SYMBOLIC COMPUTING

Rewrite rules

- Symbolic computing:

Strings over an alphabet, jointly represent data and action.
There are no states.

- The operational engine (analogous to Turing's transition function) is the rewrite rules, also called productions.

Rewrite rules

- Symbolic computing:

Strings over an alphabet, jointly represent data and action.
There are no states.

- The operational engine (analogous to Turing's transition function) is the rewrite rules, also called productions.
- A rewrite-rule is of the form $z \rightarrow y$ where z, y are strings.
- z is the source of the production, and y its target.
- A finite set of rewrite rules is a rewrite system.

A familiar example of rewriting

$$
\begin{aligned}
& 0 \wedge 0 \rightarrow 0 \\
& 0 \wedge 1 \rightarrow 0 \\
& 1 \wedge 0 \rightarrow 0 \\
& 1 \wedge 1 \rightarrow 1
\end{aligned}
$$

A familiar example of rewriting

$$
\begin{array}{ll}
0 \wedge 0 \rightarrow 0 & 0 \vee 0 \rightarrow 0 \\
0 \wedge 1 \rightarrow 0 & 0 \vee 1 \rightarrow 1 \\
1 \wedge 0 \rightarrow 0 & 1 \vee 0 \rightarrow 1 \\
1 \wedge 1 \rightarrow 1 & 1 \vee 1 \rightarrow 1
\end{array}
$$

A familiar example of rewriting

$$
\begin{array}{lll}
0 \wedge 0 \rightarrow 0 & 0 \vee 0 \rightarrow 0 & -0 \rightarrow 1 \\
0 \wedge 1 \rightarrow 0 & 0 \vee 1 \rightarrow 1 & -1 \rightarrow 0 \\
1 \wedge 0 \rightarrow 0 & 1 \vee 0 \rightarrow 1 & \\
1 \wedge 1 \rightarrow 1 & 1 \vee 1 \rightarrow 1 &
\end{array}
$$

A familiar example of rewriting

$$
\begin{array}{llll}
0 \wedge 0 \rightarrow 0 & 0 \vee 0 \rightarrow 0 & -0 \rightarrow 1 & (0) \rightarrow 0 \\
0 \wedge 1 \rightarrow 0 & 0 \vee 1 \rightarrow 1 & -1 \rightarrow 0 & (1) \rightarrow 1 \\
1 \wedge 0 \rightarrow 0 & 1 \vee 0 \rightarrow 1 & & \\
1 \wedge 1 \rightarrow 1 & 1 \vee 1 \rightarrow 1 & &
\end{array}
$$

Reductions and derivations

- Given a rewrite system R,
we say that w reduces to w^{\prime}, and write $w \Rightarrow_{R} w^{\prime}$,
if w^{\prime} is w with substring u replaced by u^{\prime},
here $u \rightarrow u^{\prime}$ is a rule.

We omit the subscript R when clear.

- Reductions are analogous to the yield relation between machine's configurations.

Reductions and derivations

- Given a rewrite system R,
we say that w reduces to w^{\prime}, and write $w \Rightarrow_{R} w^{\prime}$,
if w^{\prime} is w with substring u replaced by u^{\prime},
here $u \rightarrow u^{\prime}$ is a rule.

We omit the subscript R when clear.

- Reductions are analogous to the yield relation between machine's configurations.
- A derivation in R is a sequence

$$
w_{0}, w_{1}, w_{2}, \ldots w_{k}
$$

where $w_{i} \in \Gamma$ and $w_{i} \Rightarrow_{R} w_{i+1}$ for $i<k$.
This derivation is of w_{k} from w_{0}.

Reductions and derivations

- Given a rewrite system R, we say that w reduces to w^{\prime}, and write $w \Rightarrow_{R} w^{\prime}$, if w^{\prime} is w with substring u replaced by u^{\prime}, here $u \rightarrow u^{\prime}$ is a rule.
We omit the subscript R when clear.
- Reductions are analogous to the yield relation between machine's configurations.
- A derivation in R is a sequence

$$
w_{0}, w_{1}, w_{2}, \ldots w_{k}
$$

where $w_{i} \in \Gamma$ and $w_{i} \Rightarrow_{R} w_{i+1}$ for $i<k$.
This derivation is of w_{k} from w_{0}.

- Derivations are analogous to computation traces of machines.

Example

A derivation in our boolean rewrite-system:

$$
\begin{aligned}
((0) & \wedge(1)) \vee(1) \\
& \Rightarrow \quad(0 \wedge(1)) \vee(1) \\
& \Rightarrow \quad(0 \wedge 1) \vee(1) \\
& \Rightarrow(0) \vee(1) \\
& \Rightarrow 0 \vee(1) \\
& \Rightarrow 0 \vee 1 \\
& \Rightarrow 1
\end{aligned}
$$

Example

A derivation in our boolean rewrite-system:
$((0) \wedge(1)) \vee(1)$

$$
\begin{array}{ll}
\Rightarrow & (0 \wedge(1)) \vee(1) \\
\Rightarrow & (0 \wedge 1) \vee(1) \\
\Rightarrow & (0) \vee(1) \\
\Rightarrow & 0 \vee(1) \\
\Rightarrow & 0 \vee 1 \\
\Rightarrow & 1
\end{array}
$$

- Here we ended up with the irreducible string 1 , which cannot be reduced further.

Grammars

- Rewrite systems can be transducers, acceptors, or generators.
- A rewrite system that generates a language is a grammar.
- A grammar consists of

Grammars

- Rewrite systems can be transducers, acceptors, or generators.
- A rewrite system that generates a language is a grammar.
- A grammar consists of
- An input alphabet Σ. (We say that G is over Σ).
- A finite set V of fresh symbols (not in Σ), dubbed variables. (We write Γ for $\Sigma \cup V$.)
- A distinguished initial-variable. Default: S.

Grammars

- Rewrite systems can be transducers, acceptors, or generators.
- A rewrite system that generates a language is a grammar.
- A grammar consists of
- An input alphabet Σ. (We say that G is over Σ).
- A finite set V of fresh symbols (not in Σ), dubbed variables. (We write Γ for $\Sigma \cup V$.)
- A distinguished initial-variable. Default: S .
- A finite set R of rewrite rules, called productions.

These are of the form $w \rightarrow t$
where w has at least one non-terminal.

Examples

Take $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $V=\{\mathrm{S}\}$.

1. Two productions: $\mathrm{S} \rightarrow \mathrm{a}$ and $\mathrm{S} \rightarrow \mathrm{bb}$.

Examples

Take $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $V=\{\mathrm{S}\}$.

1. Two productions: $\mathrm{S} \rightarrow \mathrm{a}$ and $\mathrm{S} \rightarrow \mathrm{bb}$.
2. Two productions: $\mathrm{S} \rightarrow \varepsilon$ and $\mathrm{S} \rightarrow \mathrm{aS}$

Examples

Take $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $V=\{\mathrm{S}\}$.

1. Two productions: $\mathrm{S} \rightarrow \mathrm{a}$ and $\mathrm{S} \rightarrow \mathrm{bb}$.
2. Two productions: $\mathrm{S} \rightarrow \varepsilon$ and $\mathrm{S} \rightarrow \mathrm{aS}$
3. A non-example: rewrite rules $\mathrm{a} \rightarrow \mathrm{ab}$ and $\mathrm{b} \rightarrow \mathrm{ba}$.

Each grammar generates a language

- Let $G=(\Sigma, V, \mathrm{~S}, R)$ be a grammar.
$w \in \Sigma^{*}$ is derived in G if
it is derived from S .
- The language generated by G is

$$
\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}
$$

Examples

- Grammar G has productions $\quad S \rightarrow$ a and $\quad S \rightarrow$ b. $\mathcal{L}(G)=\{\mathrm{a}, \mathrm{b}\}$.

Examples

- Grammar G has productions $\quad S \rightarrow$ a and $\quad S \rightarrow$ b.

$$
\mathcal{L}(G)=\{\mathrm{a}, \mathrm{~b}\}
$$

- Grammar G has productions $\quad S \rightarrow \mathrm{a} S$ and $S \rightarrow \mathrm{~b}$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \mathrm{~b} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{aaS} \Rightarrow \mathrm{aab}
\end{gathered}
$$

Examples

- Grammar G has productions $\quad S \rightarrow \mathrm{a}$ and $\quad S \rightarrow \mathrm{~b}$.

$$
\mathcal{L}(G)=\{\mathrm{a}, \mathrm{~b}\} .
$$

- Grammar G has productions $S \rightarrow \mathrm{a} S$ and $S \rightarrow \mathrm{~b}$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \mathrm{~b} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{aa} S \Rightarrow \mathrm{aab}
\end{gathered}
$$

- $\mathcal{L}(G)=\left\{\mathrm{a}^{n} \cdot \mathrm{~b} \mid n \geqslant 0\right\}=\mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}\right)$.

Examples

- Grammar G has productions $\quad S \rightarrow \mathrm{a}$ and $\quad S \rightarrow \mathrm{~b}$.

$$
\mathcal{L}(G)=\{\mathrm{a}, \mathrm{~b}\} .
$$

- Grammar G has productions $S \rightarrow \mathrm{a} S$ and $S \rightarrow \mathrm{~b}$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \mathrm{~b} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{aa} S \Rightarrow \mathrm{aab}
\end{gathered}
$$

- $\mathcal{L}(G)=\left\{\mathrm{a}^{n} \cdot \mathrm{~b} \mid n \geqslant 0\right\}=\mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}\right)$.
- How to formally prove this?

Examples

- Grammar G has productions $\quad S \rightarrow \mathrm{a}$ and $\quad S \rightarrow \mathrm{~b}$.

$$
\mathcal{L}(G)=\{\mathrm{a}, \mathrm{~b}\} .
$$

- Grammar G has productions $S \rightarrow \mathrm{a} S$ and $S \rightarrow \mathrm{~b}$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \mathrm{~b} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{aa} S \Rightarrow \mathrm{aab}
\end{gathered}
$$

- $\mathcal{L}(G)=\left\{\mathrm{a}^{n} \cdot \mathrm{~b} \mid n \geqslant 0\right\}=\mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}\right)$.
- By induction every string a^{n} is generated.
- By induction $S \Rightarrow{ }_{G}^{n+1} w$ implies that w is either $\mathrm{a}^{n} \mathrm{~b}$ or $\mathrm{a}^{n+1} S$.

