SPACE COMPLEXITY

Measuring space

- The time complexity of an algorithm counts the number of steps (i.e. configurations) in the trace.
- The space complexity of an algorithm counts the maximal size of configurations in the trace.
- Space $O(f)$ (where $f: \mathbb{N} \rightarrow \mathbb{N}$) defined like for time.

Examples

- Symbolic multiplication is in quadratic space.
- bOOL-SAT is in linear space:

Given a boolean expression E, the Turing acceptor lists its variables,
cycles through all valuations for them, and accepts if some valuation satisfies E.

- So already linear space captures an NP-complete problem, which is probably not recognized in time $O\left(n^{k}\right)$ for any k.

Polynomial space

- Space (f) stands for the collection of languages recognized by a Turing machine in space $O(f)$.
- Polynomial Space $=$ space $O\left(n^{k}\right)$ for some k :

$$
\cup_{k} O\left(n^{k}\right) .
$$

- (PSpace) is the class of problems decidable by a Turing machine in space $O\left(n^{k}\right)$ for some k.

The Time Hierarchy Theorem (reminder)

- Time Hierarchy Theorem.

If $t, T: \mathbb{N} \rightarrow \mathbb{N}$ are "reasonable" functions,
and $t \cdot \log t=o(T)$, then then there are problems decidable in $\operatorname{Time}(T)$ but not in Time (t).

The Space Hierarchy Theorem

- Space Hierarchy Theorem.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a "reasonable" function, then there are problems in Space $(f \log (f))$ that are not in Space(f).

- Simpler than the Time Hierarchy Theorem because here the proof need not use asymptotic growth for extra resources to build a universal interpreter for the class.
- Example: $\quad \operatorname{Space}(n \log n) \supsetneq \operatorname{Space}(n)$.

Relations between time and space complexity

- In time $f(n)$ we cannot use more than $f(n)$ symbols, so $\operatorname{Time}(f) \subseteq \operatorname{Space}(f)$.
- Such inclusion is less evident for non-deterministic time:

NTime $(f) \subseteq \operatorname{Space}(f)$.

- Proof: For a given input w of length n we can scan in space $f(n)$ a computation tree of height $f(n)$.
- The simulating acceptor has
one dedicated string of length $f(n)$ for the address of the currently inspected cfg,
and another containing the cfg itself.
- In particular, NPTime \subseteq PSpace.

Exponential blowup from space to time

- With k states and a symbols there are $k \cdot a^{n}$ different cfgs of size $n+1$.
- So an acceptor M over alphabet of size a running in space $f(n)$ may go through $O(f(n))$ different cfgs.
- If a cfg repeats on the trace for input w then
M would run indefinitely and will never accept w.
So we may limit searches for an accepting cfg to traces with no repetitions.
- So $\operatorname{Space}(f(n)) \subseteq \cup_{a} \operatorname{Time}\left(a^{f(n)}\right)$.
- Since $a^{f(n)}=2^{\ell \cdot f(n)}$ for $\ell=\log a$, Space $(O(f(n))) \subseteq \operatorname{Time}\left(2^{O(f(n))}\right)$.
- This motivates attention to a larger time-complexity class:

Acceptor M is in exponential time if
M terminates in fewer than $a^{n^{k}}$ steps (some a, k).

- So we have PSpace \subseteq ExpTime
- PTime \subseteq NPTime \subseteq PSpace \subseteq ExpTime
- By the Time Hierarchy theorem PTime \subsetneq ExpTime
- So at least one containment in the chain above is strict.
- Most people believe they all are strict, but so far this has not been proved for any of the three.

