# **SYMBOLIC COMPUTING**

#### **Rewrite rules**

#### Symbolic computing

Strings over an alphabet, jointly represent data and action. There are *no states.* 

• The operational engine (analogous to Turing's transition function) is the *rewrite rules,* also called productions.

#### **Rewrite rules**

#### Symbolic computing

Strings over an alphabet, jointly represent data and action. There are *no states.* 

- The operational engine (analogous to Turing's transition function) is the *rewrite rules*, also called productions.
- A *rewrite-rule* is of the form  $z \rightarrow y$  where z, y are strings.
- z is the **source** of the production, and y its **target**.
- A finite set of rewrite rules is a *rewrite system*.

 $0 \land 0 \rightarrow 0$  $0 \land 1 \rightarrow 0$  $1 \land 0 \rightarrow 0$  $1 \land 1 \rightarrow 1$ 

$$\begin{array}{lll} 0 \wedge 0 \rightarrow 0 & 0 \vee 0 \rightarrow 0 \\ 0 \wedge 1 \rightarrow 0 & 0 \vee 1 \rightarrow 1 \\ 1 \wedge 0 \rightarrow 0 & 1 \vee 0 \rightarrow 1 \\ 1 \wedge 1 \rightarrow 1 & 1 \vee 1 \rightarrow 1 \end{array}$$

| $0 \wedge 0 \rightarrow 0$ | $0 \lor 0 \rightarrow 0$ | $-0 \rightarrow 1$ | $(0) \rightarrow 0$ |
|----------------------------|--------------------------|--------------------|---------------------|
| $0 \wedge 1 \rightarrow 0$ | $0 \lor 1 \rightarrow 1$ | $-1 \rightarrow 0$ | $(1) \rightarrow 1$ |
| $1 \land 0 \rightarrow 0$  | $1 \lor 0 \rightarrow 1$ |                    |                     |
| $1 \wedge 1 \rightarrow 1$ | $1 \lor 1 \rightarrow 1$ |                    |                     |

## **Reductions and derivations**

- Given a rewrite system R, we say that w reduces to w', and write  $w \Rightarrow_R w'$ , if w' is w with substring u replaced by u', here  $u \rightarrow u'$  is a rule. We omit the subscript R when clear.
- Reductions are analogous to the yield relation between machine's configurations.

## **Reductions and derivations**

• Given a rewrite system R, we say that w reduces to w', and write  $w \Rightarrow_R w'$ , if w' is w with substring u replaced by u', here  $u \rightarrow u'$  is a rule. We omit the subscript R when clear.

- Reductions are analogous to the yield relation between machine's configurations.
- A derivation in R is a sequence

 $w_0, w_1, w_2, ... w_k$ 

where  $w_i \in \Gamma$  and  $w_i \Rightarrow_R w_{i+1}$  for i < k.

This derivation is of  $w_k$  from  $w_0$ .

## **Reductions and derivations**

• Given a rewrite system R, we say that w reduces to w', and write  $w \Rightarrow_R w'$ , if w' is w with substring u replaced by u', here  $u \rightarrow u'$  is a rule. We omit the subscript R when clear.

- Reductions are analogous to the yield relation between machine's configurations.
- A derivation in R is a sequence

 $w_0, w_1, w_2, ... w_k$ 

where  $w_i \in \Gamma$  and  $w_i \Rightarrow_R w_{i+1}$  for i < k.

This derivation is of  $w_k$  from  $w_0$ .

• Derivations are analogous to computation traces of machines.

F23

A derivation in our boolean rewrite-system:

```
((0) \land (1)) \lor (1)
\Rightarrow (0 \land (1)) \lor (1)
\Rightarrow (0 \land 1) \lor (1)
\Rightarrow (0) \lor (1)
\Rightarrow 0 \lor (1)
\Rightarrow 0 \lor 1
\Rightarrow 1
```

A derivation in our boolean rewrite-system:

```
((0) \land (1)) \lor (1)

\Rightarrow (0 \land (1)) \lor (1)

\Rightarrow (0 \land 1) \lor (1)

\Rightarrow (0) \lor (1)

\Rightarrow 0 \lor (1)

\Rightarrow 0 \lor 1

\Rightarrow 1
```

• Here we ended up with the *irreducible* string 1, which cannot be reduced further.

## Grammars

- Rewrite systems can be transducers, acceptors, or generators.
- A rewrite system that generates a language is a grammar.
- A grammar consists of

## Grammars

- Rewrite systems can be transducers, acceptors, or generators.
- A rewrite system that generates a language is a grammar.
- A grammar consists of
  - An input alphabet  $\Sigma$ . (We say that G is *over*  $\Sigma$ ).
  - A finite set V of fresh symbols (not in  $\Sigma$ ), dubbed variables. (We write  $\Gamma$  for  $\Sigma \cup V$ .)
  - ► A distinguished *initial-variable*. Default: S.

## Grammars

- Rewrite systems can be transducers, acceptors, or generators.
- A rewrite system that generates a language is a grammar.
- A grammar consists of
  - An input alphabet  $\Sigma$ . (We say that G is *over*  $\Sigma$ ).
  - A finite set V of fresh symbols (not in  $\Sigma$ ), dubbed variables. (We write  $\Gamma$  for  $\Sigma \cup V$ .)
  - ► A distinguished *initial-variable*. Default: S.
  - A finite set R of rewrite rules, called **productions.** These are of the form  $w \to t$

where *w* has *at least one non-terminal.* 

Take  $\Sigma = \{a, b\}$  and  $V = \{S\}$ .

1. Two productions:  $S \rightarrow a$  and  $S \rightarrow bb$ .

Take  $\Sigma = \{a, b\}$  and  $V = \{S\}$ .

- 1. Two productions:  $S \rightarrow a$  and  $S \rightarrow bb$ .
- 2. Two productions:  $S \rightarrow \varepsilon$  and  $S \rightarrow aS$

Take  $\Sigma = \{a, b\}$  and  $V = \{S\}$ .

- 1. Two productions:  $S \rightarrow a$  and  $S \rightarrow bb$ .
- 2. Two productions:  $S \rightarrow \varepsilon$  and  $S \rightarrow aS$
- 3. A non-example: rewrite rules  $a \rightarrow ab$  and  $b \rightarrow ba$ .

#### Each grammar generates a language

• Let  $G = (\Sigma, V, S, R)$  be a grammar.  $w \in \Sigma^*$  is *derived* in *G* if it is derived from S.

• The **language generated by** G is

 $\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$ 

• Grammar G has productions  $S \to a$  and  $S \to b$ .  $\mathcal{L}(G) = \{a, b\}.$ 

- Grammar G has productions  $S \to a$  and  $S \to b$ .  $\mathcal{L}(G) = \{a, b\}.$
- Grammar G has productions  $S \rightarrow aS$  and  $S \rightarrow b$ .
- Some derivations:

$$S \Rightarrow b$$

$$S \Rightarrow aS \Rightarrow ab$$

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aab$$

- Grammar G has productions  $S \to a$  and  $S \to b$ .  $\mathcal{L}(G) = \{a, b\}.$
- Grammar G has productions  $S \rightarrow aS$  and  $S \rightarrow b$ .
- Some derivations:

$$S \Rightarrow b$$
  
 $S \Rightarrow aS \Rightarrow ab$   
 $S \Rightarrow aS \Rightarrow aaS \Rightarrow aab$   
•  $\mathcal{L}(G) = \{a^n \cdot b \mid n \ge 0\} = \mathcal{L}(a^* \cdot b).$ 

- Grammar G has productions  $S \to a$  and  $S \to b$ .  $\mathcal{L}(G) = \{a, b\}.$
- Grammar G has productions  $S \rightarrow aS$  and  $S \rightarrow b$ .
- Some derivations:

$$S \Rightarrow \mathbf{b}$$
$$S \Rightarrow \mathbf{a}S \Rightarrow \mathbf{a}\mathbf{b}$$
$$S \Rightarrow \mathbf{a}S \Rightarrow \mathbf{a}aS \Rightarrow \mathbf{a}a\mathbf{b}$$

- $\mathcal{L}(G) = \{ a^n \cdot b \mid n \ge 0 \} = \mathcal{L}(a^* \cdot b).$
- How to formally prove this?

- Grammar G has productions  $S \to a$  and  $S \to b$ .  $\mathcal{L}(G) = \{a, b\}.$
- Grammar G has productions  $S \rightarrow aS$  and  $S \rightarrow b$ .
- Some derivations:

$$S \Rightarrow b$$

$$S \Rightarrow aS \Rightarrow ab$$

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aab$$

- $\mathcal{L}(G) = \{ a^n \cdot b \mid n \ge 0 \} = \mathcal{L}(a^* \cdot b).$ 
  - By induction every string  $a^n$  is generated.
  - By induction  $S \Rightarrow_{G}^{n+1} w$  implies that w is either  $a^{n}b$  or  $a^{n+1}S$ .

• *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .

- *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .
- $\mathcal{L}(G) = ?$

- *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .
- $\mathcal{L}(G) = \mathcal{L}(a^*b^*)$

- *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .
- $\mathcal{L}(G) = \mathcal{L}(a^*b^*)$
- $S \rightarrow aSb$  and  $S \rightarrow \varepsilon$  .

