INDUCTIVELY GENERATED DATA

Generative processes

- Virtually every infinite set considered in programming is generated by a process.
The fundamental example is the set \mathbb{N} of natural numbers:
- Initial object ("base"): The number 0 is in \mathbb{N}.

Generative processes

- Virtually every infinite set considered in programming is generated by a process.
The fundamental example is the set \mathbb{N} of natural numbers:
- Initial object ("base"): The number 0 is in \mathbb{N}.

Generative step: If $n \in N$ then "next" of $n, s n$, is $\in \mathbb{N}$

Generative processes

- Virtually every infinite set considered in programming is generated by a process.
The fundamental example is the set \mathbb{N} of natural numbers:
- Initial object ("base"): The number 0 is in \mathbb{N}.

Generative step: If $n \in N$ then "next" of $n, s n$, is $\in \mathbb{N}$

- Implicit assumptions:

The meanings of 0 and "next" are known and given.

Generating $\{0,1\}^{*}$

- Base. The empty string is in $\{0,1\}^{*}$.
- Generative step.

If $w \in\{0,1\}^{*}$ then $0 w$ and $1 w$ are $\in\{0,1\}^{*}$

Generating $\{0,1\}^{*}$

- Base. The empty string is in $\{0,1\}^{*}$.
- Generative step.

If $w \in\{0,1\}^{*}$ then $0 w$ and $1 w$ are $\in\{0,1\}^{*}$

- Implicit assumptions:

The meanings of the empty string and of juxtaposition are known.

- Base. The empty string is in $\{0,1\}^{*}$.
- Generative step.

$$
\text { If } w \in\{0,1\}^{*} \text { then } 0 w \text { and } 1 w \text { are } \in\{0,1\}^{*}
$$

- Implicit assumptions:

The meanings of the empty string and of juxtaposition are known.

- Note: We generate strings here "from the head";

This conforms with the general use of constructors, and relflected in the functions head and tail.

- Base. The empty string is in $\{0,1\}^{*}$.
- Generative step.

$$
\text { If } w \in\{0,1\}^{*} \text { then } 0 w \text { and } 1 w \text { are } \in\{0,1\}^{*}
$$

- Implicit assumptions:

The meanings of the empty string and of juxtaposition are known.

- Note: We generate strings here "from the head";

This conforms with the general use of constructors, and relflected in the functions head and tail.

- But numerals are in fact generated from the tail:

$$
[7654321]_{10}=1+10 \cdot[765432]_{10}
$$

Format of generative definitions

- Two parts in a generative dfn of set S :
- Base:

Particular known objects are in S.

Format of generative definitions

- Two parts in a generative dfn of set S :
- Base:

Particular known objects are in S.

- Generative steps:

If certain objects are in S then so are vertain objects obtained from those.

- Binary tree means here a finite, ordered, unlabeled binary tree

Base: The singleton tree • is in BT. Generative step:

If t_{0}, t_{1} are binary trees then so is

Implicit assumptions:
We know what a singleton tree and juncture of trees mean.

Try this...

- Generate the set E of even natural numbers.

Try this...

- Generate the set E of even natural numbers.
- Base: 0
- Generative step: If $n \in E$ then $n-2 \in E$.

Boolean terms

- Two ways to define boolean terms (closed ones: no variables):

Boolean terms

- Two ways to define boolean terms (closed ones: no variables):
- IBT: Infix boolean terms:
- 0 and 1 are in IBT
- If $t, t^{\prime} \in \operatorname{IBT}$ then $(t) \wedge\left(t^{\prime}\right) \in \operatorname{IBT}$ and $(t) \vee\left(t^{\prime}\right) \in \operatorname{IBT}$
- Two ways to define boolean terms (closed ones: no variables):
- IBT: Infix boolean terms:
- 0 and 1 are in IBT
- If $t, t^{\prime} \in \operatorname{IBT}$ then $(t) \wedge\left(t^{\prime}\right) \in \operatorname{IBT}$ and $(t) \vee\left(t^{\prime}\right) \in \operatorname{IBT}$
- PBT: Prefix boolean terms:
- 0 and 1 are in PBT
- If $t, t^{\prime} \in \mathbf{P B T}$ then $\wedge t t^{\prime} \in \mathbf{P B T}$ and $\vee t t^{\prime} \in \mathbf{P B T}$
- Two ways to define boolean terms (closed ones: no variables):
- IBT: Infix boolean terms:
- 0 and 1 are in IBT
- If $t, t^{\prime} \in \operatorname{IBT}$ then $(t) \wedge\left(t^{\prime}\right) \in \operatorname{IBT}$ and $(t) \vee\left(t^{\prime}\right) \in \operatorname{IBT}$
- PBT: Prefix boolean terms:
- 0 and 1 are in PBT
- If $t, t^{\prime} \in \mathbf{P B T}$ then $\wedge t t^{\prime} \in \mathbf{P B T}$ and $\vee t t^{\prime} \in \mathbf{P B T}$
- Main difference between IBT and PBT:

No parentheses in PBT!

Lists of natural numbers

- Generate $\mathbb{L}(\mathbb{N})$ the lists of natural numbers.
- Fix a textual coding of \mathbb{N}, say binary numerals.

Lists of natural numbers

- Generate $\mathbb{L}(\mathbb{N})$ the lists of natural numbers.
- Fix a textual coding of \mathbb{N}, say binary numerals.
- \square is a list of naturals.
- If ℓ is a list and k a numeral then $k: \ell$ is a list.