More examples

- G's productions are $S \rightarrow \mathrm{a} S, \quad S \rightarrow S$ b and $\quad S \rightarrow \varepsilon$.

More examples

- G's productions are $\quad S \rightarrow \mathrm{a} S, \quad S \rightarrow S \mathrm{~b} \quad$ and $\quad S \rightarrow \varepsilon$.
- $\mathcal{L}(G)=$?

More examples

- G's productions are $\quad S \rightarrow \mathrm{a} S, \quad S \rightarrow S \mathrm{~b} \quad$ and $\quad S \rightarrow \varepsilon$.
- $\mathcal{L}(G)=\mathcal{L}\left(a^{*} b^{*}\right)$

More examples

- G's productions are $\quad S \rightarrow \mathrm{a} S, \quad S \rightarrow S \mathrm{~b} \quad$ and $\quad S \rightarrow \varepsilon$.
- $\mathcal{L}(G)=\mathcal{L}\left(a^{*} b^{*}\right)$
- $S \rightarrow \mathrm{aS} \mathrm{b} \quad$ and $\quad S \rightarrow \varepsilon$.

More examples

- G's productions are $S \rightarrow \mathrm{a} S, \quad S \rightarrow S$ b and $\quad S \rightarrow \varepsilon$.
- $\mathcal{L}(G)=\mathcal{L}\left(a^{*} b^{*}\right)$
- $S \rightarrow \mathrm{aS}$. $\mathrm{b} \quad$ and $\quad S \rightarrow \varepsilon$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \varepsilon \\
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{a} S \mathrm{~b} \Rightarrow \mathrm{aa} S \mathrm{bb} \Rightarrow \mathrm{aabb} \\
S \Rightarrow \mathrm{a} S \mathrm{~b} \Rightarrow \mathrm{aa} S \mathrm{bb} \Rightarrow \mathrm{aaa} S \mathrm{bbb} \Rightarrow \text { aaabbb }
\end{gathered}
$$

More examples

- G's productions are $S \rightarrow \mathrm{a} S, \quad S \rightarrow S$ b and $\quad S \rightarrow \varepsilon$.
- $\mathcal{L}(G)=\mathcal{L}\left(a^{*} b^{*}\right)$
- $S \rightarrow \mathrm{aS}$. $\mathrm{b} \quad$ and $\quad S \rightarrow \varepsilon$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \varepsilon \\
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \mathrm{aabb} \\
S \Rightarrow \mathrm{a} S \mathrm{~b} \Rightarrow \mathrm{aaSbb} \Rightarrow \mathrm{aaa} S \mathrm{bbb} \Rightarrow \mathrm{aaabbb}
\end{gathered}
$$

- $\mathcal{L}(G)=$?

More examples

- G's productions are $S \rightarrow \mathrm{a} S, \quad S \rightarrow S$ b and $\quad S \rightarrow \varepsilon$.
- $\mathcal{L}(G)=\mathcal{L}\left(a^{*} b^{*}\right)$
- $S \rightarrow \mathrm{aS}$. $\mathrm{b} \quad$ and $\quad S \rightarrow \varepsilon$.
- Some derivations:

$$
\begin{gathered}
S \Rightarrow \varepsilon \\
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{ab} \\
S \Rightarrow \mathrm{a} S \mathrm{~b} \Rightarrow \mathrm{aa} S \mathrm{bb} \Rightarrow \mathrm{aabb} \\
S \Rightarrow \mathrm{a} S \mathrm{~b} \Rightarrow \mathrm{aa} S \mathrm{bb} \Rightarrow \mathrm{aaa} S \mathrm{bbb} \Rightarrow \text { aaabbb }
\end{gathered}
$$

- $\mathcal{L}(G)=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geqslant 0\right\}$. A non-regular language!

CONTEXT FREE GRAMMARS

Context-free grammars

- A context-free grammar (CFG) is a grammar where every source is a single non-terminal.
- All grammars we've seen so far are context-free.
- A language generated by a CFG is a context-free language (CFL).
- Context-free grammars are also called inductive grammars.
- A convention: bundle rules with a common source
as in $S \rightarrow \mathrm{a} S \mathrm{~b} \mid \varepsilon$.
The vertical line abbreviates "or".

Example: palindromes

- Let P be the initial non-terminal.
- Productions:

$$
\begin{aligned}
& P \rightarrow \mathrm{a} P \mathrm{a} \\
& P \rightarrow \mathrm{~b} P \mathrm{~b} \\
& P \rightarrow \mathrm{a} \\
& P \rightarrow \mathrm{~b} \\
& P \rightarrow \varepsilon
\end{aligned}
$$

- In BNF format: $\quad P \rightarrow \mathrm{aPa}|\mathrm{bPb}| \mathrm{a}|\mathrm{b}| \varepsilon$
- Similar grammar for palindromes over the entire Latin alphabet.

We have then $2 \cdot 26+1=53$ productions.

- Using the more economical grammar

$$
\begin{aligned}
& P \rightarrow L P L|L| \varepsilon \\
& L \rightarrow \mathrm{a}|\mathrm{~b}| \cdots \mid \mathrm{z}
\end{aligned}
$$

is wrong, because the two L 's in $L P S$ should be the same.

- But we can use a modular description of the correct grammar above:

$$
P \quad \rightarrow \quad \sigma P \sigma|\sigma| \varepsilon \quad(\sigma \in \Sigma)
$$

CFLs for natural languages

- The bone ate the dog is grammatically correct English The dog the bone ate is not
- There is a context-free grammar that generates
exactly the grammatically correct sentences in English!
- Not 100% for all languages, more sophisticated formalisms are needed.

An example for English

- Alphabet Σ consists of the six "symbols":
dog, apple, eats, loves, big, and green.

An example for English

- Alphabet Σ consists of the six "symbols":
dog, apple, eats, loves, big, and green.
- Nonterminals:
S for sentences,
P for noun-phrases
N for nouns
V for verbs
A for adjectives.

An example for English

- Alphabet Σ consists of the six "symbols": dog, apple, eats, loves, big, and green.
- The productions are

$$
\begin{aligned}
& S \rightarrow P V P \\
& P \rightarrow N \mid A P \\
& N \rightarrow \operatorname{dog} \mid \text { apple } \\
& V \rightarrow \text { eats | loves } \\
& A \rightarrow \text { big | green }
\end{aligned}
$$

- This grammar generates big dog eats green apple and big green big apple loves green dog but not eats big dog apple loves.

An example for English

- Alphabet Σ consists of the six "symbols": dog, apple, eats, loves, big, and green.
- The productions are

$$
\begin{aligned}
& S \rightarrow P V P \\
& P \rightarrow N \mid A P \\
& N \rightarrow \operatorname{dog} \mid \text { apple } \\
& V \rightarrow \text { eats | loves } \\
& A \rightarrow \text { big | green }
\end{aligned}
$$

- This grammar generates big dog eats green apple and big green big apple loves green dog but not eats big dog apple loves.

The Context-Freedom Theorem

- Intuitively clear: context-free productions guarantee a separation between descendents of one occurrence of a variable and descendents of another.
- This is captured more formally by the

Context-Freedom Theorem.
Let $G=(\Sigma, N, S, R)$ be a $C F G, \Gamma=\Sigma \cup N$.
For strings $u_{0}, u_{1} \in \Gamma^{*}$, if $u_{0} \cdot u_{1} \Rightarrow^{*} v$
then $v=v_{0} \cdot v_{1} \quad$ where $u_{0} \Rightarrow^{*} v_{0}$ and $u_{1} \Rightarrow^{*} v_{1}$.

- We prove by induction on n that if $u_{0} \cdot u_{1} \Rightarrow^{n} v$
then the conclusion above holds.

Symmetries in CFL

- CFGs often generate languages with symmetries (eg palindromes!).
- The language of balanced parentheses, e.g. $(())()$ is balanced, $(()($ is not.
- The alphabet: just left- and right-parentheses: (and),
- Productions: $S \rightarrow S S|(S)| \varepsilon$

A CFG is a generative definition

- Each CFG describes a generative process:

A variable X names the language generated from X.

A CFG is a generative definition

- Each CFG describes a generative process:

A variable X names the language generated from X.

- Here's a CFG $G_{a=b}$ that generates $\left\{w \in \Sigma^{*} \mid \#{ }_{a}(w)=\#_{b}(w)\right\}$

A CFG is a generative definition

- Each CFG describes a generative process:

A variable X names the language generated from X.

- Here's a CFG $G_{a=b}$ that generates $\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$
- Let A name $\quad\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)+1\right\}$, and B name $\quad\left\{w \in \Sigma^{*} \mid \#_{b}(w)=\#_{a}(w)+1\right\}$.

A CFG is a generative definition

- Each CFG describes a generative process:

A variable X names the language generated from X.

- Here's a CFG $G_{a=b}$ that generates $\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$
- Let A name $\quad\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)+1\right\}$, and B name $\quad\left\{w \in \Sigma^{*} \mid \#_{b}(w)=\#_{a}(w)+1\right\}$.
- The productions of $G_{a=b}$ are

$$
\begin{aligned}
& S \rightarrow \varepsilon|\mathrm{a} B| \mathrm{b} A \\
& A \rightarrow \mathrm{a} S \mid \mathrm{b} A A \\
& B \rightarrow \mathrm{~b} S \mid \mathrm{a} B B
\end{aligned}
$$

A CFG is a generative definition

- Each CFG describes a generative process:

A variable X names the language generated from X.

- Here's a CFG $G_{a=b}$ that generates $\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$
- Let A name $\quad\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)+1\right\}$, and B name $\quad\left\{w \in \Sigma^{*} \mid \#_{b}(w)=\#_{a}(w)+1\right\}$.
- The productions of $G_{a=b}$ are

$$
\begin{aligned}
& S \rightarrow \varepsilon|\mathrm{a} B| \mathrm{b} A \\
& A \rightarrow \mathrm{a} S \mid \mathrm{b} A A \\
& B \rightarrow \mathrm{~b} S \mid \mathrm{a} B B
\end{aligned}
$$

- $\mathcal{L}\left(G_{a=b}\right)=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$

A CFG is a generative definition

- Each CFG describes a generative process:

A variable X names the language generated from X.