- *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .
- $\mathcal{L}(G) = \mathcal{L}(a^*b^*)$
- ${\scriptstyle \bullet } S \rightarrow {\rm a} S {\rm b} \quad {\rm and} \quad S \rightarrow \varepsilon \quad .$
- Some derivations:

 $S \Rightarrow \varepsilon$   $S \Rightarrow aSb \Rightarrow ab$   $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$   $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$ 

- *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .
- $\mathcal{L}(G) = \mathcal{L}(a^*b^*)$
- ${\scriptstyle \bullet } S \rightarrow {\rm a} S {\rm b} \quad {\rm and} \quad S \rightarrow \varepsilon \quad .$
- Some derivations:

 $S \Rightarrow \varepsilon$   $S \Rightarrow aSb \Rightarrow ab$   $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$   $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$ 

•  $\mathcal{L}(G) = ?$ 

- *G*'s productions are  $S \to aS$ ,  $S \to Sb$  and  $S \to \varepsilon$ .
- $\mathcal{L}(G) = \mathcal{L}(a^*b^*)$
- $S \rightarrow aSb$  and  $S \rightarrow \varepsilon$  .
- Some derivations:

$$S \Rightarrow \varepsilon$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbb \Rightarrow aaabbb$$

$$\cdot \mathcal{L}(G) = \{a^{n}b^{n} \mid n \ge 0\}. \text{ A non-regular language!}$$

# **CONTEXT FREE GRAMMARS**

## Context-free grammars

- A *context-free grammar (CFG)* is a grammar where every source is *a single non-terminal*.
- All grammars we've seen so far are context-free.
- A language generated by a CFG is a *context-free language (CFL).*
- Context-free grammars are also called *inductive grammars.*
- A convention: bundle rules with a common source as in  $S \rightarrow a S b \mid \epsilon$ .

The vertical line abbreviates "or".

#### **Example:** palindromes

- Let P be the initial non-terminal.
- Productions:

$$\begin{array}{rrrr} P & \rightarrow & aPa \\ P & \rightarrow & bPb \\ P & \rightarrow & a \\ P & \rightarrow & b \\ P & \rightarrow & \varepsilon \end{array}$$

• In BNF format:  $P \rightarrow aPa \mid bPb \mid a \mid b \mid \epsilon$ 

- Similar grammar for palindromes over the entire Latin alphabet. We have then  $2 \cdot 26 + 1 = 53$  productions.
- Using the more economical grammar

is wrong, because the two L's in LPS should be the same.

• But we can use a modular description of the correct grammar above:

 $P \quad \rightarrow \quad \sigma P \sigma \mid \sigma \mid \varepsilon \quad (\sigma \in \Sigma)$ 

## CFLs for natural languages

- *The bone ate the dog* is grammatically correct English *The dog the bone ate* is not
- There is a context-free grammar that generates exactly the grammatically correct sentences in English!
- Not 100% for all languages, more sophisticated formalisms are needed.
Alphabet ∑ consists of the six "symbols": dog, apple, eats, loves, big, and green.

- Alphabet Σ consists of the six "symbols": dog, apple, eats, loves, big, and green.
- Nonterminals:
  - S for sentences,
  - *P* for noun-phrases
  - $\boldsymbol{N}$  for nouns
  - $\boldsymbol{V}$  for verbs
  - A for adjectives.

- Alphabet ∑ consists of the six "symbols": dog, apple, eats, loves, big, and green.
- The productions are  $S \rightarrow PVP$  $P \rightarrow N \mid AP$  $N \rightarrow \text{dog} \mid \text{apple}$  $V \rightarrow \text{eats} \mid \text{loves}$  $A \rightarrow \text{big} \mid \text{green}$
- This grammar generates big dog eats green apple and big green big apple loves green dog but not eats big dog apple loves.

- Alphabet ∑ consists of the six "symbols": dog, apple, eats, loves, big, and green.
- The productions are  $S \rightarrow PVP$  $P \rightarrow N \mid AP$  $N \rightarrow \text{dog} \mid \text{apple}$  $V \rightarrow \text{eats} \mid \text{loves}$  $A \rightarrow \text{big} \mid \text{green}$
- This grammar generates big dog eats green apple and big green big apple loves green dog but not eats big dog apple loves.

#### The Context-Freedom Theorem

- Intuitively clear: context-free productions guarantee a separation between descendents of one occurrence of a variable and descendents of another.
- This is captured more formally by the

#### **Context-Freedom Theorem**.

Let  $G = (\Sigma, N, S, R)$  be a CFG,  $\Gamma = \Sigma \cup N$ . For strings  $u_0, u_1 \in \Gamma^*$ , if  $u_0 \cdot u_1 \Rightarrow^* v$ then  $v = v_0 \cdot v_1$  where  $u_0 \Rightarrow^* v_0$  and  $u_1 \Rightarrow^* v_1$ .

• We prove by induction on n that if  $u_0 \cdot u_1 \Rightarrow^n v$  then the conclusion above holds.

### Symmetries in CFL

- CFGs often generate languages with symmetries (eg palindromes!).
- The language of balanced parentheses, e.g. (())() is balanced, (()( is not.
- The alphabet: just left- and right-parentheses: ( and ),
- Productions:  $S \rightarrow SS \mid (S) \mid \varepsilon$

• Each CFG describes a generative process: A variable X names the language generated from X.

- Each CFG describes a generative process: A variable X names the language generated from X.
- Here's a CFG  $G_{a=b}$  that generates  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$

- Each CFG describes a generative process:
   A variable X names the language generated from X.
- Here's a CFG  $G_{a=b}$  that generates  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$ 
  - Let A name  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w) + 1\}$ , and B name  $\{w \in \Sigma^* \mid \#_b(w) = \#_a(w) + 1\}$ .

- Each CFG describes a generative process: A variable *X* names the language generated from *X*.
- Here's a CFG  $G_{a=b}$  that generates  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$ 
  - Let A name  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w) + 1\}$ , and B name  $\{w \in \Sigma^* \mid \#_b(w) = \#_a(w) + 1\}$ .
  - The productions of  $G_{a=b}$  are

$$S \rightarrow \varepsilon \mid aB \mid bA$$
$$A \rightarrow aS \mid bAA$$
$$B \rightarrow bS \mid aBB$$

- Each CFG describes a generative process: A variable *X* names the language generated from *X*.
- Here's a CFG  $G_{a=b}$  that generates  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$ 
  - Let A name  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w) + 1\}$ , and B name  $\{w \in \Sigma^* \mid \#_b(w) = \#_a(w) + 1\}$ .
  - The productions of  $G_{a=b}$  are

$$S \rightarrow \varepsilon \mid aB \mid bA$$

$$A \rightarrow aS \mid bAA$$

$$B \rightarrow bS \mid aBB$$

$$\mathcal{L}(G_{a=b}) = \{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$$

- Each CFG describes a generative process:
   A variable X names the language generated from X.
- Here's a CFG  $G_{a=b}$  that generates  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$ 
  - Let A name  $\{w \in \Sigma^* \mid \#_a(w) = \#_b(w) + 1\}$ , and B name  $\{w \in \Sigma^* \mid \#_b(w) = \#_a(w) + 1\}$ .
  - The productions of  $G_{a=b}$  are

$$S \rightarrow \varepsilon \mid aB \mid bA$$
$$A \rightarrow aS \mid bAA$$
$$B \rightarrow bS \mid aBB$$

•  $\mathcal{L}(G_{a=b}) = \{ w \in \Sigma^* \mid \#_a(w) = \#_b(w) \}$ 

• Exercise: The grammar with productions  $S \rightarrow b \mid aSS$ generates the strings with  $\#_b > \#_a$  but  $\#_b \leq \#_a$  for all properprefixes.

• Let  $\Sigma = \{a, bc\}$ . We shall see later that  $L_{a=b=c} = \{w \in \Sigma^* \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ is not CF.

• Let  $\Sigma = \{a, bc\}$ . We shall see later that  $L_{a=b=c} = \{w \in \Sigma^* \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ is not CF.

Consider the grammar

$$S \rightarrow \varepsilon \mid SABC$$
  
  $A \rightarrow a, \quad B \rightarrow b, \quad C \rightarrow c$ 

• It generates the strings  $(abc)^n$ .

• Let  $\Sigma = \{a, bc\}$ . We shall see later that  $L_{a=b=c} = \{w \in \Sigma^* \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ is not CF.

Consider the grammar

$$S \rightarrow \varepsilon \mid SABC$$
  
  $A \rightarrow a, \quad B \rightarrow b, \quad C \rightarrow c$ 

- It generates the strings  $(abc)^n$ .
- Add the productions  $AB \rightarrow BA$ ,  $AC \rightarrow CA$   $BC \rightarrow CB$ .  $BA \rightarrow AB$ ,  $CA \rightarrow AC$   $CB \rightarrow BC$ . Yes, these are **not** context-free!

• Let  $\Sigma = \{a, bc\}$ . We shall see later that  $L_{a=b=c} = \{w \in \Sigma^* \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ is not CF.