Lists of natural numbers

- Generate $\mathbb{L}(\mathbb{N})$ the lists of natural numbers.
- Fix a textual coding of \mathbb{N}, say binary numerals.
- \square is a list of naturals.
- If ℓ is a list and k a numeral then $k: \ell$ is a list.
- Examples: $1: \square, \quad 0: 101: 10011: 10: \square$.

REASONING ABOUT INDUCTIVE DATA

Infinite sets, finite minds

- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite. But our minds and our proofs are finite.
- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite.

But our minds and our proofs are finite.

- So how can we prove anything about \mathbb{N} ?
- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite.

But our minds and our proofs are finite.

- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.

Example: "For all n at least one of $2^{n}+1$ and $2^{n}-1$ is prime."
2,3,5,7,17,31 Hooray!

- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite.

But our minds and our proofs are finite.

- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.

Example: "For all n at least one of $2^{n}+1$ and $2^{n}-1$ is prime."
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite.

But our minds and our proofs are finite.

- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.

Example: "For all n at least one of $2^{n}+1$ and $2^{n}-1$ is prime."
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

- Another try (Fermat): All numbers $2^{2^{n}}+1$ are prime 3, 5, 17, 257, 65537 . Yahoo!
- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite.

But our minds and our proofs are finite.

- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.

Example: "For all n at least one of $2^{n}+1$ and $2^{n}-1$ is prime."
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

- Another try (Fermat): All numbers $2^{2^{n}}+1$ are prime

3, 5, 17, 257, 65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

- \mathbb{N} is infinite. $\{0,1\}^{*}$ is infinite.

But our minds and our proofs are finite.

- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.

Example: "For all n at least one of $2^{n}+1$ and $2^{n}-1$ is prime."
2,3,5,7,17, 31 Hooray!
Oops: Both 63 and 65 are composite.

- Another try (Fermat): All numbers $2^{2^{n}}+1$ are prime 3, 5, 17, 257, 65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.
- So how can we hope to prove that all natural numbers are such-and-such?

Finitely generated infinities!

- The secret is that inductive data is generated by finite rules.
- Therefore we have a finite tool for proving that all generated objects satisfy certain properties.

Following the process

- Suppose we generate \mathbb{N} using a green pen.

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.

0

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.

01

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.

012

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.

0123

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
- They all come out green:

As we generate \mathbb{N} we make sure that we start with green, and that each step maintains green-ness.

Following the process

- Suppose we generate \mathbb{N} using a green pen.
- 0 is a green natural.
- If x is a green natural, then so is its successor.
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
- They all come out green:

As we generate \mathbb{N} we make sure that we start with green, and that each step maintains green-ness.

- Green-ness is here the process' invariant: True at the outset, and preserved by the steps.

The principle of induction for \mathbb{N}

- Suppose $P(x)$ is a property of natural numbers x. $P(x)$ abbreviates here " x has the property P "

The principle of induction for \mathbb{N}

- Suppose $P(x)$ is a property of natural numbers x. $P(x)$ abbreviates here " x has the property P "
- Assume:
- Base. $P(0)$ and
- Step. For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.

The principle of induction for \mathbb{N}

- Suppose $P(x)$ is a property of natural numbers x. $P(x)$ abbreviates here " x has the property P "
- Assume:
- Base. $P(0)$ and
- Step. For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.
- Conclude: $P(x)$ for all $x \in \mathbb{N}$.

The principle of induction for \mathbb{N}

- Suppose $P(x)$ is a property of natural numbers x. $P(x)$ abbreviates here " x has the property P "
- Assume:
- Base. $P(0)$ and
- Step. For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.
- Conclude: $P(x)$ for all $x \in \mathbb{N}$.
- As natural numbers are being generated, they all come out satisfying P.

The principle of induction for \mathbb{N}

- Suppose $P(x)$ is a property of natural numbers x. $P(x)$ abbreviates here " x has the property P "
- Assume:
- Base. $P(0)$ and
- Step. For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.
- Conclude: $P(x)$ for all $x \in \mathbb{N}$.
- As natural numbers are being generated, they all come out satisfying P.
- A property of natural numbers that holds for zero and is invariant under successor is true of every natural number.

The principle of induction for \mathbb{N}

- Suppose $P(x)$ is a property of natural numbers x. $P(x)$ abbreviates here " x has the property P "
- Assume:
- Base. $P(0)$ and
- Step. For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.
- Conclude: $P(x)$ for all $x \in \mathbb{N}$.
- As natural numbers are being generated, they all come out satisfying P.
- A property of natural numbers that holds for zero and is invariant under successor is true of every natural number.
- The premise of the STEP is often called the "induction assumption" or the Induction Hypothesis (IH).

Example

- Show that $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$. What is the property?

Example

- Show that $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- $P(x)$ is $2^{x}<2^{x+1}$

Example

- Show that $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- If we know that
- $2^{x}<2^{x+1}$ is true for $x=0$; and
- $2^{x}<2^{x+1}$ for $x=n$ implies that $2^{x}<2^{x+1}$ for $x=n+1$
- then $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.

