
SYMBOLIC COMPUTING

Rewrite rules

• Symbolic computing :

Strings over an alphabet, jointly represent data and action.

There are no states.

• The operational engine (analogous to Turing’s transition function)

is the rewrite rules, also called productions.

Rewrite rules

• Symbolic computing :

Strings over an alphabet, jointly represent data and action.

There are no states.

• The operational engine (analogous to Turing’s transition function)

is the rewrite rules, also called productions.

• A rewrite-rule is of the form z → yz → yz → y

where z, yz, yz, y are strings.

• zzz is the source of the production, and yyy its target.

• A finite set of rewrite rules is a rewrite system.

F23 2

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

0 ∨ 00 ∨ 00 ∨ 0 →→→ 000

0 ∨ 10 ∨ 10 ∨ 1 →→→ 111

1 ∨ 01 ∨ 01 ∨ 0 →→→ 111

1 ∨ 11 ∨ 11 ∨ 1 →→→ 111

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

0 ∨ 00 ∨ 00 ∨ 0 →→→ 000

0 ∨ 10 ∨ 10 ∨ 1 →→→ 111

1 ∨ 01 ∨ 01 ∨ 0 →→→ 111

1 ∨ 11 ∨ 11 ∨ 1 →→→ 111

−0−0−0 →→→ 111

−1−1−1 →→→ 000

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

0 ∨ 00 ∨ 00 ∨ 0 →→→ 000

0 ∨ 10 ∨ 10 ∨ 1 →→→ 111

1 ∨ 01 ∨ 01 ∨ 0 →→→ 111

1 ∨ 11 ∨ 11 ∨ 1 →→→ 111

−0−0−0 →→→ 111

−1−1−1 →→→ 000

(0)(0)(0) →→→ 000

(1)(1)(1) →→→ 111

F23 3

Reductions and derivations

• Given a rewrite system RRR,

we say that www reduces to w′w′w′ , and write w ⇒R w′w ⇒R w′w ⇒R w′ ,

if w′w′w′ is www with substring uuu replaced by u′u′u′ ,

here u → u′u → u′u → u′ is a rule.

We omit the subscript RRR when clear.

• Reductions are analogous to the yield relation

between machine’s configurations.

Reductions and derivations

• Given a rewrite system RRR,

we say that www reduces to w′w′w′ , and write w ⇒R w′w ⇒R w′w ⇒R w′ ,

if w′w′w′ is www with substring uuu replaced by u′u′u′ ,

here u → u′u → u′u → u′ is a rule.

We omit the subscript RRR when clear.

• Reductions are analogous to the yield relation

between machine’s configurations.

• A derivation in RRR is a sequence

w0, w1, w2, ...wkw0, w1, w2, ...wkw0, w1, w2, ...wk

where wi ∈ Γwi ∈ Γwi ∈ Γ and wi ⇒R wi+1wi ⇒R wi+1wi ⇒R wi+1 for i < ki < ki < k.

This derivation is of wkwkwk from w0w0w0 .

Reductions and derivations

• Given a rewrite system RRR,

we say that www reduces to w′w′w′ , and write w ⇒R w′w ⇒R w′w ⇒R w′ ,

if w′w′w′ is www with substring uuu replaced by u′u′u′ ,

here u → u′u → u′u → u′ is a rule.

We omit the subscript RRR when clear.

• Reductions are analogous to the yield relation

between machine’s configurations.

• A derivation in RRR is a sequence

w0, w1, w2, ...wkw0, w1, w2, ...wkw0, w1, w2, ...wk

where wi ∈ Γwi ∈ Γwi ∈ Γ and wi ⇒R wi+1wi ⇒R wi+1wi ⇒R wi+1 for i < ki < ki < k.

This derivation is of wkwkwk from w0w0w0 .

• Derivations are analogous to computation traces of machines.

F23 4

Example

A derivation in our boolean rewrite-system:

((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)

⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)

⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)

⇒ (0) ∨ (1)⇒ (0) ∨ (1)⇒ (0) ∨ (1)

⇒ 0 ∨ (1)⇒ 0 ∨ (1)⇒ 0 ∨ (1)

⇒ 0 ∨ 1⇒ 0 ∨ 1⇒ 0 ∨ 1

⇒ 1⇒ 1⇒ 1

Example

A derivation in our boolean rewrite-system:

((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)

⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)

⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)

⇒ (0) ∨ (1)⇒ (0) ∨ (1)⇒ (0) ∨ (1)

⇒ 0 ∨ (1)⇒ 0 ∨ (1)⇒ 0 ∨ (1)

⇒ 0 ∨ 1⇒ 0 ∨ 1⇒ 0 ∨ 1

⇒ 1⇒ 1⇒ 1

• Here we ended up with the irreducible string 111 , which cannot be reduced

further.

F23 5

Grammars

• Rewrite systems can be transducers, acceptors, or generators.

• A rewrite system that generates a language is a grammar.

• A grammar consists of

Grammars

• Rewrite systems can be transducers, acceptors, or generators.

• A rewrite system that generates a language is a grammar.

• A grammar consists of

◮ An input alphabet ΣΣΣ . (We say that GGG is over ΣΣΣ).

◮ A finite set VVV of fresh symbols (not in ΣΣΣ),

dubbed variables . (We write ΓΓΓ for Σ ∪ VΣ ∪ VΣ ∪ V .)

◮ A distinguished initial-variable . Default: SSS.

Grammars

• Rewrite systems can be transducers, acceptors, or generators.

• A rewrite system that generates a language is a grammar.

• A grammar consists of

◮ An input alphabet ΣΣΣ . (We say that GGG is over ΣΣΣ).

◮ A finite set VVV of fresh symbols (not in ΣΣΣ),

dubbed variables . (We write ΓΓΓ for Σ ∪ VΣ ∪ VΣ ∪ V .)

◮ A distinguished initial-variable . Default: SSS.

◮ A finite set RRR of rewrite rules, called productions.

These are of the form w → tw → tw → t

where www has at least one non-terminal.

F23 6

Examples

Take Σ = {a,b}Σ = {a,b}Σ = {a,b} and V = {S}V = {S}V = {S}.

1. Two productions: S → aS → aS → a and S → bbS → bbS → bb .

Examples

Take Σ = {a,b}Σ = {a,b}Σ = {a,b} and V = {S}V = {S}V = {S}.

1. Two productions: S → aS → aS → a and S → bbS → bbS → bb .

2. Two productions: S → εS → εS → ε and S → aSS → aSS → aS

Examples

Take Σ = {a,b}Σ = {a,b}Σ = {a,b} and V = {S}V = {S}V = {S}.

1. Two productions: S → aS → aS → a and S → bbS → bbS → bb .

2. Two productions: S → εS → εS → ε and S → aSS → aSS → aS

3. A non-example: rewrite rules a → aba → aba → ab and b → bab → bab → ba.

F23 7

Each grammar generates a language

• Let G = (Σ, V, S, R)G = (Σ, V, S, R)G = (Σ, V, S, R) be a grammar.

w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
is derived in GGG if

it is derived from SSS .

• The language generated by GGG is

L(G) = {w ∈ Σ∗ | S ⇒∗ w}L(G) = {w ∈ Σ∗ | S ⇒∗ w}L(G) = {w ∈ Σ∗ | S ⇒∗ w}

F23 8

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

• L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b).

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

• L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b).

• How to formally prove this?

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

• L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b).

◮ By induction every string ananan is generated.

◮ By induction S ⇒n+1
G wS ⇒n+1
G wS ⇒n+1
G w implies that www is either anbanbanb or an+1San+1San+1S.

F23 9

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) =?L(G) =?L(G) =?

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Some derivations:

S ⇒ εS ⇒ εS ⇒ ε

S ⇒ aSb ⇒ abS ⇒ aSb ⇒ abS ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Some derivations:

S ⇒ εS ⇒ εS ⇒ ε

S ⇒ aSb ⇒ abS ⇒ aSb ⇒ abS ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

• L(G) = ?L(G) = ?L(G) = ?

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Some derivations:

S ⇒ εS ⇒ εS ⇒ ε

S ⇒ aSb ⇒ abS ⇒ aSb ⇒ abS ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

• L(G) = {anbn | n > 0}L(G) = {anbn | n > 0}L(G) = {anbn | n > 0}. A non-regular language!

F23 10

CONTEXT FREE GRAMMARS

Context-free grammars

• A context-free grammar (CFG) is a grammar where

every source is a single non-terminal .

• All grammars we’ve seen so far are context-free.

• A language generated by a CFG is a context-free language (CFL).

• Context-free grammars are also called inductive grammars.