• Consider the grammar

$$S \rightarrow \varepsilon \mid SABC$$
  
  $A \rightarrow a, \quad B \rightarrow b, \quad C \rightarrow c$ 

- It generates the strings  $(abc)^n$ .
- Add the productions  $AB \rightarrow BA$ ,  $AC \rightarrow CA$   $BC \rightarrow CB$ .  $BA \rightarrow AB$ ,  $CA \rightarrow AC$   $CB \rightarrow BC$ . Yes, these are **not** context-free!
- This extended grammar generates  $L_{a=b=c}$

#### Multiple symmetries

- $\{a^n b^n c^k \mid n, k \ge 0\}$
- $\{a^n b^n a^k b^k \mid n, k \ge 0\}$
- $\{a^n b^{n+k} a^k \mid n, k \ge 0\}$
- $\{a^n b^k c^{n+k} \mid n, k \ge 0\}$
- $\{a^n b^k a^k b^n \mid n, k \ge 0\}$
- $\{a^n b^{n+k} c^{k+m} d^m \mid n, k, m \ge 0\}$

# **Regular languages are CFLs**

• We show that every regular language us CF.

- We show that every regular language us CF.
- We use the generative definition of the strincly regular languages. Their definition as strictly-regular languages is simplifying this.

- We show that every regular language us CF.
- We use the generative definition of the strincly regular languages. Their definition as strictly-regular languages is simplifying this.
- Recall that the strictly-regular languages over  $\Sigma$  are generated by:
  - 1. The rivial languages  $\emptyset$ ,  $\{\varepsilon\}$ ,  $\{\sigma\}$   $(\sigma \in grS)$  are strictly-regular.
  - 2. The union, concatenation, and star of strictly-regular languaes are strictly regular.

- We show that every regular language us CF.
- We use the generative definition of the strincly regular languages. Their definition as strictly-regular languages is simplifying this.
- Recall that the strictly-regular languages over  $\Sigma$  are generated by:
  - 1. The rivial languages  $\emptyset$ ,  $\{\varepsilon\}$ ,  $\{\sigma\}$   $(\sigma \in grS)$  are strictly-regular.
  - 2. The union, concatenation, and star of strictly-regular languaes are strictly regular.
- We show that all such languages are CF by induction on this generative definition.

# The trivial languages are CF

• Ø :

# The trivial languages are CF

- $\emptyset$  : Generated by the CFG  $S \to S$ .
- $\{\varepsilon\}$  :

# The trivial languages are CF

- $\emptyset$  : Generated by the CFG  $S \rightarrow S$ .
- $\{\varepsilon\}$  : Generated by  $S \to \varepsilon$ .
- {a} :

#### Closure under union, concatenation, star

Refer to CFGs and the languages they generated:

 $L_0 = \mathcal{L}(G_0)$  and  $L_1 = \mathcal{L}(G_1)$  where  $G_i = (\Sigma, V_i, S_i, R_i)$ .

We may assume that  $G_0$  and  $G_1$  have no variable in common: renaming a grammar's variables does not change the language generated.

#### Closure under union

•  $L_0 \cup L_1$  is generated by  $(\Sigma, V \cup V' + S, S, R)$ where S is a fresh variable and R is  $R_0 \cup R_1$  augmented with the production  $S \to S_0 \mid S_1$ .

#### Closure under union

- $L_0 \cup L_1$  is generated by  $(\Sigma, V \cup V' + S, S, R)$ where S is a fresh variable and R is  $R_0 \cup R_1$  augmented with the production  $S \to S_0 \mid S_1$ .
- *G* generates each  $w \in L_0 \cup L_1$ .

#### **Closure under union**

- $L_0 \cup L_1$  is generated by  $(\Sigma, V \cup V' + S, S, R)$ where S is a fresh variable and R is  $R_0 \cup R_1$  augmented with the production  $S \to S_0 \mid S_1$ .
- *G* generates each  $w \in L_0 \cup L_1$ .
- Conversely, a derivation D in G for  $S \Rightarrow_G w$ must start with  $S \rightarrow S_0$  or  $S \rightarrow S_1$  and proceed with either a derivation in  $G_0$  or a derivation in  $G_1$ , since  $V_0 \cap V_1 = \emptyset$ .

### **Closure under concatenation**

•  $L_0 \cdot L_1$  is generated by  $(\Sigma, V \cup V' + S, S, R)$ where S is a fresh variable and R is  $R_0 \cup R_1$  augmented with the production  $S \to S_0 S_1$ .

#### **Closure under concatenation**

- $L_0 \cdot L_1$  is generated by  $(\Sigma, V \cup V' + S, S, R)$ where S is a fresh variable and R is  $R_0 \cup R_1$  augmented with the production  $S \to S_0 S_1$ .
- *G* generates each  $w \in L_0 \cdot L_1$ .

#### **Closure under concatenation**

- $L_0 \cdot L_1$  is generated by  $(\Sigma, V \cup V' + S, S, R)$ where S is a fresh variable and R is  $R_0 \cup R_1$  augmented with the production  $S \to S_0 S_1$ .
- *G* generates each  $w \in L_0 \cdot L_1$ .
- Conversely, a derivation D in G for  $S \Rightarrow_G w$ must start with  $S \rightarrow S_0 \cdot S_1$ , and by the Context-freedom Theorem we have  $w = w_0 \cdot w_1$  with D a merge of a derivation of  $w_0$  from  $S_0$  and a derivation of  $w_1$  from  $S_1$ .

#### Closure under star

•  $L_0^*$  is generated by  $(\Sigma, V_0 + S, S, R)$ where S is a fresh variable and R is  $R_0$  augmented with the production  $S \to S_0 S \mid \varepsilon$ .

#### Closure under star

L<sub>0</sub><sup>\*</sup> is generated by (Σ, V<sub>0</sub> + S, S, R) where S is a fresh variable and R is R<sub>0</sub> augmented with the production S → S<sub>0</sub>S | ε.
G generates each w ∈ L<sub>0</sub><sup>\*</sup>. By induction on k each w = w<sub>1</sub> ⋅ w<sub>k</sub> (w<sub>i</sub> ∈ L<sub>0</sub>) is derived: For k = 0 the string w = ε is derived outright. And S ⇒ w<sub>1</sub> ⋅ ... w<sub>k</sub> for each w<sub>1</sub>, ... w<sub>k</sub> ∈ L<sub>0</sub> then S ⇒ w<sub>1</sub> ⋅ ... w<sub>k</sub> ⋅ w<sub>k+1</sub> is derived by reducing S to S<sub>0</sub> ⇒ S and combining a derivation in G for S ⇒ w<sub>1</sub> ⋅ ... w<sub>k</sub> with a derivation in G<sub>0</sub> of w<sub>k+1</sub>.

#### **Closure under star**

L<sub>0</sub><sup>\*</sup> is generated by (Σ, V<sub>0</sub> + S, S, R) where S is a fresh variable and R is R<sub>0</sub> augmented with the production S → S<sub>0</sub>S | ε.
G generates each w ∈ L<sub>0</sub><sup>\*</sup>. By induction on k each w = w<sub>1</sub> ⋅ w<sub>k</sub> (w<sub>i</sub> ∈ L<sub>0</sub>) is derived: For k = 0 the string w = ε is derived outright. And S ⇒ w<sub>1</sub> ⋅ ... w<sub>k</sub> for each w<sub>1</sub>, ... w<sub>k</sub> ∈ L<sub>0</sub> then S ⇒ w<sub>1</sub> ⋅ ... w<sub>k</sub> ⋅ w<sub>k+1</sub> is derived by reducing S to S<sub>0</sub> ⇒ S and combining a derivation in G for S ⇒ w<sub>1</sub> ⋅ ... w<sub>k</sub> with a derivation in G<sub>0</sub> of w<sub>k+1</sub>.

• For the converse use induction on derivation length,

If D is a derivation in G for  $S \Rightarrow w$  then it must start with  $S \rightarrow S_0 S$ , By the Context-Freedom Theorem  $w = u \cdot v$  where  $S_0 \Rightarrow u$  and  $S \rightarrow v$ . We have  $u \in L_0$  and by IH  $v \in L_0^*$ . SO  $w \in L_0^*$ .

F23

#### Regular languages are context-free

- The trivial finite languages are CF.
- The CFLs are closed under union, concatenation and star.
- By induction on the definition of regular languages: *Theorem. Every regular language is CF*
- But not every CFL is regular:  $\{a^nb^n \mid n \ge 0\}$  is CF.
# Parsing

#### **Parse-trees**

- Computation traces capture the nature of procedural computing by a mathematical machine.
- But a formal derivation by a grammar G conveys an order that is not part of the intended generative prcess.

• Recall CFG for balanced parentheses:  $S \rightarrow \varepsilon \mid SS \mid (S)$ 

- Recall CFG for balanced parentheses:  $S \rightarrow \varepsilon \mid SS \mid (S)$
- A derivation for the string ()(()):

 $S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$ 

- Recall CFG for balanced parentheses:  $S \rightarrow \varepsilon \mid SS \mid (S)$
- A derivation for the string ()(()):  $S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$
- Represented as a tree with terminals for leaves and variables for internal nodes:



- Recall CFG for balanced parentheses:  $S \rightarrow \varepsilon \mid SS \mid (S)$
- A derivation for the string ()(()):  $S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$
- Represented as a tree with terminals for leaves and variables for internal nodes:



• This is a *derivation-tree,* or *pars-tree* (of the grammar G for the string w).



3

• The parse-tree can be built using the derivation above:

• The parse-tree can be built using the derivation above:



• The parse-tree is more important than the derivation. Different derivations for the same tree are *equivalent*. E.g. besides  $S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$ we also have  $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$ 





- The parse-tree is more important than the derivation. Different derivations for the same tree are *equivalent*. E.g. besides  $S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$ we also have  $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()((S)) \Rightarrow ()(())$
- The latter is the *leftmost-derivation* for the tree, obtained by repeatedly expanding the leftmost variable.