Example

- Show that $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- If we know that
- $2^{x}<2^{x+1}$ is true for $x=0$; and
- $2^{x}<2^{x+1}$ for $x=n$
implies that $2^{x}<2^{x+1}$ for $x=n+1$
- then $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- But we do have
- Base: $2^{0}=1<2=2^{0+1}$

Example

- Show that $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- If we know that
- $2^{x}<2^{x+1}$ is true for $x=0$; and
- $2^{x}<2^{x+1}$ for $x=n$
implies that $2^{x}<2^{x+1}$ for $x=n+1$
- then $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- But we do have
- Base: $2^{0}=1<2=2^{0+1}$
- Step: If $2^{n}<2^{n+1}(P(x)$ for $x=n)$ then $2^{n+1}=2^{n}+2^{n}<2^{n+1}+2^{n+1}=2^{n+2}$ nextt $(P(x)$ for $x=n+1)$

Example

- Show that $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- If we know that
- $2^{x}<2^{x+1}$ is true for $x=0$; and
- $2^{x}<2^{x+1}$ for $x=n$ implies that $2^{x}<2^{x+1}$ for $x=n+1$
- then $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.
- But we do have
- Base: $2^{0}=1<2=2^{0+1}$
- Step: If $2^{n}<2^{n+1}(P(x)$ for $x=n)$ then $2^{n+1}=2^{n}+2^{n}<2^{n+1}+2^{n+1}=2^{n+2}$ nextt ($P(x)$ for $x=n+1$)
- By Induction, $2^{x}<2^{x+1}$ for all $x \in \mathbb{N}$.

Try this...

- Prove by induction on \mathbb{N} that $x \leqslant 2^{x}$ for all $x \in \mathbb{N}$. We are given that exponentiation is an increasing function.
- By Induction $x \leqslant 2^{x}$ for all $x \in \mathbb{N}$.

Try this...

- Prove by induction on \mathbb{N} that $x \leqslant 2^{x}$ for all $x \in \mathbb{N}$. We are given that exponentiation is an increasing function.
- Base: For $x=0$ we have $x^{2}=0<1=2^{x}$.
- Step: Assume $n \leqslant 2^{n}$. Then

$$
\begin{aligned}
n+1 & \leqslant 2^{n}+1 \quad(\mathrm{IH}) \\
& =2^{n}+2^{0} \\
& \leqslant 2^{n}+2^{n} \quad \text { (exponentiation is increasing) } \\
& =2^{n+1}
\end{aligned}
$$

- By Induction $x \leqslant 2^{x}$ for all $x \in \mathbb{N}$.

Example: Divisibility

- $P(x): x^{3}+2 x$ is divisible by 3 .
- By Induction:

Example: Divisibility

- $P(x): \quad x^{3}+2 x$ is divisible by 3 .
- By Induction:
- Base. For $x=0$
$x^{3}+2 x=0^{3}+2 \cdot 0=0$ which is divisible by 3.

Example: Divisibility

- $P(x): x^{3}+2 x$ is divisible by 3 .
- By Induction:
- Base. For $x=0$
$x^{3}+2 x=0^{3}+2 \cdot 0=0$ which is divisible by 3.
- Step. Assume $P(n)$ (IH). Then for $x=n+1$

$$
\begin{aligned}
x^{3}+2 x & =(n+1)^{3}+(2 n+2) \\
& =\left(n^{3}+3 n^{2}+3 n+1\right)+(2 n+2) \\
& =\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)
\end{aligned}
$$

$x^{3}+2 x$ is the sum of numbers divisible by 3 , and is therefore divisible by 3.

Example: Divisibility

- $P(x): x^{3}+2 x$ is divisible by 3 .
- By Induction:
- Base. For $x=0$
$x^{3}+2 x=0^{3}+2 \cdot 0=0$ which is divisible by 3 .
- Step. Assume $P(n)$ (IH). Then for $x=n+1$

$$
\begin{aligned}
x^{3}+2 x & =(n+1)^{3}+(2 n+2) \\
& =\left(n^{3}+3 n^{2}+3 n+1\right)+(2 n+2) \\
& =\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)
\end{aligned}
$$

$x^{3}+2 x$ is the sum of numbers divisible by 3 , and is therefore divisible by 3.

- By Induction $x^{3}+2 x$ is divisible by 3 , for all $x \in \mathbb{N}$.

Example: Divisibility

- $P(x): x^{3}+2 x$ is divisible by 3 .
- By Induction:
- Base. For $x=0$
$x^{3}+2 x=0^{3}+2 \cdot 0=0$ which is divisible by 3.
- Step. Assume $P(n)$ (IH). Then for $x=n+1$

$$
\begin{aligned}
x^{3}+2 x & =(n+1)^{3}+(2 n+2) \\
& =\left(n^{3}+3 n^{2}+3 n+1\right)+(2 n+2) \\
& =\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)
\end{aligned}
$$

$x^{3}+2 x$ is the sum of numbers divisible by 3 , and is therefore divisible by 3 .

- By Induction $x^{3}+2 x$ is divisible by 3 , for all $x \in \mathbb{N}$.

Iterated summation

$$
(\star) \quad 0+1+2+\cdots+x=x(x+1) / 2
$$

- By Induction :

Iterated summation

$$
(\star) \quad 0+1+2+\cdots+x=x(x+1) / 2
$$

- By Induction :
- Base. $\quad(\star)$ is true for $x=0: \quad 0=0 \cdot(0+1) / 2$.