• A convention: bundle rules with a common source

as in S → aS b | εS → aS b | εS → aS b | ε.

The vertical line abbreviates “or”.

F23 12

Example: palindromes

• Let PPP be the initial non-terminal.

• Productions:

P → aPaP → aPaP → aPa

P → bPbP → bPbP → bPb

P → aP → aP → a

P → bP → bP → b

P → εP → εP → ε

• In BNF format: P → aPa | bPb | a | b | εP → aPa | bPb | a | b | εP → aPa | bPb | a | b | ε

F23 13

• Similar grammar for palindromes over the entire Latin alphabet.

We have then 2 · 26 + 1 = 532 · 26 + 1 = 532 · 26 + 1 = 53 productions.

• Using the more economical grammar

P → L P L | L | εP → L P L | L | εP → L P L | L | ε

L → a | b | · · · | zL → a | b | · · · | zL → a | b | · · · | z

is wrong, because the two LLL’s in LPSLPSLPS should be the same.

• But we can use a modular description of the correct grammar above:

P → σ Pσ | σ | εP → σ Pσ | σ | εP → σ Pσ | σ | ε (σ ∈ Σσ ∈ Σσ ∈ Σ)

F23 14

CFLs for natural languages

• The bone ate the dog is grammatically correct English

The dog the bone ate is not

• There is a context-free grammar that generates

exactly the grammatically correct sentences in English!

• Not 100% for all languages, more sophisticated formalisms are needed.

F23 15

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

• Nonterminals:

S for sentences,

P for noun-phrases

N for nouns

V for verbs

A for adjectives.

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

• The productions are SSS →→→ PV PPV PPV P

PPP →→→ N | APN | APN | AP

NNN →→→ dog | appledog | appledog | apple
VVV →→→ eats | loveseats | loveseats | loves
AAA →→→ big | greenbig | greenbig | green

• This grammar generates big dog eats green apple

and big green big apple loves green dog

but not eats big dog apple loves.

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

• The productions are SSS →→→ PV PPV PPV P

PPP →→→ N | APN | APN | AP

NNN →→→ dog | appledog | appledog | apple
VVV →→→ eats | loveseats | loveseats | loves
AAA →→→ big | greenbig | greenbig | green

• This grammar generates big dog eats green apple

and big green big apple loves green dog

but not eats big dog apple loves.

F23 16

The Context-Freedom Theorem

• Intuitively clear: context-free productions guarantee a separation

between descendents of one occurrence of a variable

and descendents of another.

• This is captured more formally by the

Context-Freedom Theorem.

Let G = (Σ, N, S, R)G = (Σ, N, S, R)G = (Σ, N, S, R) be a CFG, Γ = Σ ∪ NΓ = Σ ∪ NΓ = Σ ∪ N .

For strings u0, u1 ∈ Γ∗u0, u1 ∈ Γ∗u0, u1 ∈ Γ∗
, if u0 · u1 ⇒∗ vu0 · u1 ⇒∗ vu0 · u1 ⇒∗ v

then v = v0 · v1v = v0 · v1v = v0 · v1 where u0 ⇒∗ v0u0 ⇒∗ v0u0 ⇒∗ v0 and u1 ⇒∗ v1u1 ⇒∗ v1u1 ⇒∗ v1.

• We prove by induction on nnn that if u0 · u1 ⇒n vu0 · u1 ⇒n vu0 · u1 ⇒n v

then the conclusion above holds.

F23 17

Symmetries in CFL

• CFGs often generate languages with symmetries (eg palindromes!).

• The language of balanced parentheses, e.g. (())()(())()(())() is balanced, (()((()((()(is

not.

• The alphabet: just left- and right-parentheses: (((and))),

• Productions: S → SS | (S) | εS → SS | (S) | εS → SS | (S) | ε

F23 18

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX .

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX .

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX .

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX .

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

◮ The productions of Ga=bGa=bGa=b are

S → ε | aB | bAS → ε | aB | bAS → ε | aB | bA

A → aS | bA AA → aS | bA AA → aS | bA A

B → bS | aB BB → bS | aB BB → bS | aB B

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX .

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

◮ The productions of Ga=bGa=bGa=b are

S → ε | aB | bAS → ε | aB | bAS → ε | aB | bA

A → aS | bA AA → aS | bA AA → aS | bA A

B → bS | aB BB → bS | aB BB → bS | aB B

◮ L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX .

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

◮ The productions of Ga=bGa=bGa=b are

S → ε | aB | bAS → ε | aB | bAS → ε | aB | bA

A → aS | bA AA → aS | bA AA → aS | bA A

B → bS | aB BB → bS | aB BB → bS | aB B

◮ L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}

• Exercise: The grammar with productions S → b | aSSS → b | aSSS → b | aSS

generates the strings with #b > #a#b > #a#b > #a but #b 6 #a#b 6 #a#b 6 #a for all proper-

prefixes.

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }
is not CF.

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }
is not CF.

• Consider the grammar

S → ε | SABCS → ε | SABCS → ε | SABC

A → aA → aA → a, B → bB → bB → b, C → cC → cC → c

• It generates the strings (abc)n(abc)n(abc)n .

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }
is not CF.

• Consider the grammar

S → ε | SABCS → ε | SABCS → ε | SABC

A → aA → aA → a, B → bB → bB → b, C → cC → cC → c

• It generates the strings (abc)n(abc)n(abc)n .

• Add the productions AB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CB.

BA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BC .

Yes, these are not context-free!

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }
is not CF.

• Consider the grammar

S → ε | SABCS → ε | SABCS → ε | SABC

A → aA → aA → a, B → bB → bB → b, C → cC → cC → c

• It generates the strings (abc)n(abc)n(abc)n .

• Add the productions AB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CB.

BA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BC .

Yes, these are not context-free!

• This extended grammar generates La=b=cLa=b=cLa=b=c

F23 20

Multiple symmetries

• {anbnck | n, k > 0}{anbnck | n, k > 0}{anbnck | n, k > 0}

• {anbnakbk | n, k > 0}{anbnakbk | n, k > 0}{anbnakbk | n, k > 0}

• {anbn+kak | n, k > 0}{anbn+kak | n, k > 0}{anbn+kak | n, k > 0}

• {anbkcn+k | n, k > 0}{anbkcn+k | n, k > 0}{anbkcn+k | n, k > 0}

• {anbkakbn | n, k > 0}{anbkakbn | n, k > 0}{anbkakbn | n, k > 0}

• {anbn+kck+mdm | n, k, m > 0}{anbn+kck+mdm | n, k, m > 0}{anbn+kck+mdm | n, k, m > 0}

F23 21

Regular languages are CFLs

F23 22

Using the strictly-regular definition

• We show that every regular language us CF.

Using the strictly-regular definition

• We show that every regular language us CF.

• We use the generative definition of the strincly regular languages. Their

definition as strictly-regular languages is simplifying this.

Using the strictly-regular definition

• We show that every regular language us CF.

• We use the generative definition of the strincly regular languages. Their

definition as strictly-regular languages is simplifying this.

• Recall that the strictly-regular languages over ΣΣΣ
are generated by:

1. The rivial languages ∅, {ε}, {σ} (σ ∈ grS)∅, {ε}, {σ} (σ ∈ grS)∅, {ε}, {σ} (σ ∈ grS) are strictly-regular.

2. The union, concatenation, and star of strictly-regular languaes

are strictly regular.

Using the strictly-regular definition

• We show that every regular language us CF.

• We use the generative definition of the strincly regular languages. Their

definition as strictly-regular languages is simplifying this.

• Recall that the strictly-regular languages over ΣΣΣ
are generated by:

1. The rivial languages ∅, {ε}, {σ} (σ ∈ grS)∅, {ε}, {σ} (σ ∈ grS)∅, {ε}, {σ} (σ ∈ grS) are strictly-regular.

2. The union, concatenation, and star of strictly-regular languaes

are strictly regular.

• We show that all such languages are CF by induction on this

generative definition.

F23 23

The trivial languages are CF

• ∅∅∅ :

The trivial languages are CF

• ∅∅∅ : Generated by the CFG S → SS → SS → S.

• {ε}{ε}{ε} :

The trivial languages are CF

• ∅∅∅ : Generated by the CFG S → SS → SS → S.

• {ε}{ε}{ε} : Generated by S → εS → εS → ε.

• {a}{a}{a} :

F23 24

Closure under union, concatenation, star

Refer to CFGs and the languages they generated:

L0 = L(G0)L0 = L(G0)L0 = L(G0) and L1 = L(G1)L1 = L(G1)L1 = L(G1) where Gi = (Σ, Vi, Si, Ri)Gi = (Σ, Vi, Si, Ri)Gi = (Σ, Vi, Si, Ri).