#### Another example

- Grammar  $G: S \rightarrow AA \mid bAA, A \rightarrow bA \mid Ab \mid a$
- A derivation of **baab** :

 $S \Rightarrow_G AA \Rightarrow_G bAA \Rightarrow_G bAAb \Rightarrow_G bAab \Rightarrow_G baab$ 

• The corresponding derivation tree:



The leftmost derivation for this is

 $S \Rightarrow_G AA \Rightarrow_G bAA \Rightarrow_G baA \Rightarrow_G baAb \Rightarrow_G baab$ 



The leftmost derivation for this parse-tree:

$$S \Rightarrow_G bAA \Rightarrow_G baA \Rightarrow_G baAb \Rightarrow_G baab$$

#### Ambiguous grammars

- A derivation-tree usually represents several derivations.
  Can a grammar have different derivation-<u>trees</u> for the same string?
- We have already seen one:  $S \rightarrow SS \mid (S) \mid \epsilon$ .



And natural languages are full of ambiguities:

Jane welcomed the man with a dog Jane welcomed the man with a dog

#### Familiar example: Arith w/o parentheses

Alphabet {a, b, +, ×},
 Grammar *G* with production rules:

$$S \to S + S \mid S \times S \mid a \mid b$$

• Two different derivations of G for the string  $a+b\times a+b$ .

| $S \Rightarrow S + S$   | $S \Rightarrow S \times S$   |
|-------------------------|------------------------------|
| $\Rightarrow$ a+S       | $\Rightarrow S + S \times S$ |
| $\Rightarrow$ a+S × S   | $\Rightarrow$ a+S × S        |
| $\Rightarrow$ a+b × S   | $\Rightarrow$ a+b×S          |
| $\Rightarrow$ a+b×S+S   | $\Rightarrow$ a+b×S+S        |
| $\Rightarrow$ a+b × a+S | $\Rightarrow$ a+b × a+S      |
| $\Rightarrow$ a+b×a+b   | $\Rightarrow$ a+b × a+b      |

F23

# Dual-clipping in CFLs

- The Clipping Theorem is based on the observation that if M is a k-state DFA then any trace of M of length  $\geq k$  has some state q repeating.
- And a substring y leading from one occurrence of q to another may be short-circuited, yielding the acceptance of a clipped string.

### Dual-clipping in CFLs

- The Clipping Theorem is based on the observation that if M is a k-state DFA then any trace of M of length  $\geq k$  has some state q repeating.
- And a substring y leading from one occurrence of q to another may be short-circuited, yielding the acceptance of a clipped string.
- This does not work as stated for for CFLs. But why?

## Dual-clipping in CFLs

- The Clipping Theorem is based on the observation that if M is a k-state DFA then any trace of M of length  $\geq k$  has some state q repeating.
- And a substring y leading from one occurrence of q to another may be short-circuited, yielding the acceptance of a clipped string.
- This does not work as stated for for CFLs. But why?
- Whereas a DFA accepts a string *w* by a "horizobntal" scan, a CFG generates *w* by a parse-tree for it.
  Here the repetition is "vertical":

A variable repeats on a *branch* of the parse-tree.



• The portions of the parse-tree generated by the upper **A**, but not the lower one, can be "clipped-off" the tree:



• The portion generated from the lower **A** remains:



• The lower **A** can be identified with the upper one, by lifting the subtree it generates:



• The lower **A** can be identified with the upper one, by lifting the subtree it generates:



• Dual-clipping Theorem for CFLs (informal summary)

• Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then every sufficiently long  $w \in L$  has two disjoint substrings, not both empty, and not too far apart, that can be clipped off w to yield a string  $w' \in L$ .

• Core idea: variable repeating on a branch.

• **Dual-clipping Theorem for CFLs** (informal summary)

- Core idea: variable repeating on a branch.
- We'll also need to
  - 1. Give conditions that guarantee such a repetition

• **Dual-clipping Theorem for CFLs** (informal summary)

- Core idea: variable repeating on a branch.
- We'll also need to
  - 1. Give conditions that guarantee such a repetition
  - 2. Ensure that the clipping obtained is non-empty

• **Dual-clipping Theorem for CFLs** (informal summary)

- Core idea: variable repeating on a branch.
- · We'll also need to
  - 1. Give conditions that guarantee such a repetition
  - 2. Ensure that the clipping obtained is non-empty
  - 3. Obtain two clipped substrings that are "not too far apart".

#### A repeated variable on a branch

• Suppose T is a parse-tree of a CFG G for w with variable A repeating on a branch.



• The lower occurrence of A generates a substring x.



• The upper occurrence of A generates a substring  $y_0 x y_1$ .



• Eliminating  $y_0$  and  $y_1$  yields a parse-tree except for the branch-segment between the two occurrences of A.



• So lifting the derivation from the lower occurrence of A...



• ... results in a parse-tree for the input string with the substrings  $y_0$  and  $y_1$  clipped off.



• Naming the "outer" substrings of the input  $w_0$  and  $w_1$ , the input w is  $w_0 \cdot y_0 \cdot x \cdot y_1 \cdots w_1$  for some  $w_0, w_1$ , and the resulting (clipped) string,  $w_0 \cdot x \cdot w_1$ , is also in L.

#### Ensuring a repeated variable

- Let m be the number of variables of G.
- So there are at least m + 1 variables on the branch for just m different variables in G.
- Some variable must be repeating!

#### Deriving a long string requires repetition

- Say that a production  $X \to \sigma_1 \cdots \sigma_\ell$  has *length*  $\ell$  and that the *degree* of a grammar is the maximal length of its productions.
- A binary tree of height h has  $\leq 2^h$  leaves. Generally, a tree of degree d has  $\leq d^h$  leaves.
- For a grammar of degree d and m variables any string with a parse-tree of height  $\leq m$  is  $d^m$ .
- So a parse-tree for a string of length  $> d^m$  must have a branch with > m variables, which therefore has a variable repeating.

### Ensuring non-vacuous clipping

- What if the clipped  $y_0, y_1$  are both empty?
- Then we obtained a smaller parse-tree for w !
- If we just start with a parse-tree of G for wwith a minimal number of nodes (no smaller parse-tree for w) then at least one of  $y_0, y_1$  is non-empty.
# Bounding $|y_0 \cdot x \cdot y_1|$

- Claim: There must be a  $y_0 \cdot x \cdot y_1$  of length  $\leq d^m$ .
- Take a lowermost pair of a variable repeating: there can be then no repetition on a branch under the upper occurrence.



• Then  $|y_0 \cdot x \cdot y_1| \leq k$ .

Dual-clipping Theorem for CFLs (Formal statement)

- Theorem. Let G be a CFG over  $\Sigma$  with m variables and of degree d (all productions are of length  $\leq d$ .
  - If  $w \in \mathcal{L}(G)$  has length  $\geq k = d^m$
  - ▶ then w has a substring p of length  $\leq k$ , with disjoint substrings  $y_0, y_1$  not both empty, such that the string w' obtained from w by removing  $y_0$  and  $y_1$ is also in L.

**Dual-clipping Theorem for CFLs** (Formal statement)

- Theorem. Let G be a CFG over  $\Sigma$  with m variables and of degree d (all productions are of length  $\leq d$ .
  - If  $w \in \mathcal{L}(G)$  has length  $\geq k = d^m$
  - ▶ then w has a substring p of length  $\leq k$ , with disjoint substrings  $y_0, y_1$  not both empty, such that the string w' obtained from w by removing  $y_0$  and  $y_1$ is also in L.
- Stated formally: w can be factored as  $w = w_0 \cdot y_0 \cdot x \cdot y_1 \cdot w_1$ , where  $y_0, y_1$  are not both empty and  $|y_0 \cdot x \cdot y_1| \leq k$ , so that  $w_0 \cdot x \cdot w_1 \in L$ .

Dual-clipping Theorem for CFLs (Formal statement)

- Theorem. Let G be a CFG over  $\Sigma$  with m variables and of degree d (all productions are of length  $\leq d$ .
  - If  $w \in \mathcal{L}(G)$  has length  $\geq k = d^m$
  - ▶ then w has a substring p of length  $\leq k$ , with disjoint substrings  $y_0, y_1$  not both empty, such that the string w' obtained from w by removing  $y_0$  and  $y_1$ is also in L.
- Stated formally: w can be factored as  $w = w_0 \cdot y_0 \cdot x \cdot y_1 \cdot w_1$ , where  $y_0, y_1$  are not both empty and  $|y_0 \cdot x \cdot y_1| \leq k$ , so that  $w_0 \cdot x \cdot w_1 \in L$ .
- We refer to  $k = d^m$  as G 's clipping constant, and to p as the critical substring.

# A Dual-clipping Property

- We rephrase the Dual-clipping Theorem in terms of a language property.
- Say that a language *L* has the *Dual-clipping Property* if there is a *k* such that every *w* ∈ *L* of length ≥ *k* has a substring *y*<sub>0</sub> · *x* · *y*<sub>1</sub> of length ≤ *k* with *y*<sub>0</sub>*y*<sub>1</sub> ≠ *ε*, for which the string *w*' obtained from *w* by removing *y*<sub>0</sub> and *y*<sub>1</sub> is also in *L*.