Iterated summation

$$
(\star) \quad 0+1+2+\cdots+x=x(x+1) / 2
$$

- By Induction :
- Base. (\star) is true for $x=0: \quad 0=0 \cdot(0+1) / 2$.
- Step. Assume (\star) for $x=n$. Then for $x=n+1$
$0+1+\cdots+x=0+1+\cdots+n+(n+1)$
$=\frac{n(n+1)}{2}+(n+1)$
$=(n+1)\left(\frac{1}{2} n+1\right)$
$=\frac{1}{2}(n+1)(n+2)$
$=\frac{1}{2} x(x+1)$
That is, (\star) for $x=n+1$.

Iterated summation

$$
(\star) \quad 0+1+2+\cdots+x=x(x+1) / 2
$$

- By Induction :
- Base. (\star) is true for $x=0: \quad 0=0 \cdot(0+1) / 2$.
- Step. Assume (\star) for $x=n$. Then for $x=n+1$

$$
\begin{align*}
0+1+\cdots+x & =0+1+\cdots+n+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \tag{IH}\\
& =(n+1)\left(\frac{1}{2} n+1\right) \\
& =\frac{1}{2}(n+1)(n+2) \\
& =\frac{1}{2} x(x+1)
\end{align*}
$$

That is, (\star) for $x=n+1$.

- Conclude: $\quad(\star)$ holds for every $x \in \mathbb{N}$.

Involving other data

- A property of natural numbers may refer to non-numeric data!
(\star Every set with x elements has 2^{x} subsets
- By Induction.

Involving other data

- A property of natural numbers may refer to non-numeric data! (\star Every set with x elements has 2^{x} subsets
- By Induction.
- Base. $x=0$. The only set with 0 elements is \emptyset, which has just $2^{0}=1$ subset, namely \emptyset itself.

Involving other data

- A property of natural numbers may refer to non-numeric data!
(\star Every set with x elements has 2^{x} subsets
- By Induction.
- Base. $x=0$. The only set with 0 elements is \emptyset, which has just $2^{0}=1$ subset, namely \emptyset itself.
- Step. Assume $P(n)$ (IH).

For $x=n+1$ let S be a set with $n+1$ elements.
Choose $a \in S$ (S can't be empty!) and let $S^{-}={ }_{\mathrm{df}} S-\{a\}$.

- A property of natural numbers may refer to non-numeric data!
(\star Every set with x elements has 2^{x} subsets
- By Induction.
- Base. $x=0$. The only set with 0 elements is \emptyset, which has just $2^{0}=1$ subset, namely \emptyset itself.
- Step. Assume $P(n)$ (IH).

For $x=n+1$ let S be a set with $n+1$ elements.
Choose $a \in S$ (S can't be empty!) and let $S^{-}={ }_{\mathrm{df}} S-\{a\}$.
By IH S^{-}has 2^{n} subsets $A_{1}, \ldots, A_{2^{n}}$.
Subsets of $S: A_{1}, \ldots, A_{2^{n}}, A_{1} \cup\{a\}, \ldots, A_{2^{n}} \cup\{a\}$
which are all different. So S has $2^{n}+2^{n}=2^{n+1}$ subsets.

- A property of natural numbers may refer to non-numeric data!
(\star Every set with x elements has 2^{x} subsets
- By Induction.
- Base. $x=0$. The only set with 0 elements is \emptyset, which has just $2^{0}=1$ subset, namely \emptyset itself.
- Step. Assume $P(n)(\mathrm{IH})$.

For $x=n+1$ let S be a set with $n+1$ elements.
Choose $a \in S$ (S can't be empty!) and let $S^{-}={ }_{\mathrm{df}} S-\{a\}$.
By IH S^{-}has 2^{n} subsets $A_{1}, \ldots, A_{2^{n}}$.
Subsets of $S: A_{1}, \ldots, A_{2^{n}}, A_{1} \cup\{a\}, \ldots, A_{2^{n}} \cup\{a\}$
which are all different. So S has $2^{n}+2^{n}=2^{n+1}$ subsets.

- By Induction (\star) for all $x \in \mathbb{N}$.

Starting Induction elsewhere

- Show $x^{2}>x$ for all $x>1$.
- We wish to start induction from 2.

Starting Induction elsewhere

- Show $x^{2}>x$ for all $x>1$.
- We wish to start induction from 2.

But that's the same as Induction for the property

$$
(x+2)^{2}>(x+2)!
$$

Starting Induction elsewhere

- Show $x^{2}>x$ for all $x>1$.
- We wish to start induction from 2.

But that's the same as Induction for the property

$$
(x+2)^{2}>(x+2)!
$$

- We refer to this as Shifted Induction:
- Base. $2^{2}=4>2$
- Step. $n^{2}>n$ implies

$$
\begin{array}{rlrl}
(n+1)^{2} & =n^{2}+2 n+1 \\
& >n+2 n+1 & (\mathrm{IH}) \\
& >n+1 & & \text { since } n>0)
\end{array}
$$

Starting Induction elsewhere

- Show $x^{2}>x$ for all $x>1$.
- We wish to start induction from 2.

But that's the same as Induction for the property

$$
(x+2)^{2}>(x+2)!
$$

- We refer to this as Shifted Induction:
- Base. $2^{2}=4>2$
- Step. $n^{2}>n$ implies

$$
\begin{array}{rlrl}
(n+1)^{2} & =n^{2}+2 n+1 & \\
& >n+2 n+1 & & (\mathrm{IH}) \tag{IH}\\
& >n+1 & & \text { since } n>0)
\end{array}
$$

- Conclusion: $x^{2}>x$ for all integers $x>1$.
- The template for such reasoning is Shifted Induction
- Given a property $P(x)$ of natural numbers, and $b \in \mathbb{N}$,
- Assume: - Shifted Base. P true of b; and
- Shifted Step. For all $n \geqslant b$, $P(n)$ implies $P(n+1)$
- Conclude: $P(x)$ for all $x \geqslant b$.
- Induction is a special case, with $b=0$.