We may assume that G0G0G0 and G1G1G1 have no variable in common:

renaming a grammar’s variables

does not change the language generated.

F23 25

Closure under union

• L0 ∪ L1L0 ∪ L1L0 ∪ L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)
where SSS is a fresh variable

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 | S1S → S0 | S1S → S0 | S1.

Closure under union

• L0 ∪ L1L0 ∪ L1L0 ∪ L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)
where SSS is a fresh variable

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 | S1S → S0 | S1S → S0 | S1.

• GGG generates each w ∈ L0 ∪ L1w ∈ L0 ∪ L1w ∈ L0 ∪ L1.

Closure under union

• L0 ∪ L1L0 ∪ L1L0 ∪ L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)
where SSS is a fresh variable

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 | S1S → S0 | S1S → S0 | S1.

• GGG generates each w ∈ L0 ∪ L1w ∈ L0 ∪ L1w ∈ L0 ∪ L1.

• Conversely, a derivation DDD in GGG for S ⇒G wS ⇒G wS ⇒G w

must start with S → S0S → S0S → S0 or S → S1S → S1S → S1 and proceed with

either a derivation in G0G0G0 or a derivation in G1G1G1 ,

since V0 ∩ V1 = ∅V0 ∩ V1 = ∅V0 ∩ V1 = ∅.

F23 26

Closure under concatenation

• L0 · L1L0 · L1L0 · L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)
where SSS is a fresh variable

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 S1S → S0 S1S → S0 S1.

Closure under concatenation

• L0 · L1L0 · L1L0 · L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)
where SSS is a fresh variable

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 S1S → S0 S1S → S0 S1.

• GGG generates each w ∈ L0 · L1w ∈ L0 · L1w ∈ L0 · L1.

Closure under concatenation

• L0 · L1L0 · L1L0 · L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)
where SSS is a fresh variable

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 S1S → S0 S1S → S0 S1.

• GGG generates each w ∈ L0 · L1w ∈ L0 · L1w ∈ L0 · L1.

• Conversely, a derivation DDD in GGG for S ⇒G wS ⇒G wS ⇒G w

must start with S → S0 · S1S → S0 · S1S → S0 · S1 , and by the Context-freedom Theorem we

have w = w0 · w1w = w0 · w1w = w0 · w1 with DDD a merge of a derivation of w0w0w0 from S0S0S0 and a

derivation of w1w1w1 from S1S1S1 .

F23 27

Closure under star

• L∗
0L∗
0L∗
0 is generated by (Σ, V0 + S, S, R)(Σ, V0 + S, S, R)(Σ, V0 + S, S, R)
where SSS is a fresh variable

and RRR is R0R0R0 augmented with the production S → S0S | εS → S0S | εS → S0S | ε.

Closure under star

• L∗
0L∗
0L∗
0 is generated by (Σ, V0 + S, S, R)(Σ, V0 + S, S, R)(Σ, V0 + S, S, R)
where SSS is a fresh variable

and RRR is R0R0R0 augmented with the production S → S0S | εS → S0S | εS → S0S | ε.

• GGG generates each w ∈ L∗
0w ∈ L∗
0w ∈ L∗
0.

By induction on kkk each w = w1 · wkw = w1 · wkw = w1 · wk (wi ∈ L0)(wi ∈ L0)(wi ∈ L0) is derived:

For k = 0k = 0k = 0 the string w = εw = εw = ε is derived outright.

And S ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wk for each w1, . . . wk ∈ L0w1, . . . wk ∈ L0w1, . . . wk ∈ L0

then S ⇒ w1 · · · · · wk · wk+1S ⇒ w1 · · · · · wk · wk+1S ⇒ w1 · · · · · wk · wk+1 is derived by reducing SSS to S0 ⇒ SS0 ⇒ SS0 ⇒ S and

combining a deriation in GGG for S ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wk with a derivation in G0G0G0

of wk+1wk+1wk+1.

Closure under star

• L∗
0L∗
0L∗
0 is generated by (Σ, V0 + S, S, R)(Σ, V0 + S, S, R)(Σ, V0 + S, S, R)
where SSS is a fresh variable

and RRR is R0R0R0 augmented with the production S → S0S | εS → S0S | εS → S0S | ε.

• GGG generates each w ∈ L∗
0w ∈ L∗
0w ∈ L∗
0.

By induction on kkk each w = w1 · wkw = w1 · wkw = w1 · wk (wi ∈ L0)(wi ∈ L0)(wi ∈ L0) is derived:

For k = 0k = 0k = 0 the string w = εw = εw = ε is derived outright.

And S ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wk for each w1, . . . wk ∈ L0w1, . . . wk ∈ L0w1, . . . wk ∈ L0

then S ⇒ w1 · · · · · wk · wk+1S ⇒ w1 · · · · · wk · wk+1S ⇒ w1 · · · · · wk · wk+1 is derived by reducing SSS to S0 ⇒ SS0 ⇒ SS0 ⇒ S and

combining a deriation in GGG for S ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wkS ⇒ w1 · · · · · wk with a derivation in G0G0G0

of wk+1wk+1wk+1.

• For the converse use induction on derivation length,

If DDD is a derivation in GGG for S ⇒ wS ⇒ wS ⇒ w then it must start with S → S0SS → S0SS → S0S ,

By the Context-Freedom Theorem w = u · vw = u · vw = u · v where S0 ⇒ uS0 ⇒ uS0 ⇒ u and S → vS → vS → v .

We have u ∈ L0u ∈ L0u ∈ L0 and by IH v ∈ L∗
0v ∈ L∗
0v ∈ L∗
0. SO w ∈ L∗

0w ∈ L∗
0w ∈ L∗
0.

F23 28

Regular languages are context-free

• The trivial finite languages are CF.

• The CFLs are closed under union, concatenation and star.

• By induction on the definition of regular languages:

Theorem. Every regular language is CF

• But not every CFL is regular: {anbn | n > 0}{anbn | n > 0}{anbn | n > 0} is CF.

F23 29

Parsing

F23 30

Parse-trees

• Computation traces capture the nature of procedural computing

by a mathematical machine.

• But a formal derivation by a grammar GGG

conveys an order that is not part of the intended generative prcess.

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()) :

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()) :

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Represented as a tree with terminals for leaves

and variables for internal nodes:

(S)

S

S S

(S)

S)(

ε

ε

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()) :

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Represented as a tree with terminals for leaves

and variables for internal nodes:

(S)

S

S S

(S)

S)(

ε

ε

• This is a derivation-tree, or pars-tree

(of the grammar GGG for the string www).

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree is more important than the derivation.

Different derivations for the same tree are equivalent.

E.g. besides S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())
we also have S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree is more important than the derivation.

Different derivations for the same tree are equivalent.

E.g. besides S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())
we also have S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• The latter is the leftmost-derivation for the tree,

obtained by repeatedly expanding the leftmost variable.

Another example

• Grammar GGG : S → AA | bAA, A → bA | Ab | aS → AA | bAA, A → bA | Ab | aS → AA | bAA, A → bA | Ab | a

• A derivation of baabbaabbaab :

S ⇒G AA ⇒G bAA ⇒G bAAb ⇒G b Aa b ⇒G baabS ⇒G AA ⇒G bAA ⇒G bAAb ⇒G b Aa b ⇒G baabS ⇒G AA ⇒G bAA ⇒G bAAb ⇒G b Aa b ⇒G baab

• The corresponding derivation tree:

a

S

b A

A A

bA

a

• The leftmost derivation for this is

S ⇒G AA ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G AA ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G AA ⇒G bAA ⇒G baA ⇒G baAb ⇒G baab

A different parse-tree for the same string:
S

b A A

b

a

Aa

The leftmost derivation for this parse-tree:

S ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G bAA ⇒G baA ⇒G baAb ⇒G baab

F23 35

Ambiguous grammars

• A derivation-tree usually represents several derivations.

Can a grammar have different derivation-trees for the same string?

• We have already seen one: S → SS | (S) | ε.

)

(

ε

)

ε

S

S

S

S)

S

(S

S

(S

ε
(

ε

)

ε

S

(S

ε

S

S

S)

S

(S

S

)

• And natural languages are full of ambiguities:

Jane welcomed the man with a dog

Jane welcomed the man with a dog

F23 36

Familiar example: Arith w/o parentheses

• Alphabet {a,b,+++, ×},

Grammar G with production rules:

S → S+++S | S×S | a | b

• Two different derivations of G for the string a+++b×a+++b.