- Here's a CFG $G_{a=b}$ that generates $\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$
- Let A name $\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)+1\right\}$, and B name $\quad\left\{w \in \Sigma^{*} \mid \#_{b}(w)=\#_{a}(w)+1\right\}$.
- The productions of $G_{a=b}$ are

$$
\begin{aligned}
& S \rightarrow \varepsilon|\mathrm{a} B| \mathrm{b} A \\
& A \rightarrow \mathrm{a} S \mid \mathrm{b} A A \\
& B \rightarrow \mathrm{~b} S \mid \mathrm{a} B B
\end{aligned}
$$

- $\mathcal{L}\left(G_{a=b}\right)=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$
- Exercise: The grammar with productions $S \rightarrow \mathrm{~b} \mid \mathrm{a} S S$ generates the strings with $\#_{b}>\#_{a}$ but $\#_{b} \leqslant \#_{a}$ for all properprefixes.

A grammar that is not context-free

- Let $\Sigma=\{\mathrm{a}, \mathrm{bc}\}$. We shall see later that $L_{a=b=c}=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$ is not $C F$.

A grammar that is not context-free

- Let $\Sigma=\{\mathrm{a}, \mathrm{bc}\}$. We shall see later that
$L_{a=b=c}=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$ is not CF.
- Consider the grammar

$$
\begin{aligned}
& S \rightarrow \varepsilon \mid S A B C \\
& A \rightarrow \mathrm{a}, \quad B \rightarrow \mathrm{~b}, \quad C \rightarrow \mathrm{c}
\end{aligned}
$$

- It generates the strings $(\mathrm{abc})^{n}$.

A grammar that is not context-free

- Let $\Sigma=\{\mathrm{a}, \mathrm{bc}\}$. We shall see later that

$$
L_{a=b=c}=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}
$$

is not CF.

- Consider the grammar

$$
\begin{aligned}
& S \rightarrow \varepsilon \mid S A B C \\
& A \rightarrow \mathrm{a}, B \rightarrow \mathrm{~b}, \quad C \rightarrow \mathrm{c}
\end{aligned}
$$

- It generates the strings $(\mathrm{abc})^{n}$.
- Add the productions $A B \rightarrow B A, A C \rightarrow C A \quad B C \rightarrow C B$. $B A \rightarrow A B, C A \rightarrow A C \quad C B \rightarrow B C$.
Yes, these are not context-free!

A grammar that is not context-free

- Let $\Sigma=\{\mathrm{a}, \mathrm{bc}\}$. We shall see later that

$$
L_{a=b=c}=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}
$$

is not CF.

- Consider the grammar

$$
\begin{aligned}
& S \rightarrow \varepsilon \mid S A B C \\
& A \rightarrow \mathrm{a}, B \rightarrow \mathrm{~b}, \quad C \rightarrow \mathrm{c}
\end{aligned}
$$

- It generates the strings $(\mathrm{abc})^{n}$.
- Add the productions $A B \rightarrow B A, A C \rightarrow C A \quad B C \rightarrow C B$. $B A \rightarrow A B, C A \rightarrow A C \quad C B \rightarrow B C$.
Yes, these are not context-free!
- This extended grammar generates $L_{a=b=c}$

Multiple symmetries

- $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{k} \mid n, k \geqslant 0\right\}$
- $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{a}^{k} \mathrm{~b}^{k} \mid n, k \geqslant 0\right\}$
- $\left\{\mathrm{a}^{n} \mathrm{~b}^{n+k} \mathrm{a}^{k} \mid n, k \geqslant 0\right\}$
- $\left\{\mathrm{a}^{n} \mathrm{~b}^{k} \mathrm{C}^{n+k} \mid n, k \geqslant 0\right\}$
- $\left\{\mathrm{a}^{n} \mathrm{~b}^{k} \mathrm{a}^{k} \mathrm{~b}^{n} \mid n, k \geqslant 0\right\}$
- $\left\{\mathrm{a}^{n} \mathrm{~b}^{n+k} \mathrm{c}^{k+m} \mathrm{~d}^{m} \mid n, k, m \geqslant 0\right\}$

Regular languages are CFLs

Using the strictly-regular definition

- We show that every regular language us CF.

Using the strictly-regular definition

- We show that every regular language us CF.
- We use the generative definition of the strincly regular languages. Their definition as strictly-regular languages is simplifying this.

Using the strictly-regular definition

- We show that every regular language us CF.
- We use the generative definition of the strincly regular languages. Their definition as strictly-regular languages is simplifying this.
- Recall that the strictly-regular languages over Σ are generated by:

1. The rivial languages $\emptyset,\{\varepsilon\},\{\sigma\}(\sigma \in g r S)$ are strictly-regular.
2. The union, concatenation, and star of strictly-regular languaes are strictly regular.

Using the strictly-regular definition

- We show that every regular language us CF.
- We use the generative definition of the strincly regular languages. Their definition as strictly-regular languages is simplifying this.
- Recall that the strictly-regular languages over Σ are generated by:

1. The rivial languages $\emptyset,\{\varepsilon\},\{\sigma\}(\sigma \in g r S)$ are strictly-regular.
2. The union, concatenation, and star of strictly-regular languaes are strictly regular.

- We show that all such languages are CF by induction on this generative definition.

The trivial languages are CF

- $\emptyset:$

The trivial languages are CF

- $\emptyset:$ Generated by the CFG $S \rightarrow S$.
- $\{\varepsilon\}$:

The trivial languages are CF

- $\emptyset:$ Generated by the CFG $S \rightarrow S$.
- $\{\varepsilon\}$: Generated by $\quad S \rightarrow \varepsilon$.
- $\{\mathrm{a}\}$:

Closure under union, concatenation, star

Refer to CFGs and the languages they generated:
$L_{0}=\mathcal{L}\left(G_{0}\right) \quad$ and $\quad L_{1}=\mathcal{L}\left(G_{1}\right) \quad$ where $\quad G_{i}=\left(\Sigma, V_{i}, S_{i}, R_{i}\right)$.

We may assume that G_{0} and G_{1} have no variable in common: renaming a grammar's variables
does not change the language generated.

Closure under union

- $L_{0} \cup L_{1}$ is generated by $\left(\Sigma, V \cup V^{\prime}+S, S, R\right)$
where S is a fresh variable
and R is $\quad R_{0} \cup R_{1} \quad$ augmented with the production $\quad S \rightarrow S_{0} \mid S_{1}$.

Closure under union

- $L_{0} \cup L_{1}$ is generated by $\left(\Sigma, V \cup V^{\prime}+S, S, R\right)$
where S is a fresh variable
and R is $\quad R_{0} \cup R_{1} \quad$ augmented with the production $\quad S \rightarrow S_{0} \mid S_{1}$.
- G generates each $w \in L_{0} \cup L_{1}$.

Closure under union

- $L_{0} \cup L_{1}$ is generated by $\left(\Sigma, V \cup V^{\prime}+S, S, R\right)$
where S is a fresh variable
and R is $\quad R_{0} \cup R_{1} \quad$ augmented with the production $\quad S \rightarrow S_{0} \mid S_{1}$.
- G generates each $w \in L_{0} \cup L_{1}$.
- Conversely, a derivation D in G for $S \Rightarrow_{G} w$ must start with $S \rightarrow S_{0}$ or $S \rightarrow S_{1}$ and proceed with either a derivation in G_{0} or a derivation in G_{1}, since $V_{0} \cap V_{1}=\emptyset$.

Closure under concatenation

- $L_{0} \cdot L_{1}$ is generated by $\left(\Sigma, V \cup V^{\prime}+S, S, R\right)$
where S is a fresh variable
and R is $\quad R_{0} \cup R_{1} \quad$ augmented with the production $\quad S \rightarrow S_{0} S_{1}$.

Closure under concatenation

- $L_{0} \cdot L_{1}$ is generated by $\left(\Sigma, V \cup V^{\prime}+S, S, R\right)$
where S is a fresh variable
and R is $\quad R_{0} \cup R_{1} \quad$ augmented with the production $\quad S \rightarrow S_{0} S_{1}$.
- G generates each $w \in L_{0} \cdot L_{1}$.

Closure under concatenation

- $L_{0} \cdot L_{1}$ is generated by $\left(\Sigma, V \cup V^{\prime}+S, S, R\right)$
where S is a fresh variable
and R is $\quad R_{0} \cup R_{1} \quad$ augmented with the production $\quad S \rightarrow S_{0} S_{1}$.
- G generates each $w \in L_{0} \cdot L_{1}$.
- Conversely, a derivation D in G for $S \Rightarrow_{G} w$
must start with $S \rightarrow S_{0} \cdot S_{1}$, and by the Context-freedom Theorem we have $w=w_{0} \cdot w_{1}$ with D a merge of a derivation of w_{0} from S_{0} and a derivation of w_{1} from S_{1}.

Closure under star

- L_{0}^{*} is generated by $\left(\Sigma, V_{0}+S, S, R\right)$
where S is a fresh variable and R is $\quad R_{0} \quad$ augmented with the production $\quad S \rightarrow S_{0} S \mid \varepsilon$.

Closure under star

- L_{0}^{*} is generated by $\left(\Sigma, V_{0}+S, S, R\right)$
where S is a fresh variable and R is $\quad R_{0} \quad$ augmented with the production $\quad S \rightarrow S_{0} S \mid \varepsilon$.
- G generates each $w \in L_{0}^{*}$.

By induction on k each $w=w_{1} \cdot w_{k} \quad\left(w_{i} \in L_{0}\right)$ is derived: For $k=0$ the string $w=\varepsilon$ is derived outright. And $S \Rightarrow w_{1} \cdots \cdots w_{k}$ for each $w_{1}, \ldots w_{k} \in L_{0}$ then $S \Rightarrow w_{1} \cdots \cdots w_{k} \cdot w_{k+1}$ is derived by reducing S to $S_{0} \Rightarrow S$ and combining a deriation in G for $S \Rightarrow w_{1} \cdots \cdot w_{k}$ with a derivation in G_{0} of w_{k+1}.