# A Dual-clipping Property

- We rephrase the Dual-clipping Theorem in terms of a language property.
- Say that a language L has the Dual-clipping Property if there is a k such that every w ∈ L of length ≥ k has a substring y<sub>0</sub> ⋅ x ⋅ y<sub>1</sub> of length ≤ k with y<sub>0</sub>y<sub>1</sub> ≠ ε, for which the string w' obtained from w by removing y<sub>0</sub> and y<sub>1</sub> is also in L.
- The Dual-Clipping Theorem for CFLs states then that every CFL has the Dual-clipping Property.
- Consequently, if a language L fails this property, then it is not CF.

## Failing Dual-Clipping

- *L* fails the Dual-clipping Property when
  - \* For every k we can find a  $w \in L$  of length  $\geq k$  so that for every substring  $p = y_0 \cdot x \cdot h_1$  of w of length  $\leq k$  with  $y_0y_1 \neq \varepsilon$ , the string w' obtained from w by removing  $y_0$  and  $y_1$ is not in L.

• Let  $L = \{a^n b^n c^n \mid n \ge 0\}$ . We show that L is not CF.

- Let  $L = \{a^n b^n c^n \mid n \ge 0\}$ . We show that L is not CF.
- Suppose  $L = \mathcal{L}(G)$ , where G is a CFG with clipping constant k.

- Let  $L = \{a^n b^n c^n \mid n \ge 0\}$ . We show that L is not CF.
- Suppose  $L = \mathcal{L}(G)$ , where G is a CFG with clipping constant k.
- Take  $w = a^k b^k c^k \in L$ .

By the Dual-Clipping Theorem we can clip off some  $y_0, y_1$ within a k-long substring p of w yielding a string  $w' \in L$ .

- Let  $L = \{a^n b^n c^n \mid n \ge 0\}$ . We show that L is not CF.
- Suppose  $L = \mathcal{L}(G)$ , where G is a CFG with clipping constant k.
- Take  $w = a^k b^k c^k \in L$ .

By the Dual-Clipping Theorem we can clip off some  $y_0, y_1$ within a k-long substring p of w yielding a string  $w' \in L$ .

• But this is impossible:

since  $|p| \leq k$  it has at most two of the three letters, and w' must have fewer occurrences of a removed letter than of a nonremoved one.

• Conclusion: L is not CF.

- Let  $L = \{a^n b^n c^n \mid n \ge 0\}$ . We show that L is not CF.
- Suppose  $L = \mathcal{L}(G)$ , where G is a CFG with clipping constant k.
- Take  $w = a^k b^k c^k \in L$ .

By the Dual-Clipping Theorem we can clip off some  $y_0, y_1$ within a k-long substring p of w yielding a string  $w' \in L$ .

• But this is impossible:

since  $|p| \leq k$  it has at most two of the three letters, and w' must have fewer occurrences of a removed letter than of a nonremoved one.

• Conclusion: L is not CF.

Note the order of choices in this "contrarian" proof by contradiction:

1. *G* is *given to us,* with its clipping constant.

Note the order of choices in this "contrarian" proof by contradiction:

- 1. *G* is *given to us,* with its clipping constant.
- 2. We can choose a  $w \in L$  of length  $\geq k$ .

Note the order of choices in this "contrarian" proof by contradiction:

- 1. *G* is *given to us,* with its clipping constant.
- 2. We can choose a  $w \in L$  of length  $\geq k$ .
- 3. The substring p and its factorization  $p = y_0 \cdot x \cdot y_1$  are all unknown, i.e. *given to us.*

Note the order of choices in this "contrarian" proof by contradiction:

- 1. *G* is *given to us,* with its clipping constant.
- 2. We can choose a  $w \in L$  of length  $\geq k$ .
- 3. The substring p and its factorization  $p = y_0 \cdot x \cdot y_1$  are all unknown, i.e. *given to us.*
- 4. We must show that *whatever they are,* subject to the constraints, the clipped string w' is out of L.

We can articulate proofs like this directly by showing failure of Dual-Clipping,

We can articulate proofs like this directly by showing failure of Dual-Clipping,

• Given to us an unknown k > 0, we choose  $w = a^k b^k c^k$ . We have  $w \in L$  and  $|w| \ge k$ .

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown k > 0, we choose  $w = a^k b^k c^k$ . We have  $w \in L$  and  $|w| \ge k$ .
- Then given to us that an unknown substring

 $p = y_0 \cdot x \cdot y_1$  of length  $\leq k$ we observe that it can have at most two of a, b, c.

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown k > 0, we choose  $w = a^k b^k c^k$ . We have  $w \in L$  and  $|w| \ge k$ .
- Then given to us that an unknown substring  $p = y_0 \cdot x \cdot y_1$  of length  $\leq k$

we observe that it can have at most two of a, b, c.

• So removing  $y_0$  and  $y_1$  yields a string not in L.

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown k > 0, we choose  $w = a^k b^k c^k$ . We have  $w \in L$  and  $|w| \ge k$ .
- Then given to us that an unknown substring  $p = y_0 \cdot x \cdot y_1$  of length  $\leq k$ we observe that it can have at most two of a, b, c.
- So removing  $y_0$  and  $y_1$  yields a string not in L.
- Since L fails the Dual-clipping Property, it is not CF.

### The intersection of CFLs

The intersection of CFL *need not be CF!!* 

$$\begin{array}{rcl} L_{ab} &=& \left\{ \mathrm{a}^{n} \mathrm{b}^{n} \mathrm{c}^{k} \mid n, k \geqslant 0 \right\} & \text{is CF} \\ L_{bc} &=& \left\{ \mathrm{a}^{k} \mathrm{b}^{n} \mathrm{c}^{n} \mid n, k \geqslant 0 \right\} & \text{is CF} \end{array}$$

• But their interscetion

$$L_{ab} \cap L_{bc} = \{ a^n b^n c^n \mid n \ge 0 \}$$

is not CF.

٠

## The complement of a CFL

The complement of a CFL *need not be CF*.

- Reason: The collection of CFLs is closed under union.
  If it were closed under complement then it would be closed under intersection.
- $\bullet (A \cap B) = -A \cup -B \quad \text{so} \quad A \cap B = -(-A \cup -B)$
- Specific example: The Mahi-mahi Languae is not CF. But its complement is!

•  $\{a^i b^j c^i \mid i, j \ge 0\}$  is CF. So is  $\{a^i b^j c^j d^i \mid i, j \ge 0\}$ 

- $\{a^i b^j c^i \mid i, j \ge 0\}$  is CF. So is  $\{a^i b^j c^j d^i \mid i, j \ge 0\}$
- But  $L = \{a^i b^j c^i d^j \mid i, j \ge 0\}$  is not.

- $\{a^i b^j c^i \mid i, j \ge 0\}$  is CF. So is  $\{a^i b^j c^j d^i \mid i, j \ge 0\}$
- But  $L = \{a^i b^j c^i d^j \mid i, j \ge 0\}$  is not.
- Given k > 0 take  $w = a^k b^k c^k d^k \in L$ .  $w \in L$ ,  $|w| \ge k$ .

- $\{a^i b^j c^i \mid i, j \ge 0\}$  is CF. So is  $\{a^i b^j c^j d^i \mid i, j \ge 0\}$
- But  $L = \{a^i b^j c^i d^j \mid i, j \ge 0\}$  is not.
- Given k > 0 take  $w = a^k b^k c^k d^k \in L$ .  $w \in L$ ,  $|w| \ge k$ .
- If  $p = y_0 \cdot x \cdot y_1$  is a substring,  $y_1y_1z \neq \varepsilon$ let w' be obtained from w by removing  $y_0, y_1$ .

- $\{a^i b^j c^i \mid i, j \ge 0\}$  is CF. So is  $\{a^i b^j c^j d^i \mid i, j \ge 0\}$
- But  $L = \{a^i b^j c^i d^j \mid i, j \ge 0\}$  is not.
- Given k > 0 take  $w = a^k b^k c^k d^k \in L$ .  $w \in L$ ,  $|w| \ge k$ .
- If  $p = y_0 \cdot x \cdot y_1$  is a substring,  $y_1y_1z \neq \varepsilon$ let w' be obtained from w by removing  $y_0, y_1$ .
- Since p can span at most two adjacent blocks, removing y<sub>0</sub>, y<sub>1</sub> deletes some letter (a,b,c, or d) without deleting any corresponding one (c, d, a, or b, respectively).
- So  $w' \notin L$ .

- $\{a^i b^j c^i \mid i, j \ge 0\}$  is CF. So is  $\{a^i b^j c^j d^i \mid i, j \ge 0\}$
- But  $L = \{a^i b^j c^i d^j \mid i, j \ge 0\}$  is not.
- Given k > 0 take  $w = a^k b^k c^k d^k \in L$ .  $w \in L$ ,  $|w| \ge k$ .
- If  $p = y_0 \cdot x \cdot y_1$  is a substring,  $y_1y_1z \neq \varepsilon$ let w' be obtained from w by removing  $y_0, y_1$ .
- Since p can span at most two adjacent blocks, removing y<sub>0</sub>, y<sub>1</sub> deletes some letter (a,b,c, or d) without deleting any corresponding one (c, d, a, or b, respectively).
- So  $w' \notin L$ .
- *L* fails the dual-clipping property, and cannot be CF.