S ⇒ S + S

⇒ a + S

⇒ a + S × S

⇒ a + b × S

⇒ a + b × S + S

⇒ a + b × a + S

⇒ a + b × a + b

S ⇒ S × S

⇒ S + S × S

⇒ a + S × S

⇒ a + b × S

⇒ a + b × S + S

⇒ a + b × a + S

⇒ a + b × a + b

F23 37

F23 38

Dual-clipping in CFLs

• The Clipping Theorem is based on the observation that if MMM is a kkk -state

DFA then any trace of MMM of length > k> k> k has some state qqq repeating.

• And a substring yyy leading from one occurence of qqq to another may be

short-circuited, yielding the acceptance of a clipped string.

Dual-clipping in CFLs

• The Clipping Theorem is based on the observation that if MMM is a kkk -state

DFA then any trace of MMM of length > k> k> k has some state qqq repeating.

• And a substring yyy leading from one occurence of qqq to another may be

short-circuited, yielding the acceptance of a clipped string.

• This does not work as stated for for CFLs. But why?

Dual-clipping in CFLs

• The Clipping Theorem is based on the observation that if MMM is a kkk -state

DFA then any trace of MMM of length > k> k> k has some state qqq repeating.

• And a substring yyy leading from one occurence of qqq to another may be

short-circuited, yielding the acceptance of a clipped string.

• This does not work as stated for for CFLs. But why?

• Whereas a DFA accepts a string www by a “horizobntal” scan, a CFG gener-

ates www by a parse-tree for it.

Here the repetition is “vertical”:

A variable repeats on a branch of the parse-tree.

S

A

A

w

F23 40

Dual-Clipping for CFLs

• The portions of the parse-tree generated by the upper A,

but not the lower one, can be “clipped-off” the tree:

Tx

S

A

A

x

0 1T

0y
1

y

T

F23 41

Dual-Clipping for CFLs

• The portion generated from the lower A remains:

Tx

A

A

x

0 1T

0y
1

y

T

S

F23 42

Dual-Clipping for CFLs

• The lower A can be identified with the upper one,

by lifting the subtree it generates:

S

A

Tx

A

x

Dual-Clipping for CFLs

• The lower A can be identified with the upper one,

by lifting the subtree it generates:

S

A

Tx

A

x

F23 43

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

• We’ll also need to

1. Give conditions that guarantee such a repetition

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

• We’ll also need to

1. Give conditions that guarantee such a repetition

2. Ensure that the clipping obtained is non-empty

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

• We’ll also need to

1. Give conditions that guarantee such a repetition

2. Ensure that the clipping obtained is non-empty

3. Obtain two clipped substrings that are “not too far apart”.

F23 44

A repeated variable on a branch

• Suppose TTT is a parse-tree of a CFG GGG for www

with variable AAA repeating on a branch.

Tx

S

A

A

x

• The lower occurrence of AAA generates a substring xxx.

F23 45

Tx

S

A

A

x

0T 1T

0y
1

y

• The upper occurrence of AAA generates a substring y0 x y1y0 x y1y0 x y1.

F23 46

Tx

S

A

A

x

• Eliminating y0y0y0 and y1y1y1 yields a parse-tree

except for the branch-segment between the two occurrences of AAA .

F23 47

Tx

A

x

S

A

• So lifting the derivation from the lower occurrence of AAA ...

F23 48

Tx

x

S

A

• ... results in a parse-tree for the input string

with the substrings y0y0y0 and y1y1y1 clipped off.

F23 49

S

A

Tx

x

wwo 1

• Naming the “outer” substrings of the input w0w0w0 and w1w1w1 ,

the input www is w0 · y0 · x · y1 · · · w1w0 · y0 · x · y1 · · · w1w0 · y0 · x · y1 · · · w1 for some w0, w1w0, w1w0, w1,

and the resulting (clipped) string, w0 · x · w1,w0 · x · w1,w0 · x · w1, is also in LLL.

F23 50

Ensuring a repeated variable

• Let mmm be the number of variables of GGG .

• So there are at least m + 1m + 1m + 1 variables on the branch

for just mmm different variables in GGG.

• Some variable must be repeating!

F23 51

Deriving a long string requires repetition

• Say that a production X → σ1 · · · σℓX → σ1 · · · σℓX → σ1 · · · σℓ has length ℓℓℓ and that

the degree of a grammar is the maximal length of its productions.

• A binary tree of height hhh has 6 2h6 2h
6 2h leaves.

Generally, a tree of degree ddd has 6 dh6 dh
6 dh leaves.

• For a grammar of degree ddd and mmm variables

any string with a parse-tree of height 6 m6 m6 m is dmdmdm.

• So a parse-tree for a string of length > dm> dm> dm must have a branch with > m> m> m

variables, which therefore has a variable repeating.

F23 52

Ensuring non-vacuous clipping

• What if the clipped y0, y1y0, y1y0, y1 are both empty?

• Then we obtained a smaller parse-tree for www !

• If we just start with a parse-tree of GGG for www

with a minimal number of nodes (no smaller parse-tree for www)

then at least one of y0, y1y0, y1y0, y1 is non-empty.

F23 53

Bounding |y0 · x · y1||y0 · x · y1||y0 · x · y1|

• Claim: There must be a y0 · x · y1y0 · x · y1y0 · x · y1 of length 6 dm6 dm
6 dm.

• Take a lowermost pair of a variable repeating:

there can be then no repetition on a branch under the upper occurrence.

No repetition along
 any branch here

S

A

A

x0y
1

y

• Then |y0 · x · y1| 6 k|y0 · x · y1| 6 k|y0 · x · y1| 6 k.

F23 54

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

• Theorem. Let GGG be a CFG over ΣΣΣ with mmm variables

and of degree ddd (all productions are of length 6 d6 d6 d.

◮ If w ∈ L(G)w ∈ L(G)w ∈ L(G) has length > k = dm> k = dm
> k = dm

◮ then www has a substring ppp of length 6 k6 k6 k ,

with disjoint substrings y0, y1y0, y1y0, y1 not both empty,

such that the string w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is also in LLL.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

• Theorem. Let GGG be a CFG over ΣΣΣ with mmm variables

and of degree ddd (all productions are of length 6 d6 d6 d.

◮ If w ∈ L(G)w ∈ L(G)w ∈ L(G) has length > k = dm> k = dm
> k = dm

◮ then www has a substring ppp of length 6 k6 k6 k ,

with disjoint substrings y0, y1y0, y1y0, y1 not both empty,

such that the string w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is also in LLL.

• Stated formally: www can be factored as w = w0 · y0 · x · y1 · w1w = w0 · y0 · x · y1 · w1w = w0 · y0 · x · y1 · w1 ,

where y0, y1y0, y1y0, y1 are not both empty and |y0 · x · y1| 6 k|y0 · x · y1| 6 k|y0 · x · y1| 6 k ,

so that w0 · x · w1 ∈ Lw0 · x · w1 ∈ Lw0 · x · w1 ∈ L .

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

• Theorem. Let GGG be a CFG over ΣΣΣ with mmm variables

and of degree ddd (all productions are of length 6 d6 d6 d.

◮ If w ∈ L(G)w ∈ L(G)w ∈ L(G) has length > k = dm> k = dm
> k = dm

◮ then www has a substring ppp of length 6 k6 k6 k ,

with disjoint substrings y0, y1y0, y1y0, y1 not both empty,

such that the string w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is also in LLL.

• Stated formally: www can be factored as w = w0 · y0 · x · y1 · w1w = w0 · y0 · x · y1 · w1w = w0 · y0 · x · y1 · w1 ,

where y0, y1y0, y1y0, y1 are not both empty and |y0 · x · y1| 6 k|y0 · x · y1| 6 k|y0 · x · y1| 6 k ,

so that w0 · x · w1 ∈ Lw0 · x · w1 ∈ Lw0 · x · w1 ∈ L .

• We refer to k = dmk = dmk = dm as GGG ’s clipping constant,

and to ppp as the critical substring.

F23 55

A Dual-clipping Property

• We rephrase the Dual-clipping Theorem in terms of a language property.

• Say that a language LLL has the Dual-clipping Property if

there is a kkk such that

every w ∈ Lw ∈ Lw ∈ L of length > k> k> k

has a substring y0 · x · y1y0 · x · y1y0 · x · y1 of length 6 k6 k6 k with y0y1 6= εy0y1 6= εy0y1 6= ε,

for which the string w′w′w′ obtained from www

by removing y0y0y0 and y1y1y1 is also in LLL .

A Dual-clipping Property

• We rephrase the Dual-clipping Theorem in terms of a language property.