Another example

- $3^{n}>5 \cdot 2^{n}$ for all $n \geqslant 4$.
- By Shifted Induction with initial value 4.

Another example

- $3^{n}>5 \cdot 2^{n}$ for all $n \geqslant 4$.
- By Shifted Induction with initial value 4.
- Basis. $3^{4}=81>80=5 \cdot 2^{4}$

Another example

- $3^{n}>5 \cdot 2^{n}$ for all $n \geqslant 4$.
- By Shifted Induction with initial value 4.
- Basis. $3^{4}=81>80=5 \cdot 2^{4}$
- Step. If $3^{n}>5 \cdot 2^{n}$ then

$$
\begin{align*}
3^{n+1} & =3 \cdot 3^{n} \\
& >3 \cdot\left(5 \cdot 2^{n}\right) \tag{IH}\\
& >2 \cdot 5 \cdot 2^{n} \\
& =5 \cdot 2^{n+1}
\end{align*}
$$

- The principle of inductive reasoning applies to any inductively generated set S, not just \mathbb{N}.
- If $P(x)$ makes sense for $x \in S$, is true for every base element of S and remains true under the generative steps for S, then $P(x)$ is true for all $x \in S$.
- The principle of inductive reasoning applies to any inductively generated set S, not just \mathbb{N}.
- If $P(x)$ makes sense for $x \in S$, is true for every base element of S and remains true under the generative steps for S, then $P(x)$ is true for all $x \in S$.
- The underlying reason is the same as for \mathbb{N} : as the elements of S are generated, the property P invariantly holds.

Involving non-numeric data

- $P(x)$ may mention also non-numeric data.
- Example: Take "Every set with x elements has 2^{x} subsets"

Involving non-numeric data

- $P(x)$ may mention also non-numeric data.
- Example: Take "Every set with x elements has 2^{x} subsets"
- We prove by Induction on \mathbb{N} that $P(x)$ for all $x \in \mathbb{N}$.

Involving non-numeric data

- $P(x)$ may mention also non-numeric data.
- Example: Take "Every set with x elements has 2^{x} subsets"
- We prove by Induction on \mathbb{N} that $P(x)$ for all $x \in \mathbb{N}$.
- Base. $P(0)$: "Every set with 0 elements has $2^{0}=1$ subsets". Indeed \emptyset has one subset.

Involving non-numeric data

- $P(x)$ may mention also non-numeric data.
- Example: Take "Every set with x elements has 2^{x} subsets"
- We prove by Induction on \mathbb{N} that $P(x)$ for all $x \in \mathbb{N}$.
- Base. $P(0)$: "Every set with 0 elements has $2^{0}=1$ subsets". Indeed \emptyset has one subset.
- Step. Assume $P(n)$.

To prove $P(n+1)$ let S be a set with $n+1$ elements.
Choose $a \in S$ and let $S^{-}=S-\{a\}$.
By IH S^{-}has 2^{n} subsets $A_{1}, \ldots, A_{2^{n}}$.
The subsets of S are $A_{1}, \ldots, A_{2^{n}}, A_{1} \cup\{a\}, \ldots, A_{2^{n}} \cup\{a\}$, which are all different.

So S has $2^{n}+2^{n}=2^{n+1}$ subsets.

Involving non-numeric data

- $P(x)$ may mention also non-numeric data.
- Example: Take "Every set with x elements has 2^{x} subsets"
- We prove by Induction on \mathbb{N} that $P(x)$ for all $x \in \mathbb{N}$.
- Base. $P(0)$: "Every set with 0 elements has $2^{0}=1$ subsets". Indeed \emptyset has one subset.
- Step. Assume $P(n)$.

To prove $P(n+1)$ let S be a set with $n+1$ elements.
Choose $a \in S$ and let $S^{-}=S-\{a\}$.
By IH S^{-}has 2^{n} subsets $A_{1}, \ldots, A_{2^{n}}$.
The subsets of S are $A_{1}, \ldots, A_{2^{n}}, A_{1} \cup\{a\}, \ldots, A_{2^{n}} \cup\{a\}$, which are all different.

So S has $2^{n}+2^{n}=2^{n+1}$ subsets.

- By Induction on $\mathbb{N} P(x)$ holds for all $x \in \mathbb{N}$.

Induction on strings

- Let $P(x)$ be a property of Σ-strings.

Induction on strings

- Let $P(x)$ be a property of Σ-strings.
- Assume:
- Base. $P(\varepsilon)$
- Steps. For each $\sigma \in \Sigma$ and $w \in \Sigma^{*}$
$P(w)$ implies $P(\sigma w)$

Induction on strings

- Let $P(x)$ be a property of Σ-strings.
- Assume:
- Base. $P(\varepsilon)$
- Steps. For each $\sigma \in \Sigma$ and $w \in \Sigma^{*}$
$P(w)$ implies $P(\sigma w)$
- Conclude: $\quad P(w)$ for all $w \in \Sigma^{*}$.

Example: Swapping

- For $w \in\{0,1\}^{*}$ let $\backsim(w)$ ("swap w ") be w with 0 and 1 interchanged: $\sim 001=110$.