PSpace and non-determinism

- What about non-deterministic PSpace (notation: NPSpace)?
- In fact NPSpace \subseteq PSpace.
- Our proof of $\operatorname{NTime}(f) \subseteq \operatorname{Space}(f)$ does not work here because a nondeterministic computation in space $f(n)$ is a tree whose branches, i.e. it different computation-traces, might go through $2^{f(n)}$ different cfgs.
- Theorem: If $f(n) \geqslant n$ then $\operatorname{NSpace}(f(n)) \subseteq$ Space $\left(f(n)^{2}\right)$.
- For given acceptor M, consider the more general property Lead $\left(c, c^{\prime}, t\right)$: M has a trace of length $\leqslant t$ from cfg c to c^{\prime}.
- An algorithm can recognize Lead $\left(c, c^{\prime}, t\right)$ by searching for an intermediate cfg m
such that $\operatorname{Lead}(c, m, t / 2)$ and $\operatorname{Lead}\left(m, c^{\prime}, t / 2\right)$.
- This yields a recursive algorithm where the recursive stack
has depth $O\left(\log \left(a^{2^{f(n)}}=O(f(n))\right.\right.$.
- The size of each cfg is $O(f(n)$, so the total size of the stack is $O\left(f(n)^{2}\right)$.
- In particular, NPSpace = PSpace.

PSpace is about alternating roles

- The Geography Game.
- Take turns proposing city names, subject to:
- No city repeating
- Each name starts with the previous' last letter.

$$
\begin{aligned}
\text { Bloomington } & \Rightarrow \text { Nashville } \\
& \Rightarrow \text { Erie } \\
& \Rightarrow \text { El Paso } \\
& \Rightarrow \text { Omaha } \\
& \Rightarrow \text { Amherst } \\
& \Rightarrow \text { Trenton } \\
& \Rightarrow \text { New York } \\
& \Rightarrow \text { Knoxville }
\end{aligned}
$$

The essence of a two-player game

- The computational core of a game is the switch between players.
- Generic players: Alice and Bob.

Alice wins if she has a first move so that
for every first move of Bob
Alice has a second move so that
for every second move of Bob
Alice has a third move so that
for every third move of Bob
Alice has a fourth move so that
for every fourth move of Bob
... Alice has a 17,019'th move that wins the game.

- Such role-changes are captured by quantified boolean expressions (QBE's).
- These are generated from 0,1 , variables, negation, conjunction, disjunction and:
- If E is a QBE, x a variable, then $\forall x E$ and $\exists x E$ are QBE's.
- $\forall x E[x]$ is true under valuation V
if both $E[0]$ and $E[1]$ are true under V.
- A QBE is prenex if it is of the form $Q_{1} x_{1} \cdots ; Q_{k} x_{k} F$
where each Q_{i} is \exists or \forall and
E is a boolean expression (no quantifiers).
- Example: The prenex expression
$\forall x \forall y \forall z((x=y) \vee(x=z) \vee(y=z))$ is true, where $x=y$) abbreviates $(x \vee \bar{y}) \wedge(\bar{x} \vee y)$.
- Every QBE can be converted into an equivalent prenex QBE of no larger size.

The problem QSAT

- A generalization of BOOL-SAT.
- Q-SAT: Given a QBE, is it satisfiable
- Equivalently:

Given a QBE without unbounded variables, is it true

- This is an equivalent formulation:

A QBE E with un-quantified variables $x_{1} \ldots x_{k}$ is satisfiable iff the $\exists x_{1} \cdots x_{k} E \quad$ is satisfiable.

Q-SAT is PSpace

- Enough to deal with prenex QBE with no un-quantified variable.
- To evaluate $\forall x \exists y \forall z F[x, y, z]$ evaluate $\exists y \forall z F[0, y, z]$ and then $\exists y \forall z F[1, y, z]$, etc.
- This is implementable in linear space.

PSPACE COMPLETENESS

Reductions between PSpace problems

- Problem \mathcal{Q} is PSpace-complete if
- \mathcal{Q} is in PSpace, and
- $\mathcal{P} \leqslant_{p} \mathcal{Q} \quad$ for every PSpace problem \mathcal{P}.
- Note that the reduction is in PTime.