Closure under star

- L_{0}^{*} is generated by $\left(\Sigma, V_{0}+S, S, R\right)$
where S is a fresh variable and R is $\quad R_{0} \quad$ augmented with the production $\quad S \rightarrow S_{0} S \mid \varepsilon$.
- G generates each $w \in L_{0}^{*}$.

By induction on k each $w=w_{1} \cdot w_{k} \quad\left(w_{i} \in L_{0}\right)$ is derived:
For $k=0$ the string $w=\varepsilon$ is derived outright.
And $S \Rightarrow w_{1} \cdots \cdots w_{k}$ for each $w_{1}, \ldots w_{k} \in L_{0}$ then $S \Rightarrow w_{1} \cdots \cdots w_{k} \cdot w_{k+1}$ is derived by reducing S to $S_{0} \Rightarrow S$ and combining a deriation in G for $S \Rightarrow w_{1} \cdots \cdot w_{k}$ with a derivation in G_{0} of w_{k+1}.

- For the converse use induction on derivation length,

If D is a derivation in G for $S \Rightarrow w$ then it must start with $S \rightarrow S_{0} S$, By the Context-Freedom Theorem $w=u \cdot v$ where $S_{0} \Rightarrow u$ and $S \rightarrow v$. We have $u \in L_{0}$ and by IH $v \in L_{0}^{*}$. SO $\quad w \in L_{0}^{*}$.

Regular languages are context-free

- The trivial finite languages are CF.
- The CFLs are closed under union, concatenation and star.
- By induction on the definition of regular languages:

Theorem. Every regular language is CF

- But not every CFL is regular: $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geqslant 0\right\} \quad$ is CF.

Parsing

Parse-trees

- Computation traces capture the nature of procedural computing by a mathematical machine.
- But a formal derivation by a grammar G conveys an order that is not part of the intended generative prcess.
- Recall CFG for balanced parentheses: $S \rightarrow \varepsilon|S S|(S)$
- Recall CFG for balanced parentheses: $S \rightarrow \varepsilon|S S|(S)$
- A derivation for the string ()$(())$:

$$
S \Rightarrow S S \Rightarrow S(S) \Rightarrow(S)(S) \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())
$$

- Recall CFG for balanced parentheses: $S \rightarrow \varepsilon|S S|(S)$
- A derivation for the string ()$(())$:

$$
S \Rightarrow S S \Rightarrow S(S) \Rightarrow(S)(S) \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())
$$

- Represented as a tree with terminals for leaves
and variables for internal nodes:

- Recall CFG for balanced parentheses: $S \rightarrow \varepsilon|S S|(S)$
- A derivation for the string ()$(())$:

$$
S \Rightarrow S S \Rightarrow S(S) \Rightarrow(S)(S) \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())
$$

- Represented as a tree with terminals for leaves and variables for internal nodes:

- This is a derivation-tree, or pars-tree (of the grammar G for the string w).
- The parse-tree can be built using the derivation above:

- The parse-tree can be built using the derivation above:

- The parse-tree is more important than the derivation.

Different derivations for the same tree are equivalent.
E.g. besides $S \Rightarrow S S \Rightarrow S(S) \Rightarrow(S)(S) \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())$ we also have $\quad S \Rightarrow S S \Rightarrow(S) S \Rightarrow() S \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())$

- The parse-tree can be built using the derivation above:

- The parse-tree is more important than the derivation.

Different derivations for the same tree are equivalent.
E.g. besides $S \Rightarrow S S \Rightarrow S(S) \Rightarrow(S)(S) \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())$ we also have $\quad S \Rightarrow S S \Rightarrow(S) S \Rightarrow() S \Rightarrow()(S) \Rightarrow()((S)) \Rightarrow()(())$

- The latter is the leftmost-derivation for the tree, obtained by repeatedly expanding the leftmost variable.

Another example

- Grammar $G: \quad S \rightarrow A A|\mathrm{~b} A A, \quad A \rightarrow \mathrm{~b} A| A \mathrm{~b} \mid \mathrm{a}$
- A derivation of baab :

$$
S \Rightarrow_{G} A A \Rightarrow_{G} \mathrm{~b} A A \Rightarrow_{G} \mathrm{~b} A A \mathrm{~b} \Rightarrow_{G} \mathrm{~b} A \mathrm{a} \mathrm{~b} \Rightarrow_{G} \mathrm{baab}
$$

- The corresponding derivation tree:

- The leftmost derivation for this is

$$
S \Rightarrow_{G} A A \Rightarrow_{G} \mathrm{~b} A A \Rightarrow_{G} \mathrm{ba} A \Rightarrow_{G} \mathrm{ba} A \mathrm{~b} \Rightarrow_{G} \mathrm{baab}
$$

A different parse-tree for the same string:

The leftmost derivation for this parse-tree:

$$
S \Rightarrow_{G} \mathrm{~b} A A \Rightarrow_{G} \mathrm{ba} A \Rightarrow_{G} \mathrm{ba} A \mathrm{~b} \Rightarrow_{G} \mathrm{baab}
$$

Ambiguous grammars

- A derivation-tree usually represents several derivations.

Can a grammar have different derivation-trees for the same string?

- We have already seen one: $S \rightarrow S S|(S)| \varepsilon$.

- And natural languages are full of ambiguities:

Jane welcomed the man with a dog
Jane welcomed the man with a dog

Familiar example: Arith w/o parentheses

- Alphabet $\{\mathrm{a}, \mathrm{b},+, \times\}$,

Grammar G with production rules:

$$
S \rightarrow S+S|S \times S| \mathrm{a} \mid \mathrm{b}
$$

- Two different derivations of G for the string $\quad \mathrm{a}+\mathrm{b} \times \mathrm{a}+\mathrm{b}$.

$$
\begin{array}{rlrl}
S & \Rightarrow S+S & S & \Rightarrow S \times S \\
& \Rightarrow \mathrm{a}+S & & \Rightarrow S+S \times S \\
& \Rightarrow \mathrm{a}+S \times S & & \Rightarrow \mathrm{a}+S \times S \\
& \Rightarrow \mathrm{a}+\mathrm{b} \times S & & \Rightarrow \mathrm{a}+\mathrm{b} \times S \\
& \Rightarrow \mathrm{a}+\mathrm{b} \times S+S & & \Rightarrow \mathrm{a}+\mathrm{b} \times S+S \\
& \Rightarrow \mathrm{a}+\mathrm{b} \times \mathrm{a}+S & & \Rightarrow \mathrm{a}+\mathrm{b} \times \mathrm{a}+S \\
& \Rightarrow \mathrm{a}+\mathrm{b} \times \mathrm{a}+\mathrm{b} & & \Rightarrow \mathrm{a}+\mathrm{b} \times \mathrm{a}+\mathrm{b}
\end{array}
$$

Dual-clipping in CFLs

- The Clipping Theorem is based on the observation that if M is a k-state DFA then any trace of M of length $\geqslant k$ has some state q repeating.
- And a substring y leading from one occurence of q to another may be short-circuited, yielding the acceptance of a clipped string.

Dual-clipping in CFLs

- The Clipping Theorem is based on the observation that if M is a k-state DFA then any trace of M of length $\geqslant k$ has some state q repeating.
- And a substring y leading from one occurence of q to another may be short-circuited, yielding the acceptance of a clipped string.
- This does not work as stated for for CFLs. But why?

Dual-clipping in CFLs

- The Clipping Theorem is based on the observation that if M is a k-state DFA then any trace of M of length $\geqslant k$ has some state q repeating.
- And a substring y leading from one occurence of q to another may be short-circuited, yielding the acceptance of a clipped string.
- This does not work as stated for for CFLs. But why?
- Whereas a DFA accepts a string w by a "horizobntal" scan, a CFG generates w by a parse-tree for it. Here the repetition is "vertical":
A variable repeats on a branch of the parse-tree.

Dual-Clipping for CFLs

- The portions of the parse-tree generated by the upper \mathbf{A}, but not the lower one, can be "clipped-off" the tree:

Dual-Clipping for CFLs

- The portion generated from the lower \mathbf{A} remains:

Dual-Clipping for CFLs

- The lower A can be identified with the upper one, by lifting the subtree it generates:

Dual-Clipping for CFLs

- The lower A can be identified with the upper one, by lifting the subtree it generates:

Dual-clipping: The framework

- Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long $w \in L$ has two disjoint substrings, not both empty, and not too far apart, that can be clipped off w to yield a string $w^{\prime} \in L$.

Dual-clipping: The framework

- Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long $w \in L$ has two disjoint substrings, not both empty, and not too far apart, that can be clipped off w to yield a string $w^{\prime} \in L$.

- Core idea: variable repeating on a branch.

Dual-clipping: The framework

- Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long $w \in L$ has two disjoint substrings, not both empty, and not too far apart, that can be clipped off w to yield a string $w^{\prime} \in L$.

- Core idea: variable repeating on a branch.
- We'll also need to

1. Give conditions that guarantee such a repetition

Dual-clipping: The framework

- Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long $w \in L$ has two disjoint substrings, not both empty, and not too far apart, that can be clipped off w to yield a string $w^{\prime} \in L$.

- Core idea: variable repeating on a branch.
- We'll also need to

1. Give conditions that guarantee such a repetition
2. Ensure that the clipping obtained is non-empty

Dual-clipping: The framework

- Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long $w \in L$ has two disjoint substrings, not both empty, and not too far apart, that can be clipped off w to yield a string $w^{\prime} \in L$.

- Core idea: variable repeating on a branch.
- We'll also need to

1. Give conditions that guarantee such a repetition
2. Ensure that the clipping obtained is non-empty
3. Obtain two clipped substrings that are "not too far apart".

A repeated variable on a branch

- Suppose T is a parse-tree of a CFG G for w with variable A repeating on a branch.

- The lower occurrence of A generates a substring x.

- The upper occurrence of A generates a substring $y_{0} x y_{1}$.

- Eliminating y_{0} and y_{1} yields a parse-tree except for the branch-segment between the two occurrences of A.

