables,

cycles through all valuations for them,

and accepts if some valuation satisfies EEE.

• So already linear space captures an NP-complete problem,

which is probably not recognized in time O(nk)O(nk)O(nk) for any kkk.
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Polynomial space

• Space(f)Space(f)Space(f) stands for the collection of languages

recognized by a Turing machine in space O(f)O(f)O(f).

• Polynomial Space = space O(nk)O(nk)O(nk) for some kkk:
⋃

k O(nk)
⋃

k O(nk)
⋃

k O(nk) .

• (PSpace) is the class of problems decidable by a Turing machine

in space O(nk)O(nk)O(nk) for some kkk .
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The Time Hierarchy Theorem (reminder)

• Time Hierarchy Theorem.

If t, T : N → Nt, T : N → Nt, T : N → N are “reasonable” functions,

and t · log t = o(T )t · log t = o(T )t · log t = o(T ), then then there are problems

decidable in Time(T )Time(T )Time(T ) but not in Time(t)Time(t)Time(t).
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The Space Hierarchy Theorem

• Space Hierarchy Theorem.

If f : N → Nf : N → Nf : N → N is a “reasonable” function,

then there are problems in Space(f log(f))Space(f log(f))Space(f log(f))

that are not in Space(f)Space(f)Space(f).

• Simpler than the Time Hierarchy Theorem

because here the proof need not use asymptotic growth

for extra resources to build a universal interpreter for the class.

• Example: Space(n log n) ) Space(n)Space(n log n) ) Space(n)Space(n log n) ) Space(n).
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Relations between time and space complexity

• In time f(n)f(n)f(n) we cannot use more than f(n)f(n)f(n) symbols,

so Time(f) ⊆ Space(f)Time(f) ⊆ Space(f)Time(f) ⊆ Space(f).

• Such inclusion is less evident for non-deterministic time:

NTime(f) ⊆ Space(f)NTime(f) ⊆ Space(f)NTime(f) ⊆ Space(f) .

• Proof: For a given input www of length nnn

we can scan in space f(n)f(n)f(n) a computation tree of height f(n)f(n)f(n) .

• The simulating acceptor has

one dedicated string of length f(n)f(n)f(n)

for the address of the currently inspected cfg,

and another containing the cfg itself.

• In particular, NPTime ⊆ PSpaceNPTime ⊆ PSpaceNPTime ⊆ PSpace.
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Exponential blowup from space to time

• With kkk states and aaa symbols there are k · ank · ank · an different cfgs of size

n + 1n + 1n + 1.

• So an acceptor MMM over alphabet of size aaa running in space f(n)f(n)f(n)

may go through O(f(n))O(f(n))O(f(n)) different cfgs.

• If a cfg repeats on the trace for input www then

MMM would run indefinitely and will never accept www.

So we may limit searches for an accepting cfg to traces with no repeti-

tions.

• So Space(f(n)) ⊆ ∪a Time(af(n))Space(f(n)) ⊆ ∪a Time(af(n))Space(f(n)) ⊆ ∪a Time(af(n)).

• Since af(n) = 2ℓ·f(n)af(n) = 2ℓ·f(n)af(n) = 2ℓ·f(n) for ℓ = log aℓ = log aℓ = log a,

Space(O(f(n))) ⊆ Time(2O(f(n)))Space(O(f(n))) ⊆ Time(2O(f(n)))Space(O(f(n))) ⊆ Time(2O(f(n))).

• This motivates attention to a larger time-complexity class:

Acceptor MMM is in exponential time if



MMM terminates in fewer than ank
ank
ank

steps (some a, ka, ka, k ).

• So we have PSpace ⊆ ExpTimePSpace ⊆ ExpTimePSpace ⊆ ExpTime
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A broad space/time hierarchy

• PTime ⊆ NPTime ⊆ PSpace ⊆ ExpTimePTime ⊆ NPTime ⊆ PSpace ⊆ ExpTimePTime ⊆ NPTime ⊆ PSpace ⊆ ExpTime

• By the Time Hierarchy theorem PTime ( ExpTimePTime ( ExpTimePTime ( ExpTime

• So at least one containment in the chain above is strict.

• Most people believe they all are strict, but so far this has not been

proved for any of the three.
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PSpace and non-determinism

• What about non-deterministic PSpace (notation: NPSpace)?

• In fact NPSpace ⊆⊆⊆ PSpace.