# NONDETERMINISTIC STACK ACCEPTORS (PDAs)

| generative  | REG |  |
|-------------|-----|--|
| operational | DFA |  |

# DFA = Deterministic Finite Acceptor



# NFA = Non-deterministic Finite Acceptor

| generative  | REG | CFL |
|-------------|-----|-----|
| operational | NFA | ??? |

| generative  | REG | CFL |
|-------------|-----|-----|
| operational | NFA | NSA |

# NSA = Non-deterministic Stack Acceptor

| generative  | REG | CFL |
|-------------|-----|-----|
| operational | NFA | PDA |

PDA = Push-Down Automata

## Why this matters

- The primary computational characterization of:
  - regular languages: by a machine model (DFA)
  - context-free languages: by a symbolic model (CFG)
- But *parsing* for CFLs is important, and needs a machine model.
- Next: a characterization of CFLs by a machine model.
- Unfortunately, non-determinism is essential here.
## Cautious extension of memory

- Approach: extend automata with an external memory.
- Limiting the space used gives us LBA (and other).
- This turns out to be too powerful.
- Alternative: limit external memory to "single-use".

## **Stacks**

- A stack is read from the top!
- It is unbounded (like the Turing string)
- But access destroys stored information (single use).

#### Traditional stack operations

- Push a symbol:  $w \mapsto \sigma w$
- Pop a symbol:  $\sigma w \mapsto w$
- Represent a stack by a string:
   edcba is the stack with e at the top, a at the bottom.
- The empty string  $\varepsilon$  represents the empty stack.

## A combined stack-operation

• Generalize *push* to a string  $v_0$ :

 $w \mapsto v_0 \cdot w$ 

• And *pop* to a conditional string-pop  $u_0$ :

 $u_0 \cdot w \mapsto w$ 

If the top of the stack matches  $u_0$  then pop that top.

Combined to a single operation of Replacing a Top segment of stack:

 $u_0 \cdot x \quad \mapsto \quad v_0 \cdot x$ 

• Meaning:

if  $u_0$  matches a top portion of the stack then replace it by  $v_0$  else skip

- Notation:  $u_0 \rightarrow v_0$ .
- Examples:

 $\begin{array}{cccc} \varepsilon \rightarrow 2 & 2 \rightarrow \varepsilon & 1 \rightarrow 2 & 1 \rightarrow 23 \\ 12 \rightarrow 221 & \varepsilon \rightarrow 23 & 12 \rightarrow \varepsilon \end{array}$ 

F23

- A stack automaton (PDA) over an alphabet  $\Sigma$  is a device  $M = (\Sigma, Q, s, A, \Gamma, \Delta)$  where
  - Q is a set, dubbed **states**
  - $s \in Q$  is distinguished state, dubbed *initial* state
  - $A \subseteq Q$ , the set of *accepting* states
  - $\Gamma \supseteq \Sigma$  is the *extended alphabet*
  - $\Delta$  is a finite set of *transition rules* of the form  $q \xrightarrow{\sigma(\beta \to \gamma)} p$  where

 $\begin{array}{l} q,p \in Q \\ \sigma \in \Sigma_{\epsilon} = \Sigma \cup \{\varepsilon\} \\ \beta,\gamma \in \Gamma^* \end{array}$ 

#### Using stack as memory: an example

- Task: recognize strings  $a^n b^n$   $(n \ge 1)$ .
- Initially the stack is empty.
- Phase 1:

As input is read, a's are pushed on the stack.

• Phase 2:

When **b** is encountered, start popping **a**'s.

#### • Termination:

Input accepted if stack is empty when input scan completed.

## Using a bottom-marker

- Our PDAs do not recognize an empty stack (some varienties of PDAs do!)
- The intent of an empty stack is obtained by reserving a symbol as bottom-of-stack marker, say \$.
- A PDA as above starts by pushing \$ on the stack, and accepts the input if \$ is at the top of the stack when completing the scan.

- States: initial s, accepting f, q = pushing phase, p = popping phase
- Transitions:

$$s \xrightarrow{\epsilon (\epsilon \to \$)} q \quad (push \$)$$

$$q \xrightarrow{a (\epsilon \to a)} q \quad (reading a's push them)$$

$$q \xrightarrow{b (a \to \epsilon)} p \quad (on b \text{ pop } a \And \text{switch state})$$

$$p \xrightarrow{b (a \to \epsilon)} p \quad (reading b's \text{ pop } a's)$$

$$p \xrightarrow{\epsilon (\$ \to \epsilon)} f \quad (if \$ \text{ tops stack accept})$$

- States: initial s, accepting f, q = pushing phase, p = popping phase
- Transitions:

 $s \xrightarrow{\epsilon (\epsilon \to \$)} q \quad (\text{push }\$)$   $q \xrightarrow{a (\epsilon \to a)} q \quad (\text{reading } a\text{'s push them})$   $q \xrightarrow{b (a \to \epsilon)} p \quad (\text{on } b \text{ pop } a \text{ \& switch state})$   $p \xrightarrow{b (a \to \epsilon)} p \quad (\text{reading } b\text{'s pop } a\text{'s})$   $p \xrightarrow{\epsilon (\$ \to \epsilon)} f \quad (\text{if $\$ tops stack accept})$ 

• If \$ is read while some b's unread  $(\#_b > \#_a)$ then reading is incomplete, so no acceptance.

- States: initial s, accepting f, q = pushing phase, p = popping phase
- Transitions:

$$s \xrightarrow{\epsilon (\epsilon \to \$)} q \text{ (push \$)}$$

$$q \xrightarrow{a (\epsilon \to a)} q \text{ (reading } a\text{'s push them)}$$

$$q \xrightarrow{b (a \to \epsilon)} p \text{ (on } b \text{ pop } a \text{ \& switch state)}$$

$$p \xrightarrow{b (a \to \epsilon)} p \text{ (reading } b\text{'s pop } a\text{'s)}$$

$$p \xrightarrow{\epsilon (\$ \to \epsilon)} f \text{ (if \$ tops stack accept)}$$

• If popping is not completed  $(\#_a > \#_b)$ then \$ is not reach, so no accept state.

- States: initial s, accepting f, q = pushing phase, p = popping phase
- Transitions:

$$s \xrightarrow{\epsilon (\epsilon \to \$)} q \quad (\text{push }\$)$$

$$q \xrightarrow{a (\epsilon \to a)} q \quad (\text{reading } a\text{'s push them})$$

$$q \xrightarrow{b (a \to \epsilon)} p \quad (\text{on } b \text{ pop } a \text{ \& switch state})$$

$$p \xrightarrow{b (a \to \epsilon)} p \quad (\text{reading } b\text{'s pop } a\text{'s})$$

$$p \xrightarrow{\epsilon (\$ \to \epsilon)} f \quad (\text{if $\$ tops stack accept})$$

• If a b is followed by a

then computation aborts: no production for p reading a.

## PDA semantics: configurations and yield

- A configuration of a PDA is a triplet  $(q, w, \alpha)$ where  $q \in Q$ ,  $w \in \Sigma^*$  and  $\alpha \in \Gamma^*$ .
- The intent:
  - q is the current state
  - $\boldsymbol{w}$  is the remaining portion of the input (from cursor on)
  - lpha is a string representing the stack, from top to bottom.

### PDA semantics: configurations and yield

- A *configuration* of a PDA is a triplet  $(q, w, \alpha)$ where  $q \in Q$ ,  $w \in \Sigma^*$  and  $\alpha \in \Gamma^*$ .
- The intent:
  - q is the current state
  - $\boldsymbol{w}$  is the remaining portion of the input (from cursor on)
  - $\alpha$  is a string representing the stack, from top to bottom.
- The transition rules generate

a yield relation  $\Rightarrow$  between configurations:

If 
$$q \xrightarrow{\sigma(\alpha \to \beta)} p$$

then  $(q, \sigma x, \alpha \cdot \gamma) \Rightarrow (p, x, \beta \cdot \gamma)$ 

(for all  $x \in \Sigma^*$  and  $\gamma \in \Gamma^*$ ).

## PDA semantics: recognized languages

• The *initial configuration* for input w is  $(s, w, \varepsilon)$ 

## PDA semantics: recognized languages

- The *initial configuration* for input w is  $(s, w, \varepsilon)$
- An input string  $w \in \Sigma^*$  is **accepted** if  $(s, w, \varepsilon) \Rightarrow^* (a, \varepsilon, \gamma)$

for some accepting state  $a \in A$  and some  $\gamma \in \Gamma^*$ .

### PDA semantics: recognized languages

- The *initial configuration* for input w is  $(s, w, \varepsilon)$
- An input string  $w \in \Sigma^*$  is **accepted** if  $(s, w, \varepsilon) \Rightarrow^* (a, \varepsilon, \gamma)$ for some accepting state  $a \in A$  and some  $\gamma \in \Gamma^*$ .
- A cfg c = (q, w, γ) is terminal if there is no cfg c' where c ⇒<sub>M</sub> c'.
  if in addition q ∈ A w = ε then it is accepting.