- So lifting the derivation from the lower occurrence of A...

- ... results in a parse-tree for the input string with the substrings y_{0} and y_{1} clipped off.

- Naming the "outer" substrings of the input w_{0} and w_{1}, the input w is $w_{0} \cdot y_{0} \cdot x \cdot y_{1} \cdots w_{1}$ for some w_{0}, w_{1}, and the resulting (clipped) string, $w_{0} \cdot x \cdot w_{1}$, is also in L.

Ensuring a repeated variable

- Let m be the number of variables of G.
- So there are at least $m+1$ variables on the branch for just m different variables in G.
- Some variable must be repeating!

Deriving a long string requires repetition

- Say that a production $X \rightarrow \sigma_{1} \cdots \sigma_{\ell}$ has length ℓ and that the degree of a grammar is the maximal length of its productions.
- A binary tree of height h has $\leqslant 2^{h}$ leaves. Generally, a tree of degree d has $\leqslant d^{h}$ leaves.
- For a grammar of degree d and m variables any string with a parse-tree of height $\leqslant m$ is d^{m}.
- So a parse-tree for a string of length $>d^{m}$ must have a branch with $>m$ variables, which therefore has a variable repeating.

Ensuring non-vacuous clipping

-What if the clipped y_{0}, y_{1} are both empty?

- Then we obtained a smaller parse-tree for w !
- If we just start with a parse-tree of G for w
with a minimal number of nodes (no smaller parse-tree for w) then at least one of y_{0}, y_{1} is non-empty.

Bounding $\left|y_{0} \cdot x \cdot y_{1}\right|$

- Claim: There must be a $y_{0} \cdot x \cdot y_{1}$ of length $\leqslant d^{m}$.
- Take a lowermost pair of a variable repeating:
there can be then no repetition on a branch under the upper occurrence.

- Then $\left|y_{0} \cdot x \cdot y_{1}\right| \leqslant k$.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

- Theorem. Let G be a CFG over Σ with m variables
and of degree d (all productions are of length $\leqslant d$.
- If $w \in \mathcal{L}(G)$ has length $\geqslant k=d^{m}$
- then w has a substring p of length $\leqslant k$, with disjoint substrings y_{0}, y_{1} not both empty, such that the string w^{\prime} obtained from w by removing y_{0} and y_{1} is also in L.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

- Theorem. Let G be a CFG over Σ with m variables and of degree d (all productions are of length $\leqslant d$.
- If $w \in \mathcal{L}(G)$ has length $\geqslant k=d^{m}$
- then w has a substring p of length $\leqslant k$, with disjoint substrings y_{0}, y_{1} not both empty, such that the string w^{\prime} obtained from w by removing y_{0} and y_{1} is also in L.
- Stated formally: w can be factored as $w=w_{0} \cdot y_{0} \cdot x \cdot y_{1} \cdot w_{1}$, where y_{0}, y_{1} are not both empty and $\left|y_{0} \cdot x \cdot y_{1}\right| \leqslant k$, so that $w_{0} \cdot x \cdot w_{1} \in L$.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

- Theorem. Let G be a CFG over Σ with m variables and of degree d (all productions are of length $\leqslant d$.
- If $w \in \mathcal{L}(G)$ has length $\geqslant k=d^{m}$
- then w has a substring p of length $\leqslant k$, with disjoint substrings y_{0}, y_{1} not both empty, such that the string w^{\prime} obtained from w by removing y_{0} and y_{1} is also in L.
- Stated formally: w can be factored as $w=w_{0} \cdot y_{0} \cdot x \cdot y_{1} \cdot w_{1}$, where y_{0}, y_{1} are not both empty and $\left|y_{0} \cdot x \cdot y_{1}\right| \leqslant k$, so that $w_{0} \cdot x \cdot w_{1} \in L$.
- We refer to $k=d^{m}$ as G 's clipping constant, and to p as the critical substring.

A Dual-clipping Property

- We rephrase the Dual-clipping Theorem in terms of a language property.
- Say that a language L has the Dual-clipping Property if there is a k such that every $w \in L$ of length $\geqslant k$ has a substring $y_{0} \cdot x \cdot y_{1}$ of length $\leqslant k$ with $y_{0} y_{1} \neq \varepsilon$, for which the string w^{\prime} obtained from w by removing y_{0} and y_{1} is also in L.

A Dual-clipping Property

- We rephrase the Dual-clipping Theorem in terms of a language property.
- Say that a language L has the Dual-clipping Property if there is a k such that every $w \in L$ of length $\geqslant k$ has a substring $y_{0} \cdot x \cdot y_{1}$ of length $\leqslant k$ with $y_{0} y_{1} \neq \varepsilon$, for which the string w^{\prime} obtained from w by removing y_{0} and y_{1} is also in L.
- The Dual-Clipping Theorem for CFLs states then that every CFL has the Dual-clipping Property.
- Consequently, if a language L fails this property, then it is not CF.

Failing Dual-Clipping

- L fails the Dual-clipping Property when
\star For every k we can find
a $w \in L$ of length $\geqslant k$ so that
for every substring $p=y_{0} \cdot x \cdot h_{1}$ of w of length $\leqslant k$ with $y_{0} y_{1} \neq \varepsilon$, the string w^{\prime} obtained from w by removing y_{0} and y_{1} is not in L.

Example: an-bn-cn

- Let $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$. We show that L is not CF.

Example: an-bn-cn

- Let $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$. We show that L is not CF.
- Suppose $L=\mathcal{L}(G)$, where G is a CFG with clipping constant k.

Example: an-bn-cn

- Let $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$. We show that L is not CF.
- Suppose $L=\mathcal{L}(G)$, where G is a CFG with clipping constant k.
- Take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \in L$.

By the Dual-Clipping Theorem we can clip off some y_{0}, y_{1} within a k-long substring p of w yielding a string $w^{\prime} \in L$.

Example: an-bn-cn

- Let $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{C}^{n} \mid n \geqslant 0\right\}$.

We show that L is not CF.

- Suppose $L=\mathcal{L}(G)$, where G is a CFG with clipping constant k.
- Take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \in L$.

By the Dual-Clipping Theorem we can clip off some y_{0}, y_{1} within a k-long substring p of w yielding a string $w^{\prime} \in L$.

- But this is impossible:
since $|p| \leqslant k$ it has at most two of the three letters,
and w^{\prime} must have fewer occurrences of a removed letter than of a nonremoved one.
- Conclusion: L is not CF.

Example: an-bn-cn

- Let $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$.

We show that L is not CF.

- Suppose $L=\mathcal{L}(G)$, where G is a CFG with clipping constant k.
- Take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \in L$.

By the Dual-Clipping Theorem we can clip off some y_{0}, y_{1} within a k-long substring p of w yielding a string $w^{\prime} \in L$.

- But this is impossible:
since $|p| \leqslant k$ it has at most two of the three letters,
and w^{\prime} must have fewer occurrences of a removed letter than of a nonremoved one.
- Conclusion: L is not CF.

Steps in the contrarian game

Note the order of choices in this "contrarian" proof by contradiction:

1. G is given to us, with its clipping constant.

Steps in the contrarian game

Note the order of choices in this "contrarian" proof by contradiction:

1. G is given to us, with its clipping constant.
2. We can choose a $w \in L$ of length $\geqslant k$.

Steps in the contrarian game

Note the order of choices in this "contrarian" proof by contradiction:

1. G is given to us, with its clipping constant.
2. We can choose a $w \in L$ of length $\geqslant k$.
3. The substring p and its factorization $p=y_{0} \cdot x \cdot y_{1}$ are all unknown,
i.e. given to us.

Steps in the contrarian game

Note the order of choices in this "contrarian" proof by contradiction:

1. G is given to us, with its clipping constant.
2. We can choose a $w \in L$ of length $\geqslant k$.
3. The substring p and its factorization $p=y_{0} \cdot x \cdot y_{1}$ are all unknown,
i.e. given to us.
4. We must show that whatever they are, subject to the constraints, the clipped string w^{\prime} is out of L.

Same proof ariticulated as failures

We can articulate proofs like this directly by showing failure of Dual-Clipping,

Same proof ariticulated as failures

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown $k>0$, we choose $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k}$. We have $w \in L$ and $|w| \geqslant k$.

Same proof ariticulated as failures

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown $k>0$, we choose $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k}$. We have $w \in L$ and $|w| \geqslant k$.
- Then given to us that an unknown substring
$p=y_{0} \cdot x \cdot y_{1}$ of length $\leqslant k$
we observe that it can have at most two of a, b, c.

Same proof ariticulated as failures

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown $k>0$, we choose $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k}$. We have $w \in L$ and $|w| \geqslant k$.
- Then given to us that an unknown substring
$p=y_{0} \cdot x \cdot y_{1}$ of length $\leqslant k$
we observe that it can have at most two of a, b, c.
- So removing y_{0} and y_{1} yields a string not in L.

Same proof ariticulated as failures

We can articulate proofs like this directly by showing failure of Dual-Clipping,

- Given to us an unknown $k>0$, we choose $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k}$. We have $w \in L$ and $|w| \geqslant k$.
- Then given to us that an unknown substring
$p=y_{0} \cdot x \cdot y_{1}$ of length $\leqslant k$
we observe that it can have at most two of a, b, c.
- So removing y_{0} and y_{1} yields a string not in L.
- Since L fails the Dual-clipping Property, it is not CF.

The intersection of CFLs

The intersection of CFL need not be CF!!
-

$$
\begin{aligned}
& L_{a b}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{k} \mid n, k \geqslant 0\right\} \text { is CF } \\
& L_{b c}=\left\{\mathrm{a}^{k} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n, k \geqslant 0\right\} \text { is CF }
\end{aligned}
$$

- But their interscetion

$$
L_{a b} \cap L_{b c}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}
$$

is not $C F$.

The complement of a CFL

The complement of a CFL need not be CF.

- Reason: The collection of CFLs is closed under union.

If it were closed under complement then it would be closed under intersection.

- $-(A \cap B)=-A \cup-B \quad$ so $A \cap B=-(-A \cup-B)$
- Specific example: The Mahi-mahi Languae is not CF.

But its complement is!