• Our proof of NTime(f) ⊆ Space(f)NTime(f) ⊆ Space(f)NTime(f) ⊆ Space(f) does not work here because a

nondeterministic computation in space f(n)f(n)f(n)

is a tree whose branches, i.e. it different computation-traces,

might go through 2f(n)2f(n)2f(n) different cfgs.
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Savitch’s Theorem

• Theorem: If f(n) > nf(n) > nf(n) > n then NSpace(f(n)) ⊆ Space(f(n)2)NSpace(f(n)) ⊆ Space(f(n)2)NSpace(f(n)) ⊆ Space(f(n)2) .

• For given acceptor MMM ,

consider the more general property Lead(c, c′, t) :Lead(c, c′, t) :Lead(c, c′, t) :

MMM has a trace of length 6 t6 t6 t from cfg ccc to c′c′c′ .

• An algorithm can recognize Lead(c, c′, t)Lead(c, c′, t)Lead(c, c′, t) by searching for an interme-

diate cfg mmm

such that Lead(c, m, t/2)Lead(c, m, t/2)Lead(c, m, t/2) and Lead(m, c′, t/2)Lead(m, c′, t/2)Lead(m, c′, t/2).

• This yields a recursive algorithm where the recursive stack

has depth O(log(a2f(n)
= O(f(n))O(log(a2f(n)
= O(f(n))O(log(a2f(n)
= O(f(n)) .

• The size of each cfg is O(f(n)O(f(n)O(f(n) ,

so the total size of the stack is O(f(n)2)O(f(n)2)O(f(n)2).

• In particular, NPSpace = PSpace.



PSpace is about alternating roles

• The Geography Game.

• Take turns proposing city names, subject to:

◮ No city repeating

◮ Each name starts with the previous’ last letter.

Bloomington ⇒ Nashville

⇒ Erie

⇒ El Paso

⇒ Omaha

⇒ Amherst

⇒ Trenton

⇒ New York

⇒ Knoxville
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The essence of a two-player game

• The computational core of a game is the switch between players.

• Generic players: Alice and Bob.

Alice wins if she has a first move so that

for every first move of Bob

Alice has a second move so that

for every second move of Bob

Alice has a third move so that

for every third move of Bob

Alice has a fourth move so that

for every fourth move of Bob

· · · Alice has a 17,019’th move that wins the game.
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Quantified boolean expressions

• Such role-changes are captured by quantified boolean expressions (QBE’s).

• These are generated from 0, 1, variables, negation, conjunction, dis-

junction and:

◮ If EEE is a QBE, xxx a variable,

then ∀x E∀x E∀x E and ∃x E∃x E∃x E are QBE’s.

• ∀x E[x]∀x E[x]∀x E[x] is true under valuation VVV

if both E[0]E[0]E[0] and E[1]E[1]E[1] are true under VVV .

• A QBE is prenex if it is of the form Q1x1 · · · ; Qkxk FQ1x1 · · · ; Qkxk FQ1x1 · · · ; Qkxk F

where each QiQiQi is ∃∃∃ or ∀∀∀ and

EEE is a boolean expression (no quantifiers).

• Example: The prenex expression

∀x ∀y ∀z ((x = y) ∨ (x = z) ∨ (y = z))∀x ∀y ∀z ((x = y) ∨ (x = z) ∨ (y = z))∀x ∀y ∀z ((x = y) ∨ (x = z) ∨ (y = z)) is true,

where x = y)x = y)x = y) abbreviates (x ∨ ȳ) ∧ (x̄ ∨ y)(x ∨ ȳ) ∧ (x̄ ∨ y)(x ∨ ȳ) ∧ (x̄ ∨ y).



• Every QBE can be converted into an equivalent prenex QBE of no

larger size.
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The problem QSATQSATQSAT

• A generalization of BOOL-SAT.

• Q-SATQ-SATQ-SAT : Given a QBE, is it satisfiable

• Equivalently:

Given a QBE without unbounded variables, is it true

• This is an equivalent formulation:

A QBE EEE with un-quantified variables x1 . . . xkx1 . . . xkx1 . . . xk

is satisfiable iff the ∃x1 · · · xk E∃x1 · · · xk E∃x1 · · · xk E is satisfiable.
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Q-SATQ-SATQ-SAT is PSpace

• Enough to deal with prenex QBE with no un-quantified variable.

• To evaluate ∀x∃y∀z F [x, y, z]∀x∃y∀z F [x, y, z]∀x∃y∀z F [x, y, z] evaluate ∃y∀z F [0, y, z]∃y∀z F [0, y, z]∃y∀z F [0, y, z] and then

∃y∀z F [1, y, z]∃y∀z F [1, y, z]∃y∀z F [1, y, z], etc.

• This is implementable in linear space.
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PSPACE COMPLETENESS



Reductions between PSpace problems

• Problem QQQ is PSpace-complete if

◮ QQQ is in PSpace, and

◮ P 6p QP 6p QP 6p Q for every PSpace problem PPP.