## Examples of traces

Recall the transitions

$$s \xrightarrow{a(\epsilon \to a\$)} q \qquad p \xrightarrow{b(a \to \epsilon)} p$$

$$q \xrightarrow{a(\epsilon \to a)} q \qquad p \xrightarrow{\epsilon(\$ \to \epsilon)} p$$

$$q \xrightarrow{b(a \to \epsilon)} p$$

## **Examples of traces**

Recall the transitions

A trace for **aabb**:

$$\begin{array}{l} (s, \texttt{aabb}, \varepsilon) \implies (q, \texttt{abb}, \texttt{a\$}) \\ \implies (q, \texttt{bb}, \texttt{aa\$}) \\ \implies (p, \texttt{b}, \texttt{as\$}) \\ \implies (p, \varepsilon, \texttt{s}) \\ \implies (f, \varepsilon, \varepsilon) \end{array}$$

## **Examples of traces**

Recall the transitions

$$s \xrightarrow{a(\epsilon \to a\$)} q \qquad p \xrightarrow{b(a \to \epsilon)} p$$

$$q \xrightarrow{a(\epsilon \to a)} q \qquad p \xrightarrow{\epsilon(\$ \to \epsilon)} p$$

$$q \xrightarrow{b(a \to \epsilon)} p$$

$$p \xrightarrow{b(a \to \epsilon)} p$$
cepting traces:

$$\begin{array}{ll} \text{Non-accepting traces:} \\ (s, \texttt{aab}, \varepsilon) \Rightarrow (q, \texttt{ab}, \texttt{a\$}) \\ \Rightarrow (q, \texttt{b}, \texttt{aa\$}) \\ \Rightarrow (p, \varepsilon, \texttt{a\$}) \end{array} \begin{array}{ll} (s, \texttt{abb}, \varepsilon) \Rightarrow (q, \texttt{bb}, \texttt{a\$}) \\ \Rightarrow (q, \texttt{b}, \texttt{aa\$}) \\ \Rightarrow (q, \texttt{b}, \texttt{aa\$}) \end{array}$$

## Example: Palindromes around c

• Construct a PDA to recognize  $\{w \cdot c \cdot w^R \mid w \in \{a, b\}^*\}$ 

### Example: Palindromes around c

- Construct a PDA to recognize  $\{w \cdot c \cdot w^R \mid w \in \{a, b\}^*\}$
- Algorithm: Push successive input symbols.
   When reading c switch to a new state, match subsequent input symbols with the top of the stack, popping the top.

#### Example: Palindromes around c

- Construct a PDA to recognize  $\{w \cdot c \cdot w^R \mid w \in \{a, b\}^*\}$
- Algorithm: Push successive input symbols.
   When reading c switch to a new state, match subsequent input symbols with the top of the stack, popping the top.

 $s \xrightarrow{\epsilon (\epsilon \rightarrow \$)} q$  (place a marker \$ on the stack)

$$q \xrightarrow{\sigma(\epsilon \to \sigma)} q$$
 (push next letter)

$$q \xrightarrow{C(\epsilon \to \epsilon)} p$$
 (if c, switch to state  $p$ )

$$\xrightarrow{\sigma(\sigma \to \epsilon)} p$$
 (if letter matches stack-op pop it, else abort)

$$( \stackrel{(\$ \to \epsilon)}{\longrightarrow} f$$
 (accept if top is  $\$$ 

Д

#### And if the center is absent?

- $\{w \cdot w^R \mid w \in \{a, b\}^*\}.$
- Use nondeterminism!
- Replace  $q \xrightarrow{c(\epsilon \to \epsilon)} p$  above by by  $q \xrightarrow{\epsilon(\epsilon \to \epsilon)} p$
- The resulting PDA:

$$s \xrightarrow{\epsilon(\epsilon \to \$)} q$$

$$q \xrightarrow{\sigma(\epsilon \to \sigma)} q \quad (\sigma = a, b)$$

$$q \xrightarrow{\epsilon(\epsilon \to \epsilon)} p$$

$$p \xrightarrow{\sigma(\sigma \to \epsilon)} p \quad (\sigma = a, b)$$

$$p \xrightarrow{\epsilon(\$ \to \epsilon)} f$$

#### Repeated use of nondeterminism

- Consider  $\{a^n b^m \in \Sigma^* \mid m \leq n \leq 2m\}$
- What stack algorithm would work?

#### Repeated use of nondeterminism

- $\{a^n b^m \in \Sigma^* \mid m \leqslant n \leqslant 2m\}$
- What stack algorithm would work?
- Use four states s, q, p, f, s initial, s, f accepting.
- Transition rules:

$$s \xrightarrow{\epsilon (\epsilon \to \$)} q \qquad p \xrightarrow{b(a \to \epsilon)} p$$

$$q \xrightarrow{a(\epsilon \to a)} q \qquad p \xrightarrow{b(aa \to \epsilon)} p$$

$$q \xrightarrow{\epsilon (\epsilon \to \epsilon)} p \qquad p \xrightarrow{\epsilon (\$ \to \epsilon)} f$$

*M* pushes the a 's being read, switches nondeterministically to a "b-reading state" *p* which empties the stack while reading b's, popping either a single a or two *tta*'s at a time.

### From CFGs to PDAs

- **THEOREM.** Every CFL is recognized by some PDA.
- For each CFG G we construct a PDA M, so that  $\mathcal{L}(G) = \mathcal{L}(M)$ .
- Motivating example:

G has rules  $\mathbf{S} \to \mathbf{aSb}$  and  $\mathbf{S} \to \boldsymbol{\varepsilon}$ .

• Initial idea:

generate on the stack a random string  $\boldsymbol{x}$ , then compare  $\boldsymbol{x}$  to the input  $\boldsymbol{w}$ .

- A marker \$ used for stack bottom, and completion is then detectable.
- What's wrong here?

## Alternating between generation and consumption

- What's wrong: We'd need to apply the rules of G deep in the stack.
- But there is no need to wait: we can compare the (randomly) generate string as soon as feasible.

|         | Input     | Stack         |          |
|---------|-----------|---------------|----------|
|         | aabb      | <i>S</i> \$   | gonorato |
| compare | aabb      | a $S$ b $\$$  | generale |
|         | abb       | Sb $$$        | aonarata |
| compare | abb       | a $S$ bb $\$$ | generale |
|         | bb        | Sbb $$$       | aoporato |
| compare | bb        | bb\$          | generale |
|         | b         | b\$           |          |
| compare | arepsilon | \$            |          |

• Let G = (R, N, S) be a CFG over  $\Sigma$ . Define a PDA M to recognize  $\mathcal{L}(G)$ .

- Let G = (R, N, S) be a CFG over  $\Sigma$ . Define a PDA M to recognize  $\mathcal{L}(G)$ .
- Three states: *s*, *q* and *f*. *s* initial, *f* accepting.

Auxiliary symbols: variables of G and \$.

- Let G = (R, N, S) be a CFG over  $\Sigma$ . Define a PDA M to recognize  $\mathcal{L}(G)$ .
- Three states: *s*, *q* and *f*. *s* initial, *f* accepting.

Auxiliary symbols: variables of G and \$.

- Transition rules:
  - Initializing the stack:  $s \stackrel{\epsilon(\epsilon)}{=}$

$$\xrightarrow{\epsilon(\epsilon \to S\$)} q$$

- Let G = (R, N, S) be a CFG over  $\Sigma$ . Define a PDA M to recognize  $\mathcal{L}(G)$ .
- Three states: s, q and f.
  s initial, f accepting.

Auxiliary symbols: variables of G and \$.

- Transition rules:
  - Initializing the stack:  $s \xrightarrow{\epsilon(\epsilon \to S\$)} q$
  - For each production  $A \to \alpha$ :  $q \xrightarrow{\epsilon(A \to \alpha)} q$ I.e., if stack-top is variable A, apply a production of G.

- Let G = (R, N, S) be a CFG over  $\Sigma$ . Define a PDA M to recognize  $\mathcal{L}(G)$ .
- Three states: s, q and f.
  s initial, f accepting.

Auxiliary symbols: variables of G and \$.

- Transition rules:
  - Initializing the stack:  $s \xrightarrow{\epsilon(\epsilon \to S\$)} q$
  - For each production  $A \to \alpha$ :  $q \xrightarrow{\epsilon(A \to \alpha)} q$ I.e., if stack-top is variable A, apply a production of G.
  - For each  $\sigma \in \Sigma$ :  $q \xrightarrow{\sigma(\sigma \to \epsilon)} q$

I.e., if stack-top is a terminal  $\sigma$  matching current input symbol, then  $\sigma$  is read off input, and popped off the stack.



## Example

• Grammar  $G: S \to aSb \mid \varepsilon$ 

• The PDA obtained:

• Here is a derivation of **aabb** in Gand the corresponding trace of M: (q, abb, aSbb\$) (q, abb, aSbb\$) (q, bb, Sbb\$) (q, bb, bb\$) (q, bb, bb\$) (q, b, b\$) (q, e, \$) (f, e, e)
# **Converting PDAs to CFGs**

- We already had a conversion from NFAs to regular expressions.
- For pairs (q, p) of states we assigned the language of strings leading from q to p via deleted states.
- A pre-processor guaranteed that the language assigned to the pair (s, a) (i.e. start to accept is the language recognized by the given NFA.
- For pairs (q, p) of states let  $L_{qp}$  consist of the strings w leading from q with an empty stack to p with an empty stack:

 $L_{qp} = \{ w \in \Sigma^* \mid (q, w, \varepsilon) \Rightarrow^* (p, \varepsilon, \varepsilon) \}$ 

• Note that if  $(q, w, \varepsilon) \Rightarrow (p, \varepsilon, \varepsilon)$  then  $(q, w, \alpha) \Rightarrow (p, w, \alpha)$  for all stack  $\alpha$ .