Example: Alternating equals

- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i} \mid i, j \geqslant 0\right\}$ is CF. So is $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{j} \mathrm{~d}^{i} \mid i, j \geqslant 0\right\}$

Example: Alternating equals

- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i} \mid i, j \geqslant 0\right\}$ is CF. So is $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{j} \mathrm{~d}^{i} \mid i, j \geqslant 0\right\}$
- But $L=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i} \mathrm{~d}^{j} \mid i, j \geqslant 0\right\}$ is not.

Example: Alternating equals

- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{i} \mid i, j \geqslant 0\right\}$ is CF. So is $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{j} \mathrm{~d}^{i} \mid i, j \geqslant 0\right\}$
- But $L=\left\{a^{i} b^{j} \mathrm{c}^{i} \mathrm{~d}^{j} \mid i, j \geqslant 0\right\}$ is not.
- Given $k>0$ take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \mathrm{~d}^{k} \in L . \quad w \in L,|w| \geqslant k$.

Example: Alternating equals

- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{i} \mid i, j \geqslant 0\right\}$ is CF. So is $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{j} \mathrm{~d}^{i} \mid i, j \geqslant 0\right\}$
- But $L=\left\{a^{i} b^{j} \mathrm{c}^{i} \mathrm{~d}^{j} \mid i, j \geqslant 0\right\}$ is not.
- Given $k>0$ take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \mathrm{~d}^{k} \in L . \quad w \in L,|w| \geqslant k$.
- If $p=y_{0} \cdot x \cdot y_{1}$ is a substring, $y_{1} y_{1} z \neq \varepsilon$
let w^{\prime} be obtained from w by removing y_{0}, y_{1}.

Example: Alternating equals

- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{i} \mid i, j \geqslant 0\right\}$ is CF. So is $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{j} \mathrm{~d}^{i} \mid i, j \geqslant 0\right\}$
- But $L=\left\{a^{i} b^{j} \mathrm{c}^{i} \mathrm{~d}^{j} \mid i, j \geqslant 0\right\}$ is not.
- Given $k>0$ take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \mathrm{~d}^{k} \in L . \quad w \in L,|w| \geqslant k$.
- If $p=y_{0} \cdot x \cdot y_{1}$ is a substring, $y_{1} y_{1} z \neq \varepsilon$ let w^{\prime} be obtained from w by removing y_{0}, y_{1}.
- Since p can span at most two adjacent blocks, removing y_{0}, y_{1} deletes some letter ($\mathrm{a}, \mathrm{b}, \mathrm{c}$, or d) without deleting any corresponding one (c, d, a, or b, respectively).
- So $w^{\prime} \notin L$.

Example: Alternating equals

- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{i} \mid i, j \geqslant 0\right\}$ is CF. So is $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{j} \mathrm{~d}^{i} \mid i, j \geqslant 0\right\}$
- But $L=\left\{a^{i} b^{j} \mathrm{c}^{i} \mathrm{~d}^{j} \mid i, j \geqslant 0\right\}$ is not.
- Given $k>0$ take $w=\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \mathrm{~d}^{k} \in L . \quad w \in L,|w| \geqslant k$.
- If $p=y_{0} \cdot x \cdot y_{1}$ is a substring, $y_{1} y_{1} z \neq \varepsilon$ let w^{\prime} be obtained from w by removing y_{0}, y_{1}.
- Since p can span at most two adjacent blocks, removing y_{0}, y_{1} deletes some letter ($\mathrm{a}, \mathrm{b}, \mathrm{c}$, or d) without deleting any corresponding one (c, d, a, or b, respectively).
- So $w^{\prime} \notin L$.
- L fails the dual-clipping property, and cannot be CF.

NONDETERMINISTIC STACK ACCEPTORS (PDAs)

A missing computation model

DFA $=$ Deterministic Finite Acceptor

A missing computation model

NFA = Non-deterministic Finite Acceptor

A missing computation model

generative	REG	CFL
operational	NFA	???

A missing computation model

generative	REG	CFL
operational	NFA	NSA

NSA = Non-deterministic Stack Acceptor

A missing computation model

generative	REG	CFL
operational	NFA	PDA

PDA $=$ Push-Down Automata

Why this matters

- The primary computational characterization of:
- regular languages: by a machine model (DFA)
- context-free languages: by a symbolic model (CFG)
- But parsing for CFLs is important, and needs a machine model.
- Next: a characterization of CFLs by a machine model.
- Unfortunately, non-determinism is essential here.

Cautious extension of memory

- Approach: extend automata with an external memory.
- Limiting the space used gives us LBA (and other).
- This turns out to be too powerful.
- Alternative: limit external memory to "single-use".

Stacks

- A stack is read from the top!
- It is unbounded (like the Turing string)
- But access destroys stored information (single use).

Traditional stack operations

- Push a symbol: $w \mapsto \sigma w$
- Pop a symbol: $\sigma w \mapsto w$
- Represent a stack by a string:
edcba is the stack with e at the top, a at the bottom.
- The empty string ε represents the empty stack.

A combined stack-operation

- Generalize push to a string v_{0} :
$w \mapsto v_{0} \cdot w$
- And pop to a conditional string-pop u_{0} :
$u_{0} \cdot w \mapsto w$
If the top of the stack matches u_{0} then pop that top.
- Combined to a single operation of Replacing a Top segment of stack:
$u_{0} \cdot x \quad \mapsto \quad v_{0} \cdot x$
- Meaning:
if u_{0} matches a top portion of the stack then replace it by v_{0} else skip
- Notation: $u_{0} \rightarrow v_{0}$.
- Examples:

$$
\begin{array}{llll}
\varepsilon \rightarrow 2 & 2 \rightarrow \varepsilon & 1 \rightarrow 2 & 1 \rightarrow 23 \\
12 \rightarrow 221 & \varepsilon \rightarrow 23 & 12 \rightarrow \varepsilon &
\end{array}
$$

A stack automaton (PDA) over an alphabet Σ is a device $M=(\Sigma, Q, s, A, \Gamma, \Delta)$ where

- Q is a set, dubbed states
- $s \in Q$ is distinguished state, dubbed initial state
- $A \subseteq Q$, the set of accepting states
- $\quad \Gamma \supseteq \Sigma$ is the extended alphabet
- Δ is a finite set of transition rules of the form $q \xrightarrow{\sigma(\beta \rightarrow \gamma)} p \quad$ where

$$
\begin{aligned}
& q, p \in Q \\
& \sigma \in \Sigma_{\epsilon}=\Sigma \cup\{\varepsilon\} \\
& \beta, \gamma \in \Gamma^{*}
\end{aligned}
$$

Using stack as memory: an example

- Task: recognize strings $\mathrm{a}^{n} \mathrm{~b}^{n}(n \geqslant 1)$.
- Initially the stack is empty.
- Phase 1:

As input is read, a's are pushed on the stack.

- Phase 2 :

When b is encountered, start popping a's.

- Termination:

Input accepted if stack is empty when input scan completed.

Using a bottom-marker

- Our PDAs do not recognize an empty stack (some varienties of PDAs do!)
- The intent of an empty stack is obtained
by reserving a symbol as bottom-of-stack marker, say \$.
- A PDA as above starts by pushing \$ on the stack, and accepts the input if $\$$ is at the top of the stack when completing the scan.

A PDA for $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n>0\right\}$

- States: initial s, accepting $f, q=$ pushing phase, $p=$ popping phase
- Transitions:

$$
\begin{array}{ll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & \text { (push } \$ \text {) } \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & \text { (reading } a \text { 's push them) } \\
q \xrightarrow{b(a \rightarrow \epsilon)} p & \text { (on } b \text { pop } a \& \text { switch state) } \\
p \xrightarrow{b(a \rightarrow \epsilon)} p & \text { (reading } b \text { 's pop } a \text { 's) } \\
p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f & \text { (if } \$ \text { tops stack accept) }
\end{array}
$$

A PDA for $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n>0\right\}$

- States: initial s, accepting $f, q=$ pushing phase, $p=$ popping phase
- Transitions:

$$
\begin{array}{lll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & \text { (push } \$ \text {) } \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & \text { (reading } a \text { 's push them) } \\
q \xrightarrow{b(a \rightarrow \epsilon)} & p & \text { (on } b \text { pop } a \& \text { switch state) } \\
p \xrightarrow{b(a \rightarrow \epsilon)} & p \text { (reading } b \text { 's pop } a \text { 's) } \\
p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f & \text { (if \$ tops stack accept) }
\end{array}
$$

- If $\$$ is read while some b's unread $\left(\#_{b}>\#_{a}\right)$ then reading is incomplete, so no acceptance.

A PDA for $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n>0\right\}$

- States: initial s, accepting $f, q=$ pushing phase, $p=$ popping phase
- Transitions:

$$
\begin{array}{ll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & \text { (push } \$ \text {) } \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & \text { (reading } a \text { 's push them) } \\
q \xrightarrow{b(a \rightarrow \epsilon)} p & \text { (on } b \text { pop } a \& \text { switch state) } \\
p \xrightarrow{b(a \rightarrow \epsilon)} p & \text { (reading } b \text { 's pop } a \text { 's) } \\
p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f & \text { (if } \$ \text { tops stack accept) }
\end{array}
$$

- If popping is not completed $\left(\# a>\#_{b}\right)$ then $\$$ is not reach, so no accept state.

A PDA for $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n>0\right\}$

- States: initial s, accepting $f, q=$ pushing phase, $p=$ popping phase
- Transitions:

$$
\begin{array}{lll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & \text { (push } \$ \text {) } \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & \text { (reading } a \text { 's push them) } \\
q \xrightarrow{b(a \rightarrow \epsilon)} & p & \text { (on } b \text { pop } a \& \text { switch state) } \\
p \xrightarrow{b(a \rightarrow \epsilon)} & p \text { (reading } b \text { 's pop } a \text { 's) } \\
p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f & \text { (if } \$ \text { tops stack accept) }
\end{array}
$$

- If a b is followed by a then computation aborts: no production for p reading a.