• Note that the reduction is in PTime.
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A PSpace complete problem

• LBA-ACCEPTANCELBA-ACCEPTANCELBA-ACCEPTANCE :

Given an LBA MMM and a string www

does MMM accept www.

• Theorem LBA-ACCEPTANCELBA-ACCEPTANCELBA-ACCEPTANCE is PSpace complete.

• It is in linear space: the universal interpreter needs only

the instructions of MMM and the string www.

• It is complete under PTime reductions:

Suppose PPP is in space nknknk,

i.e. some acceptor MMM recognizes PPP in space 6 nk6 nk
6 nk (some kkk),

i.e. MMM accepts an instance www of PPP in 6 |w|k6 |w|k6 |w|k space.

• Let ρρρ map each instance www of PPP

to the instance M, w′M, w′M, w′ of LBA-ACCEPT,

where w′w′w′ is www padded with |w|k|w|k|w|k blanks.



• This is a PTime mapping, and it is a reduction:

w ∈ P IFF MMM accepts www

IFF MMM accepts w′w′w′ on-site (since MMM is in space nknknk)

IFF ρ(I) ∈ LBA-ACCEPT
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QSAT is PSpace hard

• Reminder from the NP-hardness of BOOL-SATBOOL-SATBOOL-SAT :
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• Variables:

– xi,qxi,qxi,q : the state of the iii’th cfg is qqq.

– yi,jyi,jyi,j : the cursor of the iii’th cfg is at jjj.

– zi,j,σzi,j,σzi,j,σ : the jjj-th tape-symbol of the iii’th cfg is σσσ.



So a cfg is given by the boolean values of ~x, ~y, ~z~x, ~y, ~z~x, ~y, ~z.

Abbreviate this as ~X~X~X.

• One can now construct a boolean expression describing the grid.

Its size is polynomial in the input-size

because the height of the grid is linear

because we looked at linear time (after padding).
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The very tall grid

• But the number of cfg’s in a trace for linear space

is exponential in input size!

So the grid is a very tall rectangle.

• However, we can use a recursive program as we did for Savitch’s The-

orem.

• Write Jt( ~X, ~X ′)Jt( ~X, ~X ′)Jt( ~X, ~X ′)

if cfg ~X~X~X leads to ~X ′~X ′~X ′ in 2t2t2t steps.

• J0J0J0 is DMDMDM .

• Attempt for recurrence:

Jt+1[ ~X, ~X ′]Jt+1[ ~X, ~X ′]Jt+1[ ~X, ~X ′] ≡≡≡ ∃ ~M Jt[ ~X, ~M ] ∧ Jt[ ~M, ~X ′]∃ ~M Jt[ ~X, ~M ] ∧ Jt[ ~M, ~X ′]∃ ~M Jt[ ~X, ~M ] ∧ Jt[ ~M, ~X ′]

• Problem: The size of Jt+1Jt+1Jt+1 is >>> twice the size of JtJtJt.



The magic of boolean quantification

• We want JtJtJt to appear only once in defining Jt+1Jt+1Jt+1 .

• Take

Jt+1[ ~X, ~X ′]Jt+1[ ~X, ~X ′]Jt+1[ ~X, ~X ′] ≡≡≡ ∃ ~M ∀ ~U, ~V∃ ~M ∀ ~U, ~V∃ ~M ∀ ~U, ~V

(~U = ~X ∧ ~V = ~M) ∨ (~U = ~M ∧ ~V = ~X ′)(~U = ~X ∧ ~V = ~M) ∨ (~U = ~M ∧ ~V = ~X ′)(~U = ~X ∧ ~V = ~M) ∨ (~U = ~M ∧ ~V = ~X ′)

→ Jt[U, V ]→ Jt[U, V ]→ Jt[U, V ]

• So the size of the QBE JnkJnkJnk is O(nk)O(nk)O(nk) .
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LSpace: The complexity of the internet



Work-space

• How much space does a DFA use for input of size 102510251025 ?
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Work-space

• How much space does a DFA use for input of size 102510251025 ?

• The computation space of a machine is the space it owns,

i.e. that it can write on.

• Example: the computation space of a phone is its local memory, not

the entire internet.

• The computation space of a electronic camera is its hardware,

not its field of vision.
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Space complexity — redefined

• A variant of Turing machines:

◮ The input is read-only

◮ There is a read/write work-string (“work-tape”).

◮ Actions are triggered by the cursored symbols on the two strings.

◮ An action is a cursor-move on one of the strings,

or an overwrite of the work-cursor symbol.