A PSpace complete problem

- LBA-ACCEPTANCE:

Given an LBA M and a string w does M accept w.

- Theorem LBA-ACCEPTANCE is PSpace complete.
- It is in linear space: the universal interpreter needs only the instructions of M and the string w.
- It is complete under PTime reductions:

Suppose \mathcal{P} is in space n^{k},
i.e. some acceptor M recognizes \mathcal{P} in space $\leqslant n^{k}$ (some k),
i.e. M accepts an instance w of \mathcal{P} in $\leqslant|w|^{k}$ space.

- Let ρ map each instance w of \mathcal{P}
to the instance M, w^{\prime} of LBA-ACCEPT,
where w^{\prime} is w padded with $|w|^{k}$ blanks.
- This is a PTime mapping, and it is a reduction:

$$
\begin{aligned}
w \in \mathcal{P} & \text { IFF } M \text { accepts } w \\
& \text { IFF } M \text { accepts } w^{\prime} \text { on-site (since } M \text { is in space } n^{k} \text {) } \\
& \text { IFF } \rho(I) \in \text { LBA-ACCEPT }
\end{aligned}
$$

QSAT is PSpace hard

- Reminder from the NP-hardness of BOOL-SAT:

- Variables:
$-x_{i, q}$: the state of the i 'th cfg is q.
$-y_{i, j}$: the cursor of the i 'th cfg is at j.
$-z_{i, j, \sigma}$: the j-th tape-symbol of the i 'th cfg is σ.

So a cfg is given by the boolean values of $\vec{x}, \vec{y}, \vec{z}$.
Abbreviate this as \vec{X}.

- One can now construct a boolean expression describing the grid. Its size is polynomial in the input-size because the height of the grid is linear because we looked at linear time (after padding).

The very tall grid

- But the number of cfg's in a trace for linear space is exponential in input size!
So the grid is a very tall rectangle.
- However, we can use a recursive program as we did for Savitch's Theorem.
- Write $J_{t}\left(\vec{X}, \vec{X}^{\prime}\right)$
if $\operatorname{cfg} \vec{X}$ leads to \vec{X}^{\prime} in 2^{t} steps.
- J_{0} is D_{M}.
- Attempt for recurrence:

$$
J_{t+1}\left[\vec{X}, \vec{X}^{\prime}\right] \equiv \exists \vec{M} J_{t}[\vec{X}, \vec{M}] \wedge J_{t}\left[\vec{M}, \vec{X}^{\prime}\right]
$$

- Problem: The size of J_{t+1} is \geqslant twice the size of J_{t}.

The magic of boolean quantification

- We want J_{t} to appear only once in defining J_{t+1}.
- Take

$$
\begin{aligned}
& J_{t+1}\left[\vec{X}, \vec{X}^{\prime}\right] \equiv \exists \vec{M} \forall \vec{U}, \vec{V} \\
& \quad(\vec{U}=\vec{X} \wedge \vec{V}=\vec{M}) \vee\left(\vec{U}=\vec{M} \wedge \vec{V}=\vec{X}^{\prime}\right) \\
& \quad \rightarrow \quad J_{t}[U, V]
\end{aligned}
$$

- So the size of the QBE $J_{n^{k}}$ is $O\left(n^{k}\right)$.

LSpace: The complexity of the internet

Work-space

- How much space does a DFA use for input of size 10^{25} ?

Work-space

- How much space does a DFA use for input of size 10^{25} ?
- The computation space of a machine is the space it owns,
i.e. that it can write on.
- Example: the computation space of a phone is its local memory, not the entire internet.
- The computation space of a electronic camera is its hardware, not its field of vision.