We show $\quad(\star) \quad \backsim(\backsim(w))=w$

Example: Swapping

- For $w \in\{0,1\}^{*}$ let $\backsim(w)$ ("swap w ") be w with 0 and 1 interchanged: $\backsim 001=110$.

We show $\quad(\star) \quad \backsim(\backsim(w))=w$

- The proof is by induction on $\{0,1\}^{*}$.
- For $w \in\{0,1\}^{*}$ let $\backsim(w)$ ("swap w ") be w with 0 and 1 interchanged: $\backsim 001=110$.

We show $\quad(\star) \quad \backsim(\backsim(w))=w$

- The proof is by induction on $\{0,1\}^{*}$.
- Basis. $\backsim(\backsim(\varepsilon))=\backsim(\varepsilon)=\varepsilon$
- For $w \in\{0,1\}^{*}$ let $\backsim(w)$ ("swap w ") be
w with 0 and 1 interchanged: $\sim 001=110$.
We show $\quad(\star) \quad \backsim(\backsim(w))=w$
- The proof is by induction on $\{0,1\}^{*}$.
- Basis. $\backsim(\backsim(\varepsilon))=\backsim(\varepsilon)=\varepsilon$
- Step for 0 . If $\backsim(\backsim(x))=x$ then $\backsim(\backsim(0 x))=\backsim(1 \backsim(x))$

$$
=0 \backsim(\backsim(x))
$$

$$
\begin{equation*}
=0 x \tag{IH}
\end{equation*}
$$

Step for 1 is similar.

- For $w \in\{0,1\}^{*}$ let $\backsim(w)$ ("swap w ") be
w with 0 and 1 interchanged: $\sim 001=110$.
We show $\quad(\star) \quad \backsim(\backsim(w))=w$
- The proof is by induction on $\{0,1\}^{*}$.
- Basis. $\backsim(\backsim(\varepsilon))=\backsim(\varepsilon)=\varepsilon$
- Step for 0 . If $\backsim(\sim(x))=x$
then $\backsim(\backsim(0 x))=\backsim(1 \backsim(x))$

$$
=0 \backsim(\backsim(x))
$$

$$
\begin{equation*}
=0 x \tag{IH}
\end{equation*}
$$

Step for 1 is similar.

- By induction on $\{0,1\}^{*}(\star)$ for all $w \in\{0,1\}^{*}$.

Dealing with several inputs

- Prove $|x \cdot u|=|x|+|u| \quad\left(x, u \in \Sigma^{*}\right)$.

Dealing with several inputs

- Prove $|x \cdot u|=|x|+|u| \quad\left(x, u \in \Sigma^{*}\right)$.
- Problem: This is a property of a pair of strings!

Dealing with several inputs

- Prove $|x \cdot u|=|x|+|u| \quad\left(x, u \in \Sigma^{*}\right)$.
- Solution: Read it as a property of one x :
$|x \cdot u|=|x|+|u| \quad$ for all $u \in \Sigma^{*}$

Dealing with several inputs

- Prove $|x \cdot u|=|x|+|u|\left(x, u \in \Sigma^{*}\right)$.
- Solution: Read it as a property of one x :
$|x \cdot u|=|x|+|u| \quad$ for all $u \in \Sigma^{*}$
- Basis: $x=\varepsilon$.

$$
\begin{aligned}
& |\varepsilon \cdot u|=|u| \quad \text { since } \varepsilon \cdot u=u \\
& |\varepsilon|+|u|=0+|u|=|u|
\end{aligned}
$$

Dealing with several inputs

- Prove $|x \cdot u|=|x|+|u|\left(x, u \in \Sigma^{*}\right)$.
- Solution: Read it as a property of one x :
$|x \cdot u|=|x|+|u| \quad$ for all $u \in \Sigma^{*}$
- Basis: $x=\varepsilon$.

$$
\begin{aligned}
& |\varepsilon \cdot u|=|u| \quad \text { since } \varepsilon \cdot u=u \\
& |\varepsilon|+|u|=0+|u|=|u|
\end{aligned}
$$

- Step: Assume (\star) for $x=w$.

For $x=\sigma w$ we have for all $u \in \Sigma^{*}$
$|\sigma w \cdot u|=|\sigma(w \cdot u)|$
$=1+|w \cdot u|$
$=1+|w|+|u|$
$=(|\sigma w|)+|u|$

Dealing with several inputs

- Prove $|x \cdot u|=|x|+|u|\left(x, u \in \Sigma^{*}\right)$.
- Solution: Read it as a property of one x :

$$
|x \cdot u|=|x|+|u| \quad \text { for all } u \in \Sigma^{*}
$$

- Basis: $x=\varepsilon$.

$$
\begin{aligned}
& |\varepsilon \cdot u|=|u| \quad \text { since } \varepsilon \cdot u=u \\
& |\varepsilon|+|u|=0+|u|=|u|
\end{aligned}
$$

- Step: Assume (\star) for $x=w$.

For $x=\sigma w$ we have for all $u \in \Sigma^{*} \quad|\sigma w \cdot u|=|\sigma w|+|u|$

- By induction on Σ^{*} conclude (\star) for all $x \in \Sigma^{*}$.

Unambiguous PBT's

- A PBT t is unambiguous if it is exactly one of:
- 0 or 1
- $\wedge t_{0} t_{1}$ or $\vee t_{0} t_{1}$ for some unique terms t_{0} and t_{1}.