• Say that a language LLL has the Dual-clipping Property if

there is a kkk such that

every w ∈ Lw ∈ Lw ∈ L of length > k> k> k

has a substring y0 · x · y1y0 · x · y1y0 · x · y1 of length 6 k6 k6 k with y0y1 6= εy0y1 6= εy0y1 6= ε,

for which the string w′w′w′ obtained from www

by removing y0y0y0 and y1y1y1 is also in LLL .

• The Dual-Clipping Theorem for CFLs states then that every CFL has the

Dual-clipping Property.

• Consequently, if a language LLL fails this property,

then it is not CF.

F23 56

Failing Dual-Clipping

• LLL fails the Dual-clipping Property when

⋆ For every kkk we can find

a w ∈ Lw ∈ Lw ∈ L of length > k> k> k so that

for every substring p = y0 · x · h1p = y0 · x · h1p = y0 · x · h1 of www of length 6 k6 k6 k with y0y1 6= εy0y1 6= εy0y1 6= ε ,

the string w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is not in LLL.

F23 57

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Suppose L = L(G)L = L(G)L = L(G), where GGG is a CFG with clipping constant kkk .

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Suppose L = L(G)L = L(G)L = L(G), where GGG is a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L .

By the Dual-Clipping Theorem we can clip off some y0, y1y0, y1y0, y1

within a kkk-long substring ppp of www yielding a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Suppose L = L(G)L = L(G)L = L(G), where GGG is a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L .

By the Dual-Clipping Theorem we can clip off some y0, y1y0, y1y0, y1

within a kkk-long substring ppp of www yielding a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• But this is impossible:

since |p| 6 k|p| 6 k|p| 6 k it has at most two of the three letters,

and w′w′w′ must have fewer occurrences of a removed letter than of a non-

removed one.

• Conclusion: LLL is not CF.

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Suppose L = L(G)L = L(G)L = L(G), where GGG is a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L .

By the Dual-Clipping Theorem we can clip off some y0, y1y0, y1y0, y1

within a kkk-long substring ppp of www yielding a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• But this is impossible:

since |p| 6 k|p| 6 k|p| 6 k it has at most two of the three letters,

and w′w′w′ must have fewer occurrences of a removed letter than of a non-

removed one.

• Conclusion: LLL is not CF.

F23 58

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradiction:

1. GGG is given to us, with its clipping constant.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradiction:

1. GGG is given to us, with its clipping constant.

2. We can choose a w ∈ Lw ∈ Lw ∈ L of length > k> k> k.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradiction:

1. GGG is given to us, with its clipping constant.

2. We can choose a w ∈ Lw ∈ Lw ∈ L of length > k> k> k.

3. The substring ppp and its factorization p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 are all unknown,

i.e. given to us.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradiction:

1. GGG is given to us, with its clipping constant.

2. We can choose a w ∈ Lw ∈ Lw ∈ L of length > k> k> k.

3. The substring ppp and its factorization p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 are all unknown,

i.e. given to us.

4. We must show that whatever they are, subject to the constraints,

the clipped string w′w′w′ is out of LLL.

F23 59

Same proof ariticulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

Same proof ariticulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

Same proof ariticulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

• Then given to us that an unknown substring

p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 of length 6 k6 k6 k

we observe that it can have at most two of a,b,ca,b,ca,b,c .

Same proof ariticulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

• Then given to us that an unknown substring

p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 of length 6 k6 k6 k

we observe that it can have at most two of a,b,ca,b,ca,b,c .

• So removing y0y0y0 and y1y1y1 yields a string not in LLL.

Same proof ariticulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

• Then given to us that an unknown substring

p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 of length 6 k6 k6 k

we observe that it can have at most two of a,b,ca,b,ca,b,c .

• So removing y0y0y0 and y1y1y1 yields a string not in LLL.

• Since LLL fails the Dual-clipping Property, it is not CF.

F23 60

The intersection of CFLs

The intersection of CFL need not be CF!!

•

LabLabLab === {anbnck | n, k > 0}{anbnck | n, k > 0}{anbnck | n, k > 0} is CF

LbcLbcLbc === {akbncn | n, k > 0}{akbncn | n, k > 0}{akbncn | n, k > 0} is CF

• But their interscetion

Lab ∩ Lbc = {anbncn | n > 0}Lab ∩ Lbc = {anbncn | n > 0}Lab ∩ Lbc = {anbncn | n > 0}

is not CF.

F23 61

The complement of a CFL

The complement of a CFL need not be CF .

• Reason: The collection of CFLs is closed under union.

If it were closed under complement then it would be closed under inter-

section.

• −(A ∩ B) = −A ∪ −B−(A ∩ B) = −A ∪ −B−(A ∩ B) = −A ∪ −B so A ∩ B = −(−A ∪ −B)A ∩ B = −(−A ∪ −B)A ∩ B = −(−A ∪ −B)

• Specific example: The Mahi-mahi Languae is not CF.

But its complement is!

F23 62

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

• If p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 is a substring, y1y1z 6= εy1y1z 6= εy1y1z 6= ε

let w′w′w′ be obtained from www by removing y0, y1y0, y1y0, y1 .

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

• If p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 is a substring, y1y1z 6= εy1y1z 6= εy1y1z 6= ε

let w′w′w′ be obtained from www by removing y0, y1y0, y1y0, y1 .

• Since ppp can span at most two adjacent blocks,

removing y0, y1y0, y1y0, y1 deletes some letter (a,b,c, or d)

without deleting any corresponding one (c, d, a, or b, respectively).

• So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

• If p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 is a substring, y1y1z 6= εy1y1z 6= εy1y1z 6= ε

let w′w′w′ be obtained from www by removing y0, y1y0, y1y0, y1 .

• Since ppp can span at most two adjacent blocks,

removing y0, y1y0, y1y0, y1 deletes some letter (a,b,c, or d)

without deleting any corresponding one (c, d, a, or b, respectively).

• So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• LLL fails the dual-clipping property, and cannot be CF.

F23 63

NONDETERMINISTIC STACK ACCEPTORS (PDAs)

F23 64

A missing computation model

generative REG CFL

operational DFA NSA

DFA = Deterministic Finite Acceptor

A missing computation model

generative REG CFL

operational NFA NSA

NFA = Non-deterministic Finite Acceptor

A missing computation model

generative REG CFL

operational NFA ???

A missing computation model

generative REG CFL

operational NFA NSA

NSA = Non-deterministic Stack Acceptor

A missing computation model

generative REG CFL

operational NFA PDA

PDA = Push-Down Automata

F23 65

Why this matters

• The primary computational characterization of:

– regular languages: by a machine model (DFA)

– context-free languages: by a symbolic model (CFG)

• But parsing for CFLs is important,

and needs a machine model.

• Next: a characterization of CFLs by a machine model.

• Unfortunately, non-determinism is essential here.

F23 66

Cautious extension of memory

• Approach: extend automata with an external memory.

• Limiting the space used gives us LBA (and other).

• This turns out to be too powerful.

• Alternative: limit external memory to “single-use”.

F23 67

Stacks

• A stack is read from the top!

• It is unbounded (like the Turing string)

• But access destroys stored information (single use).

F23 68

Traditional stack operations

• Push a symbol: w 7→ σww 7→ σww 7→ σw

• Pop a symbol: σw 7→ wσw 7→ wσw 7→ w

• Represent a stack by a string:

edcbaedcbaedcba is the stack with eee at the top, aaa at the bottom.

• The empty string εεε represents the empty stack.

F23 69

A combined stack-operation

• Generalize push to a string v0v0v0 :

w 7→ v0 · ww 7→ v0 · ww 7→ v0 · w

• And pop to a conditional string-pop u0u0u0:

u0 · w 7→ wu0 · w 7→ wu0 · w 7→ w

If the top of the stack matches u0u0u0 then pop that top.

• Combined to a single operation of Replacing a Top segment of stack:

u0 · x 7→ v0 · xu0 · x 7→ v0 · xu0 · x 7→ v0 · x

• Meaning:

if u0u0u0 matches a top portion of the stack

then replace it by v0v0v0 else skip

• Notation: u0 →v0u0 →v0u0 →v0.