• This is a trade-off between

◮ Extra flexibility of second string and

◮ less flexibility on the input string.

• Over-all computation power is the same:

◮ A normal Turing machine can simulate input-string + work-string

as input$$$work.



◮ A work-string machine can simulate a Turing machine

by preprocessing: the input is copied into the work-string.

• The point is to represent use of space more realistically,

in particular refer to sub-linear space complexity.
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Example

• Recognize {xc x | x ∈ {a,b}∗ }{xc x | x ∈ {a,b}∗ }{xc x | x ∈ {a,b}∗ }

• Single string algorithm

◮ Go back and forth between the strings before and after ccc,

comparing one-symbol per cycle.

◮ Use markers to identify the latest compared symbols.

This algorithm is in quadratic time.

• Two-strings algorithm:

◮ Copy input-string to work-string up to ccc.

◮ Compare the work-string with the remaining input after ccc/

This algorithm is in linear time.
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Example 2: {an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}

• Previous example needs an exact match.

What if we want to match only the counts?

• Example: Recognize {an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}.

• Single-string algorithm:

◮ Scan the input nnn times

to count corresponding a,bca,bca,bc.

• Time: quadratic.

Space: linear.
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• Work-string algorithm:

◮ Use the work-string as a binary counter (or three in succession!)

log nlog nlog n bits are needed.

Incrementing a count takes 6 log n6 log n6 log n steps.

1. Scan the input, and use the counters to count the number of aaa ,

then the number of bbb and of c’s, each counts in a separate counter.

◮ Compare the three counts. Accept if they are equal.

• Time: O(n · log n) + O(log2 n) = O(n · log n)O(n · log n) + O(log2 n) = O(n · log n)O(n · log n) + O(log2 n) = O(n · log n).

Space: O(log n)O(log n)O(log n)
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Example 2: {an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}

• Previous example needs an exact match.

What if we want to match counts?

• Example: recognize {an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}{an
b

n
c

n | n > 0}.

• Algorithm:

◮ Count on the work-string the number of a’s, in binary; place a

marker.

◮ Count beyond the marker the number of b’s; place new marker.

◮ Count bend marker the number of c’s.

◮ Compare the three counts. Accept if they are equal.

• This algorithm runs in space logarithmic in the size of the input.
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Logarithmic Space

• The problems decidable in logarithmic space:

LogSpace or just L.

• We have cd·log n = 2d(log c)(log n) = nkcd·log n = 2d(log c)(log n) = nkcd·log n = 2d(log c)(log n) = nk (k = d log ck = d log ck = d log c ).

• So LogSpace ⊆⊆⊆ PTime.

• Conclude:

L ⊆⊆⊆ P ⊆⊆⊆ NP ⊆⊆⊆ PSpace ⊆⊆⊆ ExpTime

We believe all are strict,

but none of the containments above is known for fact to be strict.
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⋆Surfing the web

• Gigantic read-only

+ modest local storage (addresses, auxiliary computing)

is all around.

• So LogSpace is nowadays the most important complexity class.

• Multi-cursor two-way automata are a natural model

of computing over large data.

• Example: with two cursors we can recognize {an
b

n | n > 0}{an
b

n | n > 0}{an
b

n | n > 0} (which is

not regular).

• With three cursors we can recognize { an
b

n
c

n | n > 0 }{ an
b

n
c

n | n > 0 }{ an
b

n
c

n | n > 0 } ,

which is not CF.

• A multi-cursor automaton can be simulated in log-space

using addresses for the cursors.
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• Theorem (Hartmanis) (∼ 1960)

A language is in L

iff it is recognized by a multi-cursor two-way automaton.

• ⇐=⇐=⇐=: We have seen that a multi-cursor automaton

can be simulated in log-space.

• =⇒=⇒=⇒: Simulate a Turing acceptor MMM over {0, 1}{0, 1}{0, 1}

operating in space k · log nk · log nk · log n

by a kkk-cursor automaton.

• Example: Input is w = 00010110w = 00010110w = 00010110 (length 8).

Work-string xxx is of size O(log n)O(log n)O(log n) , say size 3.

A dedicated cursor on www keeps track of the binary value coded by

xxx .

E.g., if x = 110x = 110x = 110 , i.e. binary for 6, then the dedicated cursor

would be at the sixth position of the input string:

000101100001011000010110



• Another dedicated cursor keeps track of the

position of the work cursor of MMM :

If MMM ’s work-string is 110110110 (the cursor at second position),

then this dedicated cursor would be at the second position

of the input string: 000101100001011000010110.

• Simulating an overwrite by MMM on the work-string

requires additional cursors to keep track of powers of two.
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