Space complexity — redefined

- A variant of Turing machines:
- The input is read-only
- There is a read/write work-string ("work-tape").
- Actions are triggered by the cursored symbols on the two strings.
- An action is a cursor-move on one of the strings, or an overwrite of the work-cursor symbol.
- This is a trade-off between
- Extra flexibility of second string and
- less flexibility on the input string.
- Over-all computation power is the same:
- A normal Turing machine can simulate input-string + work-string as input\$work.
- A work-string machine can simulate a Turing machine by preprocessing: the input is copied into the work-string.
- The point is to represent use of space more realistically, in particular refer to sub-linear space complexity.

Example

-Recognize $\quad\left\{x\right.$ c $\left.x \mid x \in\{a, b\}^{*}\right\}$

- Single string algorithm
- Go back and forth between the strings before and after c, comparing one-symbol per cycle.
- Use markers to identify the latest compared symbols.

This algorithm is in quadratic time.

- Two-strings algorithm:
- Copy input-string to work-string up to c.
- Compare the work-string with the remaining input after $\mathrm{c} /$

This algorithm is in linear time.

Example 2: $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}$

- Previous example needs an exact match.

What if we want to match only the counts?

- Example: Recognize $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}$.
- Single-string algorithm:
- Scan the input n times to count corresponding a,bc.
- Time: quadratic.

Space: linear.

- Work-string algorithm:
- Use the work-string as a binary counter (or three in succession!) $\log n$ bits are needed.
Incrementing a count takes $\leqslant \log n$ steps.

1. Scan the input, and use the counters to count the number of a, then the number of b and of c 's, each counts in a separate counter.

- Compare the three counts. Accept if they are equal.
- Time: $O(n \cdot \log n)+O\left(\log ^{2} n\right)=O(n \cdot \log n)$. Space: $O(\log n)$

Example 2: $\quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}$

- Previous example needs an exact match.

What if we want to match counts?

- Example: recognize $\quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}$.
- Algorithm:
- Count on the work-string the number of a's, in binary; place a marker.
- Count beyond the marker the number of b's; place new marker.
- Count bend marker the number of c's.
- Compare the three counts. Accept if they are equal.
- This algorithm runs in space logarithmic in the size of the input.

Logarithmic Space

- The problems decidable in logarithmic space:

LogSpace or just \mathbf{L}.

- We have $\quad c^{d \log n}=2^{d(\log c)(\log n)}=n^{k} \quad(k=d \log c)$.
- So LogSpace \subseteq PTime.
- Conclude:
$\mathbf{L} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S p a c e} \subseteq$ ExpTime
We believe all are strict,
but none of the containments above is known for fact to be strict.

*Surfing the web

- Gigantic read-only
+ modest local storage (addresses, auxiliary computing) is all around.
- So LogSpace is nowadays the most important complexity class.
- Multi-cursor two-way automata are a natural model
of computing over large data.
- Example: with two cursors we can recognize $\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$ (which is not regular).
- With three cursors we can recognize $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}$, which is not CF.
- A multi-cursor automaton can be simulated in log-space using addresses for the cursors.
- Theorem (Hartmanis) (~1960)

A language is in L
iff it is recognized by a multi-cursor two-way automaton.

- \Longleftarrow : We have seen that a multi-cursor automaton can be simulated in log-space.
$\bullet \Longrightarrow$: Simulate a Turing acceptor M over $\{0,1\}$
operating in space $k \cdot \log n$
by a k-cursor automaton.
- Example: Input is $w=00010110$ (length 8).

Work-string x is of size $O(\log n)$, say size 3 .
A dedicated cursor on w keeps track of the binary value coded by x.
E.g., if $x=110$, i.e. binary for 6 , then the dedicated cursor would be at the sixth position of the input string:
00010110

- Another dedicated cursor keeps track of the position of the work cursor of M :
If M 's work-string is 110 (the cursor at second position), then this dedicated cursor would be at the second position of the input string: $\mathbf{0} \mathbf{0} 010110$.
- Simulating an overwrite by M on the work-string requires additional cursors to keep track of powers of two.