• Examples:
ε → 2ε → 2ε → 2 2 → ε2 → ε2 → ε 1 → 21 → 21 → 2 1 → 231 → 231 → 23
12 → 22112 → 22112 → 221 ε → 23ε → 23ε → 23 12 → ε12 → ε12 → ε

F23 70

A stack automaton (PDA) over an alphabet Σ

is a device M = (Σ, Q, s, A, Γ, ∆)M = (Σ, Q, s, A, Γ, ∆)M = (Σ, Q, s, A, Γ, ∆) where

• QQQ is a set, dubbed states

• s ∈ Qs ∈ Qs ∈ Q is distinguished state, dubbed initial state

• A ⊆ QA ⊆ QA ⊆ Q , the set of accepting states

• Γ ⊇ ΣΓ ⊇ ΣΓ ⊇ Σ is the extended alphabet

• ∆∆∆ is a finite set of transition rules of the form

q
σ (β→γ)

−−−−→ pq
σ (β→γ)

−−−−→ pq
σ (β→γ)

−−−−→ p where

q, p ∈ Qq, p ∈ Qq, p ∈ Q

σ ∈ Σǫ = Σ ∪ {ε}σ ∈ Σǫ = Σ ∪ {ε}σ ∈ Σǫ = Σ ∪ {ε}

β, γ ∈ Γ∗β, γ ∈ Γ∗β, γ ∈ Γ∗

F23 71

Using stack as memory: an example

• Task: recognize strings anbnanbnanbn (n > 1n > 1n > 1).

• Initially the stack is empty.

• Phase 1:

As input is read, aaa’s are pushed on the stack.

• Phase 2:

When bbb is encountered, start popping aaa’s.

• Termination:

Input accepted if stack is empty when input scan completed.

F23 72

Using a bottom-marker

• Our PDAs do not recognize an empty stack

(some varienties of PDAs do!)

• The intent of an empty stack is obtained

by reserving a symbol as bottom-of-stack marker, say $.

• A PDA as above starts by pushing $ on the stack,

and accepts the input if $ is at the top of the stack

when completing the scan.

F23 73

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = popping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = popping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

• If $$$ is read while some bbb’s unread (#b > #a#b > #a#b > #a)

then reading is incomplete, so no acceptance.

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = popping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

• If popping is not completed (#a > #b#a > #b#a > #b)

then $$$ is not reach, so no accept state.

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = popping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

• If a bbb is followed by aaa

then computation aborts: no production for ppp reading aaa.

F23 74

PDA semantics: configurations and yield

• A configuration of a PDA is a triplet (q, w, α)(q, w, α)(q, w, α)
where q ∈ Q, w ∈ Σ∗q ∈ Q, w ∈ Σ∗q ∈ Q, w ∈ Σ∗

and α ∈ Γ∗α ∈ Γ∗α ∈ Γ∗
.

• The intent:

qqq is the current state

www is the remaining portion of the input (from cursor on)

ααα is a string representing the stack, from top to bottom.

PDA semantics: configurations and yield

• A configuration of a PDA is a triplet (q, w, α)(q, w, α)(q, w, α)
where q ∈ Q, w ∈ Σ∗q ∈ Q, w ∈ Σ∗q ∈ Q, w ∈ Σ∗

and α ∈ Γ∗α ∈ Γ∗α ∈ Γ∗
.

• The intent:

qqq is the current state

www is the remaining portion of the input (from cursor on)

ααα is a string representing the stack, from top to bottom.

• The transition rules generate

a yield relation ⇒⇒⇒ between configurations:

If q
σ (α→β)

−−−−→ pq
σ (α→β)

−−−−→ pq
σ (α→β)

−−−−→ p

then (q, σx, α · γ) ⇒ (p, x, β ·γ)(q, σx, α · γ) ⇒ (p, x, β ·γ)(q, σx, α · γ) ⇒ (p, x, β ·γ)

(for all x ∈ Σ∗x ∈ Σ∗x ∈ Σ∗
and γ ∈ Γ∗γ ∈ Γ∗γ ∈ Γ∗

).

F23 75

PDA semantics: recognized languages

• The initial configuration for input www is (s, w, ε)(s, w, ε)(s, w, ε)

PDA semantics: recognized languages

• The initial configuration for input www is (s, w, ε)(s, w, ε)(s, w, ε)

• An input string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
is accepted if

(s, w, ε) ⇒∗ (a, ε, γ)(s, w, ε) ⇒∗ (a, ε, γ)(s, w, ε) ⇒∗ (a, ε, γ)
for some accepting state a ∈ Aa ∈ Aa ∈ A and some γ ∈ Γ∗γ ∈ Γ∗γ ∈ Γ∗

.

PDA semantics: recognized languages

• The initial configuration for input www is (s, w, ε)(s, w, ε)(s, w, ε)

• An input string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗
is accepted if

(s, w, ε) ⇒∗ (a, ε, γ)(s, w, ε) ⇒∗ (a, ε, γ)(s, w, ε) ⇒∗ (a, ε, γ)
for some accepting state a ∈ Aa ∈ Aa ∈ A and some γ ∈ Γ∗γ ∈ Γ∗γ ∈ Γ∗

.

• A cfg c = (q, w, γ)c = (q, w, γ)c = (q, w, γ) is terminal if

there is no cfg c′c′c′ where c ⇒M c′c ⇒M c′c ⇒M c′.

if in addition q ∈ Aq ∈ Aq ∈ A w = εw = εw = ε then it is accepting.

F23 76

Examples of traces

Recall the transitions

s
a (ǫ→a$)

−−−−−→ qs
a (ǫ→a$)

−−−−−→ qs
a (ǫ→a$)

−−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

Examples of traces

Recall the transitions

s
a (ǫ→a$)

−−−−−→ qs
a (ǫ→a$)

−−−−−→ qs
a (ǫ→a$)

−−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

A trace for aabbaabbaabb:
(s, aabb, ε)(s, aabb, ε)(s, aabb, ε) ⇒⇒⇒ (q, abb,a$)(q, abb,a$)(q, abb,a$)

⇒⇒⇒ (q, bb,aa$)(q, bb,aa$)(q, bb,aa$)
⇒⇒⇒ (p, b,a$)(p, b,a$)(p, b,a$)
⇒⇒⇒ (p, ε, $)(p, ε, $)(p, ε, $)
⇒⇒⇒ (f, ε, ε)(f, ε, ε)(f, ε, ε)

Examples of traces

Recall the transitions

s
a (ǫ→a$)

−−−−−→ qs
a (ǫ→a$)

−−−−−→ qs
a (ǫ→a$)

−−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

Non-accepting traces:

(s, aab, ε)(s, aab, ε)(s, aab, ε) ⇒⇒⇒ (q, ab,a$)(q, ab,a$)(q, ab,a$)
⇒⇒⇒ (q, b,aa$)(q, b,aa$)(q, b,aa$)
⇒⇒⇒ (p, ε,a$)(p, ε,a$)(p, ε,a$)

(s, abb, ε)(s, abb, ε)(s, abb, ε) ⇒⇒⇒ (q, bb,a$)(q, bb,a$)(q, bb,a$)
⇒⇒⇒ (q, b, $)(q, b, $)(q, b, $)

F23 77

Example: Palindromes around ccc

• Construct a PDA to recognize {w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}

Example: Palindromes around ccc

• Construct a PDA to recognize {w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}

• Algorithm: Push successive input symbols.

When reading ccc switch to a new state,

match subsequent input symbols with the top of the stack,

popping the top.

Example: Palindromes around ccc

• Construct a PDA to recognize {w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}

• Algorithm: Push successive input symbols.

When reading ccc switch to a new state,

match subsequent input symbols with the top of the stack,

popping the top.

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (place a marker $ on the stack)

q
σ (ǫ→σ)

−−−−→ qq
σ (ǫ→σ)

−−−−→ qq
σ (ǫ→σ)

−−−−→ q (push next letter)

q
c (ǫ→ǫ)

−−−−→ pq
c (ǫ→ǫ)

−−−−→ pq
c (ǫ→ǫ)

−−−−→ p (if ccc , switch to state ppp)

p
σ (σ→ǫ)

−−−−→ pp
σ (σ→ǫ)

−−−−→ pp
σ (σ→ǫ)

−−−−→ p (if letter matches stack-op pop it, else abort)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (accept if top is $$$)

F23 78

And if the center is absent?

• {w · wR | w ∈ {a, b}∗}{w · wR | w ∈ {a, b}∗}{w · wR | w ∈ {a, b}∗}.

• Use nondeterminism!

• Replace q
c (ǫ→ǫ)

−−−−→ pq
c (ǫ→ǫ)

−−−−→ pq
c (ǫ→ǫ)

−−−−→ p above by

by q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

• The resulting PDA:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
σ (ǫ→σ)

−−−−→ q (σ = a,b)q
σ (ǫ→σ)

−−−−→ q (σ = a,b)q
σ (ǫ→σ)

−−−−→ q (σ = a,b)

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
σ (σ→ǫ)

−−−−→ p (σ = a,b)p
σ (σ→ǫ)

−−−−→ p (σ = a,b)p
σ (σ→ǫ)

−−−−→ p (σ = a,b)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

F23 79

Repeated use of nondeterminism

• Consider {an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}

• What stack algorithm would work?