PDA semantics: configurations and yield

- A configuration of a PDA is a triplet (q, w, α) where $q \in Q, w \in \Sigma^{*}$ and $\alpha \in \Gamma^{*}$.
- The intent:
q is the current state
w is the remaining portion of the input (from cursor on)
α is a string representing the stack, from top to bottom.

PDA semantics: configurations and yield

- A configuration of a PDA is a triplet (q, w, α) where $q \in Q, w \in \Sigma^{*}$ and $\alpha \in \Gamma^{*}$.
- The intent:
q is the current state
w is the remaining portion of the input (from cursor on)
α is a string representing the stack, from top to bottom.
- The transition rules generate a yield relation \Rightarrow between configurations:

```
If q}\xrightarrow{}{\sigma(\alpha->\beta)}
```

then $(q, \sigma x, \alpha \cdot \gamma) \Rightarrow(p, x, \beta \cdot \gamma)$
(for all $x \in \Sigma^{*}$ and $\gamma \in \Gamma^{*}$).

PDA semantics: recognized languages

- The initial configuration for input w is (s, w, ε)

PDA semantics: recognized languages

- The initial configuration for input w is (s, w, ε)
- An input string $w \in \Sigma^{*}$ is accepted if $(s, w, \varepsilon) \Rightarrow^{*}(a, \varepsilon, \gamma)$
for some accepting state $a \in A$ and some $\gamma \in \Gamma^{*}$.

PDA semantics: recognized languages

- The initial configuration for input w is (s, w, ε)
- An input string $w \in \Sigma^{*}$ is accepted if
$(s, w, \varepsilon) \Rightarrow^{*}(a, \varepsilon, \gamma)$
for some accepting state $a \in A$ and some $\gamma \in \Gamma^{*}$.
- A cfg $c=(q, w, \gamma)$ is terminal if
there is no $\mathrm{cfg} c^{\prime}$ where $c \Rightarrow_{M} c^{\prime}$.
if in addition $q \in A \quad w=\varepsilon$ then it is accepting.

Examples of traces

Recall the transitions

$$
\begin{aligned}
& s \xrightarrow{a(\epsilon \rightarrow a \$)} q \\
& q \xrightarrow{a(\epsilon \rightarrow a)} q \\
& q \xrightarrow{b(a \rightarrow \epsilon)} q
\end{aligned}
$$

$$
\begin{aligned}
& p \xrightarrow{b(a \rightarrow \epsilon)} p \\
& p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)}
\end{aligned}
$$

Examples of traces

Recall the transitions

$$
\begin{array}{ll}
s \xrightarrow{a(\epsilon \rightarrow a \$)} q & p \xrightarrow{b(a \rightarrow \epsilon)} p \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f \\
q \xrightarrow{b(a \rightarrow \epsilon)} p &
\end{array}
$$

A trace for aabb:

$$
\begin{aligned}
(s, \mathrm{aabb}, \varepsilon) & \Rightarrow(q, \mathrm{abb}, \mathrm{a} \$) \\
& \Rightarrow(q, \mathrm{bb}, \mathrm{aa} \$) \\
& \Rightarrow(p, \mathrm{~b}, \mathrm{a} \$) \\
& \Rightarrow(p, \varepsilon, \$) \\
& \Rightarrow(f, \varepsilon, \varepsilon)
\end{aligned}
$$

Examples of traces

Recall the transitions

$$
\begin{array}{ll}
s \xrightarrow{a(\epsilon \rightarrow a \$)} q & p \xrightarrow{a(a \rightarrow \epsilon)} p \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f \\
q \xrightarrow{b(a \rightarrow \epsilon)} p &
\end{array}
$$

Non-accepting traces:

$$
\begin{aligned}
(s, \mathrm{aab}, \varepsilon) & \Rightarrow(q, \mathrm{ab}, \mathrm{a} \$) \\
& \Rightarrow(q, \mathrm{~b}, \mathrm{a} \$) \\
& \Rightarrow(p, \varepsilon, \mathrm{a} \$)
\end{aligned}
$$

Example: Palindromes around c

- Construct a PDA to recognize $\left\{w \cdot \mathrm{c} \cdot w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$

Example: Palindromes around c

- Construct a PDA to recognize $\left\{w \cdot \mathrm{c} \cdot w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
- Algorithm: Push successive input symbols.

When reading c switch to a new state, match subsequent input symbols with the top of the stack, popping the top.

Example: Palindromes around c

- Construct a PDA to recognize $\left\{w \cdot \mathrm{c} \cdot w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
- Algorithm: Push successive input symbols.

When reading c switch to a new state, match subsequent input symbols with the top of the stack, popping the top.
$s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q$ (place a marker \$ on the stack)
$q \xrightarrow{\sigma(\epsilon \rightarrow \sigma)} q$ (push next letter)
$q \xrightarrow{\mathrm{C}(\epsilon \rightarrow \epsilon)} p$ (if C , switch to state p)
$p \xrightarrow{\sigma(\sigma \rightarrow \epsilon)} p$ (if letter matches stack-op pop it, else abort)
$p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f$ (accept if top is $\$$)

And if the center is absent?

- $\left\{w \cdot w^{R} \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$.
- Use nondeterminism!
- Replace $q \xrightarrow{c(\epsilon \rightarrow \epsilon)} p$ above by by $q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p$
- The resulting PDA:

$$
\begin{aligned}
& s \xrightarrow{s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q} \\
& q \xrightarrow{\sigma(\epsilon \rightarrow \sigma)} q \quad(\sigma=\mathrm{a}, \mathrm{~b}) \\
& q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p \\
& p \xrightarrow{\sigma(\sigma \rightarrow \epsilon)} p \quad(\sigma=\mathrm{a}, \mathrm{~b}) \\
& p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f
\end{aligned}
$$

Repeated use of nondeterminism

- Consider $\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \in \Sigma^{*} \mid m \leqslant n \leqslant 2 m\right\}$
-What stack algorithm would work?

Repeated use of nondeterminism

- $\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \in \Sigma^{*} \mid m \leqslant n \leqslant 2 m\right\}$
- What stack algorithm would work?
- Use four states s, q, p, f, s initial, s, f accepting.
- Transition rules:

$$
\begin{array}{ll}
s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q & p \xrightarrow{b(a \rightarrow \epsilon)} p \\
q \xrightarrow{a(\epsilon \rightarrow a)} q & p \xrightarrow{b(a a \rightarrow \epsilon)} p \\
q \xrightarrow{\epsilon(\epsilon \rightarrow \epsilon)} p & p \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f
\end{array}
$$

- M pushes the a 's being read, switches nondeterministically to a "b-reading state" p which empties the stack while reading b's, popping either a single a or two tta's at a time.

From CFGs to PDAs

- THEOREM. Every CFL is recognized by some PDA.
- For each CFG G we construct a PDA M, so that $\mathcal{L}(G)=\mathcal{L}(M)$.
- Motivating example:
G has rules $\mathrm{S} \rightarrow \mathrm{aSb}$ and $\mathrm{S} \rightarrow \varepsilon$.
- Initial idea:
generate on the stack a random string x, then compare x to the input w.
- A marker $\$$ used for stack bottom, and completion is then detectable.
- What's wrong here?

Alternating between generation and consumption

- What's wrong:

We'd need to apply the rules of G deep in the stack.

- But there is no need to wait:
we can compare the (randomly) generate string as soon as feasible.

	Input	Stack	
compare	aabb	$S \$$	generate
	aabb	aSb\$	
	abb	Sb\$	
compare	abb	aSbb\$	generate
	bb	Sbb\$	generate
	bb	bb\$	
compare	b	b\$	
compare			
	ε	\$	

PDAs recognize all CFLs

- Let $G=(R, N, S)$ be a CFG over Σ.

Define a PDA M to recognize $\mathcal{L}(G)$.

PDAs recognize all CFLs

- Let $G=(R, N, S)$ be a CFG over Σ.

Define a PDA M to recognize $\mathcal{L}(G)$.

- Three states: s, q and f.
s initial, f accepting.
Auxiliary symbols: variables of G and $\$$.

PDAs recognize all CFLs

- Let $G=(R, N, S)$ be a CFG over Σ.

Define a PDA M to recognize $\mathcal{L}(G)$.

- Three states: s, q and f.
s initial, f accepting.
Auxiliary symbols: variables of G and $\$$.
- Transition rules:
- Initializing the stack: $s \xrightarrow{\epsilon(\epsilon \rightarrow S \$)} q$

PDAs recognize all CFLs

- Let $G=(R, N, S)$ be a CFG over Σ.

Define a PDA M to recognize $\mathcal{L}(G)$.

- Three states: s, q and f.
s initial, f accepting.
Auxiliary symbols: variables of G and $\$$.
- Transition rules:
- Initializing the stack: $s \xrightarrow{\epsilon(\epsilon \rightarrow S \$)} q$
- For each production $A \rightarrow \alpha: q \xrightarrow{\epsilon(A \rightarrow \alpha)} q$
I.e., if stack-top is variable A, apply a production of G.

PDAs recognize all CFLs

- Let $G=(R, N, S)$ be a CFG over Σ.

Define a PDA M to recognize $\mathcal{L}(G)$.