Unambiguous PBT's

- A PBT t is unambiguous if it is exactly one of:
- 0 or 1
- $\wedge t_{0} t_{1}$ or $\vee t_{0} t_{1}$ for some unique terms t_{0} and t_{1}.
- That is: t can't be both $\wedge t_{0} t_{1}$ and $\wedge t_{0}^{\prime} t_{1}^{\prime}$
unless $t_{0}^{\prime}=t_{0}$ and $t_{1}^{\prime}=t_{1}$.

Unambiguous PBT's

- A PBT t is unambiguous if it is exactly one of:
- 0 or 1
- $\wedge t_{0} t_{1}$ or $\vee t_{0} t_{1}$ for some unique terms t_{0} and t_{1}.
- That is: t can't be both $\wedge t_{0} t_{1}$ and $\wedge t_{0}^{\prime} t_{1}^{\prime}$
unless $t_{0}^{\prime}=t_{0}$ and $t_{1}^{\prime}=t_{1}$.
- Theorem: Every PBT is unambiguous

Unambiguous PBT's

- A PBT t is unambiguous if it is exactly one of:
- 0 or 1
- $\wedge t_{0} t_{1}$ or $\vee t_{0} t_{1}$ for some unique terms t_{0} and t_{1}.
- That is: t can't be both $\wedge t_{0} t_{1}$ and $\wedge t_{0}^{\prime} t_{1}^{\prime}$ unless $t_{0}^{\prime}=t_{0}$ and $t_{1}^{\prime}=t_{1}$.
- Theorem: Every PBT is unambiguous
- How to prove this?

Unambiguous PBT's

- A PBT t is unambiguous if it is exactly one of:
- 0 or 1
- $\wedge t_{0} t_{1}$ or $\vee t_{0} t_{1}$ for some unique terms t_{0} and t_{1}.
- That is: t can't be both $\wedge t_{0} t_{1}$ and $\wedge t_{0}^{\prime} t_{1}^{\prime}$ unless $t_{0}^{\prime}=t_{0}$ and $t_{1}^{\prime}=t_{1}$.
- Theorem: Every PBT is unambiguous
- How to prove this?
- Induction on terms does not work:

If $t=\wedge t_{0} t_{1}$ what can we possibly conclude from assuming that t_{0} and t_{1} are unambiguous?

Pushing induction through

- Maybe induction on strings over $\Sigma=\{0,1, \wedge, \vee\}$

Pushing induction through

- Maybe induction on strings over $\Sigma=\{0,1, \wedge, \vee\}$
- But we can't conclude that $\wedge t_{1} t_{2}$ is unambiguous from the assumption that t_{1}, t_{2} are unambiguous!

Pushing induction through

- Maybe induction on strings over $\Sigma=\{0,1, \wedge, \vee\}$
- But we can't conclude that $\wedge t_{1} t_{2}$ is unambiguous from the assumption that t_{1}, t_{2} are unambiguous!
- And the string $t_{1} t_{2}$ is not a term!

Pushing induction through

- Maybe induction on strings over $\Sigma=\{0,1, \wedge, \vee\}$
- But we can't conclude that $\wedge t_{1} t_{2}$ is unambiguous from the assumption that t_{1}, t_{2} are unambiguous!
- And the string $t_{1} t_{2}$ is not a term!
- Solution: A broader notion of "non-ambiguity"!
$w \in \Sigma^{*}$ is unambiguous if it can'e be read as a concatenation of terms in more than one way:

Pushing induction through

- Maybe induction on strings over $\Sigma=\{0,1, \wedge, \vee\}$
- But we can't conclude that $\wedge t_{1} t_{2}$ is unambiguous from the assumption that t_{1}, t_{2} are unambiguous!
- And the string $t_{1} t_{2}$ is not a term!
- Solution: A broader notion of "non-ambiguity"!
$w \in \Sigma^{*}$ is unambiguous if it can'e be read as a concatenation of terms in more than one way:
- If $w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}$ then $m=k$ and $t_{i}=t_{i}^{\prime}$ for $i \in[1 . . k]$.

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.
- Basis. If w is ε then it is unambiguous vacuously.

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.
- Basis. If w is ε then it is unambiguous vacuously.
- Step: Assume that w is unambiguous and

$$
\text { (*) } \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Step: Assume that w is unambiguous and

$$
(\star) \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Step: Assume that w is unambiguous and

$$
\text { (*) } \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Case $\sigma=0 . \quad(\sigma=1$ is similar.)

0 is the only term starting with 0 .
So $t_{1}=t_{1}^{\prime}=0$ and $w=t_{2} \cdots t_{k}=t_{2}^{\prime} \cdots t_{m}^{\prime}$.

- Step: Assume that w is unambiguous and

$$
\text { (*) } \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Case $\sigma=0 . \quad(\sigma=1$ is similar.)

0 is the only term starting with 0 .
So $t_{1}=t_{1}^{\prime}=0$ and $w=t_{2} \cdots t_{k}=t_{2}^{\prime} \cdots t_{m}^{\prime}$.
By IH $k-1=m-1$ and $t_{i}=t_{i}^{\prime}$ for $i=2 . . k$.
So $k=m$ and $t_{i}=q_{i}$ for $i=1$.. k.

- Step: Assume that w is unambiguous and

$$
\text { (*) } \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Case $\sigma=0 . \quad(\sigma=1$ is similar.)