F23 80

Repeated use of nondeterminism

• {an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}

• What stack algorithm would work?

• Use four states s, q, p, fs, q, p, fs, q, p, f , sss initial, s, fs, fs, f accepting.

• Transition rules:
s

ǫ (ǫ→$)
−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p

p
b (aa→ǫ)

−−−−→ pp
b (aa→ǫ)

−−−−→ pp
b (aa→ǫ)

−−−−→ p

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

• MMM pushes the aaa ’s being read,

switches nondeterministically to a “bbb-reading state” ppp

which empties the stack while reading bbb’s,

popping either a single aaa or two ttattatta’s at a time.

F23 81

From CFGs to PDAs

• THEOREM. Every CFL is recognized by some PDA.

• For each CFG GGG we construct a PDA MMM , so that L(G) = L(M)L(G) = L(M)L(G) = L(M).

• Motivating example:

GGG has rules S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Initial idea:

generate on the stack a random string xxx,

then compare xxx to the input www.

• A marker $ used for stack bottom,

and completion is then detectable.

• What’s wrong here?

F23 82

Alternating between generation and consumption

• What’s wrong:

We’d need to apply the rules of GGG deep in the stack.

• But there is no need to wait:

we can compare the (randomly) generate string

as soon as feasible.

•

Input Stack

aabb SSS$
generate

aabb aSbaSbaSb$
compare

abb SbSbSb$
generate

abb aSbb$aSbb$aSbb$
compare

bb SbbSbbSbb$
generate

bb bbbbbb$
compare

b bbb$
compare

ε $$$

F23 84

PDAs recognize all CFLs

• Let G = (R, N, S)G = (R, N, S)G = (R, N, S) be a CFG over ΣΣΣ.

Define a PDA MMM to recognize L(G)L(G)L(G).

PDAs recognize all CFLs

• Let G = (R, N, S)G = (R, N, S)G = (R, N, S) be a CFG over ΣΣΣ.

Define a PDA MMM to recognize L(G)L(G)L(G).

• Three states: sss , qqq and fff .

sss initial, fff accepting.

Auxiliary symbols: variables of GGG and $$$.

PDAs recognize all CFLs

• Let G = (R, N, S)G = (R, N, S)G = (R, N, S) be a CFG over ΣΣΣ.

Define a PDA MMM to recognize L(G)L(G)L(G).

• Three states: sss , qqq and fff .

sss initial, fff accepting.

Auxiliary symbols: variables of GGG and $$$.

• Transition rules:

– Initializing the stack: s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

PDAs recognize all CFLs

• Let G = (R, N, S)G = (R, N, S)G = (R, N, S) be a CFG over ΣΣΣ.

Define a PDA MMM to recognize L(G)L(G)L(G).

• Three states: sss , qqq and fff .

sss initial, fff accepting.

Auxiliary symbols: variables of GGG and $$$.

• Transition rules:

– Initializing the stack: s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

– For each production A → αA → αA → α: q
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ q
I.e., if stack-top is variable AAA, apply a production of GGG.

PDAs recognize all CFLs

• Let G = (R, N, S)G = (R, N, S)G = (R, N, S) be a CFG over ΣΣΣ.

Define a PDA MMM to recognize L(G)L(G)L(G).

• Three states: sss , qqq and fff .

sss initial, fff accepting.

Auxiliary symbols: variables of GGG and $$$.

• Transition rules:

– Initializing the stack: s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

– For each production A → αA → αA → α: q
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ q
I.e., if stack-top is variable AAA, apply a production of GGG.

– For each σ ∈ Σσ ∈ Σσ ∈ Σ: q
σ(σ→ǫ)

−−−−→ qq
σ(σ→ǫ)

−−−−→ qq
σ(σ→ǫ)

−−−−→ q
I.e., if stack-top is a terminal σσσ matching current input symbol,

then σσσ is read off input, and popped off the stack.

– Acceptance: q
ǫ($→ǫ)

−−−−→ fq
ǫ($→ǫ)

−−−−→ fq
ǫ($→ǫ)

−−−−→ f

Example

• Grammar GGG: S → aSb | εS → aSb | εS → aSb | ε

• The PDA obtained:

s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

q
ǫ(S→aSb)

−−−−−→ qq
ǫ(S→aSb)

−−−−−→ qq
ǫ(S→aSb)

−−−−−→ q

q
ǫ(S→ǫ)

−−−−→ qq
ǫ(S→ǫ)

−−−−→ qq
ǫ(S→ǫ)

−−−−→ q

q
a(a→ǫ)

−−−−→ qq
a(a→ǫ)

−−−−→ qq
a(a→ǫ)

−−−−→ q

q
b(b→ǫ)

−−−→ qq
b(b→ǫ)

−−−→ qq
b(b→ǫ)

−−−→ q

q
ǫ($→ǫ)

−−−−→ fq
ǫ($→ǫ)

−−−−→ fq
ǫ($→ǫ)

−−−−→ f

F23 87

• Here is a derivation of aabbaabbaabb in GGG

and the corresponding trace of MMM :

(s, aabb, ε)(s, aabb, ε)(s, aabb, ε)

SSS (q, aabb, S$)(q, aabb, S$)(q, aabb, S$)

aSbaSbaSb (q, aabb,aSb$)(q, aabb,aSb$)(q, aabb,aSb$) generate

(q, abb, Sb$)(q, abb, Sb$)(q, abb, Sb$)

aaSbbaaSbbaaSbb (q, abb, aSbb$)(q, abb, aSbb$)(q, abb, aSbb$) generate

(q,bb, Sbb$)(q,bb, Sbb$)(q,bb, Sbb$)

aabbaabbaabb (q,bb,bb$)(q,bb,bb$)(q,bb,bb$) generate

(q,b,b$)(q,b,b$)(q,b,b$)

(q, ε, $)(q, ε, $)(q, ε, $)

(f, ε, ε)(f, ε, ε)(f, ε, ε)

F23 88

Converting PDAs to CFGs

• We already had a conversion from NFAs to regular expressions.

• For pairs (q, p)(q, p)(q, p) of states we assigned the language

of strings leading from qqq to ppp via deleted states.

• A pre-processor guaranteed that the language assigned

to the pair(s, a)(s, a)(s, a) (i.e. start to accept is the language recognized by the

given NFA.

• For pairs (q, p)(q, p)(q, p) of states let LqpLqpLqp consist of

the strings www leading from qqq with an empty stack to ppp with an empty

stack:

Lqp = {w ∈ Σ∗ | (q, w, ε) ⇒∗ (p, ε, ε) }Lqp = {w ∈ Σ∗ | (q, w, ε) ⇒∗ (p, ε, ε) }Lqp = {w ∈ Σ∗ | (q, w, ε) ⇒∗ (p, ε, ε) }

• Note that if (q, w, ε) ⇒ (p, ε, ε)(q, w, ε) ⇒ (p, ε, ε)(q, w, ε) ⇒ (p, ε, ε) then

(q, w, α) ⇒ (p, w, α)(q, w, α) ⇒ (p, w, α)(q, w, α) ⇒ (p, w, α) for all stack ααα .

F23 89

A pre-processor

• Converting NFA to equivalent RegExp we pre-processed.

• Here convert given PDA MMM to one that

1. has all stack operations broken push and pop of one symbol;

2. accepts a string only when the stack is empty.

• (1) helps us restrict attention to basic changes in the stack.

(2) enables focusing on traces that start and end with empty stack.

• A PDA MMM can be converted into an equivalent one satisfying (1)

by breaking compound u0 → v0u0 → v0u0 → v0 into single-letter push and pop.

• (2) is obtained by adding transitions that empty the stack

when MMM accepts.

F23 90

Generating simultanuously the languages LqpLqpLqp

• We use productions to code a generative definition of the languages LqpLqpLqp .

• Right off we have, for each state qqq, (q, ε) ǫ→ (q, ε)(q, ε) ǫ→ (q, ε)(q, ε) ǫ→ (q, ε).
I.e. ε ∈ Lqqε ∈ Lqqε ∈ Lqq .

• So we include in our grammar, for each state qqq,

the production Aqq → εAqq → εAqq → ε.

F23 91

Concatenation

• If (q, ε) u→ (r, ε) v→ (p, ε)(q, ε) u→ (r, ε) v→ (p, ε)(q, ε) u→ (r, ε) v→ (p, ε) then (q, ε) u·v→ (p, ε)(q, ε) u·v→ (p, ε)(q, ε) u·v→ (p, ε).