- Three states: s, q and f.
s initial, f accepting.
Auxiliary symbols: variables of G and $\$$.
- Transition rules:
- Initializing the stack: $s \xrightarrow{\epsilon(\epsilon \rightarrow S \$)} q$
- For each production $A \rightarrow \alpha: \quad q \xrightarrow{\epsilon(A \rightarrow \alpha)} q$
I.e., if stack-top is variable A, apply a production of G.
- For each $\sigma \in \Sigma: \quad q \xrightarrow{\sigma(\sigma \rightarrow \epsilon)} q$
I.e., if stack-top is a terminal σ matching current input symbol, then σ is read off input, and popped off the stack.
- Acceptance: $\quad q \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f$

Example

- Grammar $G: \quad S \rightarrow \mathrm{aSb} \mid \varepsilon$
- The PDA obtained:

$$
\begin{array}{ll}
s \xrightarrow{\epsilon(\epsilon \rightarrow S \Phi)} q & q \xrightarrow{a(a \rightarrow \epsilon)} q \\
q \xrightarrow{\epsilon(S \rightarrow a S b)} q & q \xrightarrow{b(b \rightarrow \epsilon)} q \\
q \xrightarrow{\epsilon(S \rightarrow \epsilon)} q & q \xrightarrow{\epsilon(\Phi \rightarrow \epsilon)} f
\end{array}
$$

- Here is a derivation of aabb in G and the corresponding trace of M :

Converting PDAs to CFGs

- We already had a conversion from NFAs to regular expressions.
- For pairs (q, p) of states we assigned the language of strings leading from q to p via deleted states.
- A pre-processor guaranteed that the language assigned
to the pair (s, a) (i.e. start to accept is the language recognized by the given NFA.
- For pairs (q, p) of states let $L_{q p}$ consist of
the strings w leading from q with an empty stack to p with an empty stack:

$$
L_{q p}=\left\{w \in \Sigma^{*} \mid(q, w, \varepsilon) \Rightarrow^{*}(p, \varepsilon, \varepsilon)\right\}
$$

- Note that if $(q, w, \varepsilon) \Rightarrow(p, \varepsilon, \varepsilon)$ then

$$
(q, w, \alpha) \Rightarrow(p, w, \alpha) \quad \text { for all stack } \alpha
$$

A pre-processor

- Converting NFA to equivalent RegExp we pre-processed.
- Here convert given PDA M to one that

1. has all stack operations broken push and pop of one symbol;
2. accepts a string only when the stack is empty.
-(1) helps us restrict attention to basic changes in the stack.
(2) enables focusing on traces that start and end with empty stack.

- A PDA M can be converted into an equivalent one satisfying (1) by breaking compound $u_{0} \rightarrow v_{0}$ into single-letter push and pop.
- (2) is obtained by adding transitions that empty the stack when M accepts.

Generating simultanuously the languages $L_{q p}$

- We use productions to code a generative definition of the languages $L_{q p}$.
- Right off we have, for each state $q, \quad(q, \varepsilon) \xrightarrow{\epsilon}(q, \varepsilon)$.
I.e. $\varepsilon \in L_{q q}$.
- So we include in our grammar, for each state q,
the production $A_{q q} \rightarrow \varepsilon$.

Concatenation

- If $(q, \varepsilon) \xrightarrow{u}(r, \varepsilon) \xrightarrow{v}(p, \varepsilon)$ then $(q, \varepsilon) \xrightarrow{u \cdot v}(p, \varepsilon)$.
- In other words, if we already have that

$$
A_{q r} \Rightarrow^{*} u \text { and } A_{r p} \Rightarrow^{*} v
$$

$$
\text { then we should have } A_{q p} \Rightarrow^{*} u \cdot v
$$

- This is achieved by including the production $A_{q p} \rightarrow A_{q r} A_{r p}$

Stack

- We include this production for each combination of q, r, p.

Productions for stack operations

- So far we have looked at productions that apply to any PDA.
- Suppose $(q, w, \varepsilon) \Rightarrow^{*}(p, \varepsilon, \varepsilon)$.

If the computation trace has an empty stack along the way,
i.e. a configuration (r, v, ε) with $w=u \cdot v$, then the concatenation production will yield w.

- If not, then we have

Stack

- The first move in this trace must read a symbol $\sigma \in \Sigma_{\epsilon}$, and push some symbol θ on the stack.
- The last move must then read some symbol $\tau \in \Sigma_{\epsilon}$
which causes M to pop that θ
(which is undisturbed through the trace). That is, for some states r, t :

$$
\begin{aligned}
(q, \sigma v, \varepsilon) & \Rightarrow(r, v, \theta) \\
(t, \tau, \theta) & \Rightarrow(p, \varepsilon, \varepsilon)
\end{aligned}
$$

- This is conveyed by the production $\quad A_{q p} \rightarrow \sigma A_{r t} \tau$.
- In general, whenever M has rules

$$
q \xrightarrow{\sigma(\epsilon \rightarrow \theta} r \quad \text { and } \quad t \xrightarrow{\tau(\theta \rightarrow \epsilon)} p
$$

with the same θ in both, the grammar G has the production $\quad A_{q p} \rightarrow \sigma A_{r t} \tau$.

Proof concluded

- By induction on traces of M we obtain that, for all $q, p \in Q$

$$
A_{q p} \Rightarrow_{G}^{*} w \quad \operatorname{IFF} \quad(q, w, \varepsilon) \rightarrow_{M}^{*}(p, \varepsilon, \varepsilon)
$$

- When q, p are the initial and accepting states s, f

$$
\begin{aligned}
& A_{s f} \Rightarrow_{G}^{*} w \quad(G \text { generates } w) \text { iff } \\
& \quad(s, w, \varepsilon) \rightarrow_{M}^{*}(f, \varepsilon, \varepsilon) \quad(M \text { accepts } w),
\end{aligned}
$$

Example

- Let M over $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ have the following transition rules.

1. $s \xrightarrow{\epsilon(\epsilon \rightarrow \$)} q$
2. $q \xrightarrow{a(\epsilon \rightarrow a)} q$
3. $q \xrightarrow{c(\epsilon \rightarrow b)} p$
4. $p \xrightarrow{\epsilon(b \rightarrow \epsilon)} r$
5. $r \xrightarrow{b(a \rightarrow \epsilon)} r$
6. $r \xrightarrow{\epsilon(\$ \rightarrow \epsilon)} f$

- The construction above yields the following grammar

$$
\begin{array}{ll}
A_{t t} \rightarrow \varepsilon & \text { (all states } t) \\
A_{t u} \rightarrow A_{t v} A_{v u} & \text { (all states } t, u, v)
\end{array}
$$

(with initial variable $A_{s f}$) $\quad A_{q r} \rightarrow$ a $A_{q r} \mathrm{~b}$ (pushing and popping a, rules 2 and
$A_{q r} \rightarrow \mathrm{c} A_{p p} \varepsilon \quad$ (pushing and popping b , rules 3 and
$A_{s f} \rightarrow \varepsilon A_{q r} \varepsilon \quad$ (pushing and popping $\$$, rules 1 and

Little puzzles about PDAs

- Suppose M is a PDA that does not use its stack.

What does M recognize?

- Suppose M is a PDA that uses its stack only up to depth 1000.

What sort of language does M recognize?

- Suppose M is a super-PDA, that uses two stacks.

What sort of language does M recognize?

Little puzzles about PDAs

- For a DFA M recognizing $L \subseteq \Sigma^{*}$, we obtained an automaton \bar{M} recognizing $\bar{L}=\Sigma^{*}-L$ by flipping accepting and non-accepting states.
For PDAs we can't, since the complement of a CFL need not be CF. What's wrong with the same sort of flipping for PDAs?

Little puzzles about PDAs

- For DFAs M, N we constructed a product DFA that recognizes $\mathcal{L}(M) \cap \mathcal{L}(N)$.
Why can't we use the same idea to build, for PDAs M, N a PDA that recognizes $\mathcal{L}(M) \cap \mathcal{L}(N)$?

The intersection of a CFL and a regular language

- But what if N does not use its stack?
- Theorem. The intersection of a CFL and a regular language is CF.

Examples of intersecting CF with Reg

1. $L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$ We have $\quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}=L \cap \mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}^{*} \cdot \mathrm{c}^{*}\right)$
So L cannot be CF.

Examples of intersecting CF with Reg

1. $L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$ We have $\quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}=L \cap \mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}^{*} \cdot \mathrm{c}^{*}\right)$
So L cannot be CF.
(Why is this example a bit silly?)

Examples of intersecting CF with Reg

1. $L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$

We have $\quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}=L \cap \mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}^{*} \cdot \mathrm{c}^{*}\right)$
So L cannot be CF.
2. Suppose $L \subseteq \Gamma^{*}$ is recognized by a PDA.

If $\Sigma \subset \Gamma$, what about the set of Σ-strings in L ?

Examples of intersecting CF with Reg

1. $L=\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$

We have $\quad\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geqslant 0\right\}=L \cap \mathcal{L}\left(\mathrm{a}^{*} \cdot \mathrm{~b}^{*} \cdot \mathrm{c}^{*}\right)$
So L cannot be CF.
2. Suppose $L \subseteq \Gamma^{*}$ is recognized by a PDA.

If $\Sigma \subset \Gamma$, what about the set of Σ-strings in L ?

It is $L \cap \Sigma^{*}$, and therefore CF .

The Chomsky Hierarchy

So far: two classes of languages

LANGUAGE CLASS:	Regular	Context-free
GRAMMARS:	regular grammars	CF grammars
MACHINES:	DFA=NFA	PDA
MEMORY:	internal	stack
AcCESS:	on-line	on-line + stack

Revisiting our non-CF grammar

$$
\begin{array}{cl}
S \rightarrow & \varepsilon \mid S A B C \\
A B \rightarrow B A & B A \rightarrow A B \\
A C \rightarrow C A & C A \rightarrow A C \\
B C \rightarrow C B & C B \rightarrow B C \\
A \rightarrow \mathrm{a} \\
B \rightarrow \mathrm{~b} \\
C \rightarrow \mathrm{c}
\end{array}
$$

- $\mathcal{L}(G)=\left\{w \in\{a, b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$ is not context free.

The context-sensitive languages

- A grammar is context sensitive (a CSG) if all its productions are of the form $u A v \rightarrow u x v$.
- This is just like a CFG, except that
rules $A \rightarrow x$ may be restricted to a context $u \cdots v$, where u, v are strings of gterminals.
- These are the context-sensitive languages (CSL's).
- Theorem.

A language is context-sensitive iff it is recognized by an LBA.

A larger table

Language Class:	Regular	CFL	CSL
Grammars:	regular	CF	CS
Machines:	DFA=NFA	NFA + stack	LBA
Memory:	internal	stack	on-site
Access:	on-line	on-line + stack	two-way

LANGUAGE CLASS:	Regular	Context-free	Context-sensitive
Grammars:	regular grammars	CF grammars	CS grammars
MACHINES:	DFA=NFA	NFA + stack	LBA
MEMORY:	internal	stack	on-site
Access:	on-line	on-line + stack	two-way
Smth NEw:		$a^{n} b^{n}$	$a^{n} b^{n} C^{n}$

- This is a strict hierarchy:
every level contains the previous plus more.