# A pre-processor

- Converting NFA to equivalent RegExp we pre-processed.
- Here convert given PDA M to one that
  - 1. has all stack operations broken push and pop of one symbol;
  - 2. accepts a string only when the stack is empty.
- (1) helps us restrict attention to basic changes in the stack.
  (2) enables focusing on traces that start and end with empty stack.
- A PDA M can be converted into an equivalent one satisfying (1) by breaking compound  $u_0 \rightarrow v_0$  into single-letter push and pop.
- (2) is obtained by adding transitions that empty the stack when M accepts.

# Generating simultanuously the languages $L_{qp}$

- We use productions to code a generative definition of the languages  $L_{qp}$ .
- Right off we have, for each state q,  $(q, \varepsilon) \stackrel{\epsilon}{\to} (q, \varepsilon)$ . I.e.  $\varepsilon \in L_{qq}$ .
- So we include in our grammar, for each state q, the production  $A_{qq} \rightarrow \varepsilon$ .

### **Concatenation**

- If  $(q,\varepsilon) \xrightarrow{u} (r,\varepsilon) \xrightarrow{v} (p,\varepsilon)$  then  $(q,\varepsilon) \xrightarrow{u \cdot v} (p,\varepsilon)$ .
- In other words, if we already have that  $A_{qr} \Rightarrow^* u$  and  $A_{rp} \Rightarrow^* v$ ,

then we should have  $A_{qp} \Rightarrow^* u \cdot v$ .

- This is achieved by including the production  $A_{qp} 
ightarrow A_{qr} A_{rp}$ 



• We include this production for each combination of q, r, p.

### **Productions for stack operations**

- So far we have looked at productions that apply to any PDA.
- Suppose  $(q, w, \varepsilon) \Rightarrow^* (p, \varepsilon, \varepsilon)$ . If the computation trace has an empty stack along the way, i.e. a configuration  $(r, v, \varepsilon)$  with  $w = u \cdot v$ , then the concatenation production will yield w.
- If not, then we have



- The first move in this trace must read a symbol  $\sigma \in \Sigma_{\epsilon}$ , and push some symbol  $\theta$  on the stack.
- The last move must then read some symbol  $\tau \in \Sigma_{\epsilon}$ which causes M to pop that  $\theta$ (which is undisturbed through the trace). That is, for some states r, t:

$$\begin{array}{rcl} (q,\sigma v,\varepsilon) \ \Rightarrow \ (r,v,\theta) \\ (t,\tau,\theta) \ \Rightarrow \ (p,\varepsilon,\varepsilon) \end{array}$$



F23



- This is conveyed by the production  $A_{qp} \rightarrow \sigma A_{rt} \tau$ .
- In general, whenever M has rules

$$q \xrightarrow{\sigma(\epsilon o heta} r$$
 and  $t \xrightarrow{\tau( heta o \epsilon)} p$ 

with the same  $\theta$  in both, the grammar G has the production  $A_{qp} \rightarrow \sigma A_{rt} \tau$ .

### **Proof concluded**

• By induction on traces of M we obtain that, for all  $q, p \in Q$ 

$$A_{qp} \Rightarrow^*_G w \quad \text{iff} \quad (q,w,\varepsilon) \rightarrow^*_M (p,\varepsilon,\varepsilon)$$

• When q, p are the initial and accepting states s, f  $A_{sf} \Rightarrow_G^* w$  (G generates w) iff  $(s, w, \varepsilon) \rightarrow_M^* (f, \varepsilon, \varepsilon)$  (M accepts w),

### Example

• Let M over  $\{a, b, c\}$  have the following transition rules.

1. 
$$s \xrightarrow{\epsilon \ (\epsilon \to \$)} q$$
  
2.  $q \xrightarrow{a \ (\epsilon \to a)} q$   
3.  $q \xrightarrow{c \ (\epsilon \to b)} p$   
4.  $p \xrightarrow{\epsilon \ (b \to \epsilon)} r$   
5.  $r \xrightarrow{b \ (a \to \epsilon)} r$   
6.  $r \xrightarrow{\epsilon \ (\$ \to \epsilon)} f$ 

• The construction above yields the following grammar

 $\begin{array}{ll} A_{tt} \rightarrow \varepsilon & (\text{all states } t) \\ A_{tu} \rightarrow A_{tv} A_{vu} & (\text{all states } t, u, v) \\ (\text{with initial variable } A_{sf}) & A_{qr} \rightarrow a A_{qr} b & (\text{pushing and popping } a, \text{rules 2 and} \\ A_{qr} \rightarrow c A_{pp} \varepsilon & (\text{pushing and popping } b, \text{rules 3 and} \\ A_{sf} \rightarrow \varepsilon A_{qr} \varepsilon & (\text{pushing and popping } \$, \text{rules 1 and} \end{array}$ 

# Little puzzles about PDAs

- Suppose M is a PDA that does not use its stack. What does M recognize?
- Suppose M is a PDA that uses its stack only up to depth 1000. What sort of language does M recognize?
- Suppose M is a super-PDA, that uses two stacks. What sort of language does M recognize?

# Little puzzles about PDAs

• For a DFA M recognizing  $L \subseteq \Sigma^*$ , we obtained an automaton  $\overline{M}$  recognizing  $\overline{L} = \Sigma^* - L$ by flipping accepting and non-accepting states.

For PDAs we can't, since the complement of a CFL need not be CF. What's wrong with the same sort of flipping for PDAs?

### Little puzzles about PDAs

• For DFAs M, N we constructed a product DFA that recognizes  $\mathcal{L}(M) \cap \mathcal{L}(N)$ .

Why can't we use the same idea to build, for PDAs M, N a PDA that recognizes  $\mathcal{L}(M) \cap \mathcal{L}(N)$ ?

# The intersection of a CFL and a regular language

- But what if N does not use its stack?
- **Theorem**. The intersection of a CFL and a regular language is CF.

1.  $L = \{w \in \{a, b, c\} \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ We have  $\{a^n b^n c^n \mid n \ge 0\} = L \cap \mathcal{L}(a^* \cdot b^* \cdot c^*)$ So L cannot be CF.

1.  $L = \{w \in \{a, b, c\} \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ We have  $\{a^n b^n c^n \mid n \ge 0\} = L \cap \mathcal{L}(a^* \cdot b^* \cdot c^*)$ So L cannot be CF. (Why is this example a bit silly?)

- 1.  $L = \{w \in \{a, b, c\} \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ We have  $\{a^n b^n c^n \mid n \ge 0\} = L \cap \mathcal{L}(a^* \cdot b^* \cdot c^*)$ So L cannot be CF.
- 2. Suppose  $L \subseteq \Gamma^*$  is recognized by a PDA. If  $\Sigma \subset \Gamma$ , what about the set of  $\Sigma$ -strings in L?

- 1.  $L = \{w \in \{a, b, c\} \mid \#_a(w) = \#_b(w) = \#_c(w)\}$ We have  $\{a^n b^n c^n \mid n \ge 0\} = L \cap \mathcal{L}(a^* \cdot b^* \cdot c^*)$ So L cannot be CF.
- 2. Suppose  $L \subseteq \Gamma^*$  is recognized by a PDA. If  $\Sigma \subset \Gamma$ , what about the set of  $\Sigma$ -strings in L?
  - It is  $L \cap \Sigma^*$ , and therefore CF.

# **The Chomsky Hierarchy**

| LANGUAGE CLASS: | Regular          | Context-free    |
|-----------------|------------------|-----------------|
| GRAMMARS:       | regular grammars | CF grammars     |
| Machines:       | DFA=NFA          | PDA             |
| Memory:         | internal         | stack           |
| ACCESS:         | on-line          | on-line + stack |

### *Revisiting our non-CF grammar*

$$S \rightarrow \varepsilon \mid SABC$$

$$AB \rightarrow BA \qquad BA \rightarrow AB$$

$$AC \rightarrow CA \qquad CA \rightarrow AC$$

$$BC \rightarrow CB \qquad CB \rightarrow BC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

•  $\mathcal{L}(G) = \{w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) = \#_c(w)\}$  is not context free.

### The context-sensitive languages

- A grammar is **context sensitive** (a CSG) if all its productions are of the form  $uAv \rightarrow uxv$ .
- This is just like a CFG, except that rules  $A \rightarrow x$  may be restricted to a *context*  $u \cdots v$ , where u, v are strings of gterminals.
- These are the *context-sensitive languages (CSL's)*.
- Theorem.

A language is context-sensitive iff it is recognized by an LBA.

# A larger table

| LANGUAGE CLASS: | Regular  | CFL             | CSL     |
|-----------------|----------|-----------------|---------|
| GRAMMARS:       | regular  | CF              | CS      |
| MACHINES:       | DFA=NFA  | NFA + stack     | LBA     |
| Memory:         | internal | stack           | on-site |
| Access:         | on-line  | on-line + stack | two-way |

F23

| LANGUAGE CLASS: | Regular          | Context-free    | Context-sensitive |
|-----------------|------------------|-----------------|-------------------|
| GRAMMARS:       | regular grammars | CF grammars     | CS grammars       |
| Machines:       | DFA=NFA          | NFA + stack     | LBA               |
| Memory:         | internal         | stack           | on-site           |
| Access:         | on-line          | on-line + stack | two-way           |
| SMTH NEW:       |                  | $a^n b^n$       | $a^n b^n c^n$     |

• This is a *strict hierarchy:* 

every level contains the previous plus more.

F23