• In other words, if we already have that

Aqr ⇒∗ uAqr ⇒∗ uAqr ⇒∗ u and Arp ⇒∗ vArp ⇒∗ vArp ⇒∗ v ,

then we should have Aqp ⇒∗ u · vAqp ⇒∗ u · vAqp ⇒∗ u · v.

• This is achieved by including the production Aqp → Aqr ArpAqp → Aqr ArpAqp → Aqr Arp

states:
q r p

Arp

Stack

Time

Aqr

Aqp

• We include this production for each combination of q, r, pq, r, pq, r, p.

Productions for stack operations

• So far we have looked at productions that apply to any PDA.

• Suppose (q, w, ε) ⇒∗ (p, ε, ε)(q, w, ε) ⇒∗ (p, ε, ε)(q, w, ε) ⇒∗ (p, ε, ε).
If the computation trace has an empty stack along the way,

i.e. a configuration (r, v, ε)(r, v, ε)(r, v, ε) with w = u · vw = u · vw = u · v,

then the concatenation production will yield www.

• If not, then we have

q

Stack

Time
pstates:

• The first move in this trace must read a symbol σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ,

and push some symbol θθθ on the stack.

• The last move must then read some symbol τ ∈ Σǫτ ∈ Σǫτ ∈ Σǫ

which causes MMM to pop that θθθ

(which is undisturbed through the trace). That is, for some states r, tr, tr, t:

(q, σv, ε)(q, σv, ε)(q, σv, ε) ⇒⇒⇒ (r, v, θ)(r, v, θ)(r, v, θ)

(t, τ , θ)(t, τ , θ)(t, τ , θ) ⇒⇒⇒ (p, ε, ε)(p, ε, ε)(p, ε, ε)

Art

q

Stack

Time
r pt
θ θ

states:
input symbols: σ τ

F23 94

Art

q

Stack

Time
r pt
θ θ

states:
input symbols: σ τ

• This is conveyed by the production Aqp → σArtτAqp → σArtτAqp → σArtτ .

• In general, whenever MMM has rules

q
σ (ǫ→θ

−−−−→ rq
σ (ǫ→θ

−−−−→ rq
σ (ǫ→θ

−−−−→ r and t
τ (θ→ǫ)

−−−−→ pt
τ (θ→ǫ)

−−−−→ pt
τ (θ→ǫ)

−−−−→ p

with the same θ in both, the grammar GGG has the production Aqp → σArtτAqp → σArtτAqp → σArtτ .

F23 96

Proof concluded

• By induction on traces of MMM we obtain that, for all q, p ∈ Qq, p ∈ Qq, p ∈ Q

Aqp ⇒∗
G wAqp ⇒∗
G wAqp ⇒∗
G w IFF (q, w, ε) →∗

M (p, ε, ε)(q, w, ε) →∗
M (p, ε, ε)(q, w, ε) →∗
M (p, ε, ε)

• When q, pq, pq, p are the initial and accepting states s, fs, fs, f

Asf ⇒∗
G wAsf ⇒∗
G wAsf ⇒∗
G w (GGG generates www) iff

(s, w, ε) →∗
M (f, ε, ε)(s, w, ε) →∗
M (f, ε, ε)(s, w, ε) →∗
M (f, ε, ε) (MMM accepts www),

F23 97

Example

• Let MMM over {a,b,c}{a,b,c}{a,b,c} have the following transition rules.

1. s
ǫ (ǫ→$)

−−−−→ q

2. q
a (ǫ→a)

−−−−→ q

3. q
c (ǫ→b)

−−−−→ p

4. p
ǫ (b→ǫ)

−−−−→ r

5. r
b (a→ǫ)

−−−−→ r

6. r
ǫ ($→ǫ)

−−−−→ f

• The construction above yields the following grammar

(with initial variable AsfAsfAsf)

Att → εAtt → εAtt → ε (all states ttt)

Atu → Atv AvuAtu → Atv AvuAtu → Atv Avu (all states t, u, vt, u, vt, u, v)

Aqr → aAqr bAqr → aAqr bAqr → aAqr b (pushing and popping aaa, rules 2 and

Aqr → cApp εAqr → cApp εAqr → cApp ε (pushing and popping bbb, rules 3 and

Asf → ε Aqr εAsf → ε Aqr εAsf → ε Aqr ε (pushing and popping $$$, rules 1 and 6)

F23 98

Little puzzles about PDAs

• Suppose MMM is a PDA that does not use its stack.

What does MMM recognize?

• Suppose MMM is a PDA that uses its stack only up to depth 1000.

What sort of language does MMM recognize?

• Suppose MMM is a super-PDA, that uses two stacks.

What sort of language does MMM recognize?

Little puzzles about PDAs

• For a DFA MMM recognizing L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗
,

we obtained an automaton M̄̄M̄M recognizing L̄ = Σ∗−LL̄ = Σ∗−LL̄ = Σ∗−L

by flipping accepting and non-accepting states.

For PDAs we can’t, since the complement of a CFL need not be CF.

What’s wrong with the same sort of flipping for PDAs?

Little puzzles about PDAs

• For DFAs M, NM, NM, N we constructed a product DFA

that recognizes L(M) ∩ L(N)L(M) ∩ L(N)L(M) ∩ L(N).

Why can’t we use the same idea to build,

for PDAs M, NM, NM, N a PDA that recognizes L(M) ∩ L(N)L(M) ∩ L(N)L(M) ∩ L(N) ?

F23 99

The intersection of a CFL

and a regular language

• But what if NNN does not use its stack?

• Theorem. The intersection of a CFL and a regular language is CF.

F23 100

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗)

So LLL cannot be CF.

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗)

So LLL cannot be CF.

(Why is this example a bit silly?)

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗)

So LLL cannot be CF.

2. Suppose L ⊆ Γ∗L ⊆ Γ∗L ⊆ Γ∗
is recognized by a PDA.

If Σ ⊂ ΓΣ ⊂ ΓΣ ⊂ Γ, what about the set of Σ-strings in LLL?

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗)

So LLL cannot be CF.

2. Suppose L ⊆ Γ∗L ⊆ Γ∗L ⊆ Γ∗
is recognized by a PDA.

If Σ ⊂ ΓΣ ⊂ ΓΣ ⊂ Γ, what about the set of Σ-strings in LLL?

It is L ∩ Σ∗L ∩ Σ∗L ∩ Σ∗
, and therefore CF.

F23 101

The Chomsky Hierarchy

F23 102

So far: two classes of languages

LANGUAGE CLASS: Regular Context-free

GRAMMARS: regular grammars CF grammars

MACHINES: DFA=NFA PDA

MEMORY: internal stack

ACCESS: on-line on-line + stack

F23 103

Revisiting our non-CF grammar

S → ε | SABCS → ε | SABCS → ε | SABC

AB → BA BA → ABAB → BA BA → ABAB → BA BA → AB

AC → CA CA → ACAC → CA CA → ACAC → CA CA → AC

BC → CB CB → BCBC → CB CB → BCBC → CB CB → BC

A → aA → aA → a

B → bB → bB → b

C → cC → cC → c

• L(G) = {w ∈ {a, b, c}∗ | #a(w) = #b(w) = #c(w)}L(G) = {w ∈ {a, b, c}∗ | #a(w) = #b(w) = #c(w)}L(G) = {w ∈ {a, b, c}∗ | #a(w) = #b(w) = #c(w)} is not context free.

F23 104

The context-sensitive languages

• A grammar is context sensitive (a CSG) if all its productions

are of the form uAv → uxvuAv → uxvuAv → uxv.

• This is just like a CFG, except that

rules A→xA→xA→x may be restricted to a context u · · · vu · · · vu · · · v ,

where u, vu, vu, v are strings of gterminals.

• These are the context-sensitive languages (CSL’s) .

• Theorem.

A language is context-sensitive iff it is recognized by an LBA.

F23 105

A larger table

LANGUAGE CLASS: Regular CFL CSL

GRAMMARS: regular CF CS

MACHINES: DFA=NFA NFA + stack LBA

MEMORY: internal stack on-site

ACCESS: on-line on-line + stack two-way

F23 106

LANGUAGE CLASS: Regular Context-free Context-sensitive

GRAMMARS: regular grammars CF grammars CS grammars

MACHINES: DFA=NFA NFA + stack LBA

MEMORY: internal stack on-site

ACCESS: on-line on-line + stack two-way

SMTH NEW: anbn anbncn

• This is a strict hierarchy:

every level contains the previous plus more.

F23 107