0 is the only term starting with 0 .
So $t_{1}=t_{1}^{\prime}=0$ and $w=t_{2} \cdots t_{k}=t_{2}^{\prime} \cdots t_{m}^{\prime}$.
By IH $k-1=m-1$ and $t_{i}=t_{i}^{\prime}$ for $i=2 . . k$.
So $k=m$ and $t_{i}=q_{i}$ for $i=1 . . k$.

- Case $\sigma=\wedge . \quad(\sigma=\vee$ is similar.)
$t_{1}=\wedge q r$ and $t_{1}^{\prime}=\wedge q^{\prime} r^{\prime}$ for some $q, r, q^{\prime}, r^{\prime}$.
- Step: Assume that w is unambiguous and

$$
(\star) \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Case $\sigma=0 . \quad(\sigma=1$ is similar.)

0 is the only term starting with 0 .
So $t_{1}=t_{1}^{\prime}=0$ and $w=t_{2} \cdots t_{k}=t_{2}^{\prime} \cdots t_{m}^{\prime}$.
By IH $k-1=m-1$ and $t_{i}=t_{i}^{\prime}$ for $i=2 . . k$.
So $k=m$ and $t_{i}=q_{i}$ for $i=1 . . k$.

- Case $\sigma=\wedge . \quad(\sigma=\vee$ is similar.)
$t_{1}=\wedge q r$ and $t_{1}^{\prime}=\wedge q^{\prime} r^{\prime}$ for some $q, r, q^{\prime}, r^{\prime}$.

So $w=q r t_{2} \cdots t_{k}=q^{\prime} r^{\prime} t_{2}^{\prime} \cdots t_{m}^{\prime}$. By IH $k+1=m+1, q=q^{\prime}$, $r=r^{\prime}$ and $t_{i}=q_{i}$ for $i=2 . . k$.

- Step: Assume that w is unambiguous and

$$
(\star) \quad \sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}
$$

- Case $\sigma=0 . \quad(\sigma=1$ is similar.)

0 is the only term starting with 0 .
So $t_{1}=t_{1}^{\prime}=0$ and $w=t_{2} \cdots t_{k}=t_{2}^{\prime} \cdots t_{m}^{\prime}$.
By IH $k-1=m-1$ and $t_{i}=t_{i}^{\prime}$ for $i=2 . . k$.
So $k=m$ and $t_{i}=q_{i}$ for $i=1 . . k$.

- Case $\sigma=\wedge . \quad(\sigma=\vee$ is similar.)
$t_{1}=\wedge q r$ and $t_{1}^{\prime}=\wedge q^{\prime} r^{\prime}$ for some $q, r, q^{\prime}, r^{\prime}$.

So $w=q r t_{2} \cdots t_{k}=q^{\prime} r^{\prime} t_{2}^{\prime} \cdots t_{m}^{\prime}$. By IH $k+1=m+1, q=q^{\prime}$, $r=r^{\prime}$ and $t_{i}=q_{i}$ for $i=2 . . k$.

So $k=m$ and $t_{i}=t_{i}^{\prime}$ for $i=1 . . k$.

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.
- Basis. If w is ε then it is unambiguous vacuously.
- Step: Assume that w is unambiguous and $\sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}$

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.
- Basis. If w is ε then it is unambiguous vacuously.
- Step: Assume that w is unambiguous and $\sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}$
We concluded that $k=m$ and $t_{i}=t_{i}^{\prime}$ for $i=1 . . k$.

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.
- Basis. If w is ε then it is unambiguous vacuously.
- Step: Assume that w is unambiguous and $\sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}$
- By induction on Σ^{*} we conclude that every $w \in \Sigma^{*}$ is unambiguous.

A generalized non-ambiguity theorem

- Non-ambiguity Theorem. Every $w \in \Sigma^{*}$ is unambiguous.
- The proof is by induction on Σ^{*}.
- Basis. If w is ε then it is unambiguous vacuously.
- Step: Assume that w is unambiguous and $\sigma w=t_{1} \cdots t_{k}=t_{1}^{\prime} \cdots t_{m}^{\prime}$
- By induction on Σ^{*} we conclude that every $w \in \Sigma^{*}$ is unambiguous.
- In particular, every PBT t is a concatenation of 1 string, and therefore must be unambiguous as a term.
- Recall that the set of binary trees is generated from a base tree - by juncture:
if t_{0}, t_{1} are binary trees then so is

- Let $P(x)$ be a property that makes sense for any binary tree t.
- If we can show that
- Base: $P(\bullet)$; and
- Step: If both $P\left(t_{0}\right)$ and $P\left(t_{1}\right)$ then $P(t)$ for the juncture t above of t_{0} and t_{1} then $P(t)$ is true for all binary trees t.

Example: Odd size of binary trees

- Can a binary tree have an even number of nodes?

Example: Odd size of binary trees

- Every binary tree has an odd number of nodes.

Example: Odd size of binary trees

- Every binary tree has an odd number of nodes.
- Let $P(t)$ be the property
' t has an odd number of nodes"

Example: Odd size of binary trees

- Every binary tree has an odd number of nodes.
- Let $P(t)$ be the property
' t has an odd number of nodes"
Induction on trees:
- Basis: $P(\bullet)$ (since 1 is odd)

Example: Odd size of binary trees

- Every binary tree has an odd number of nodes.
- Let $P(t)$ be the property
' t has an odd number of nodes"
Induction on trees:
- Basis: $P(\bullet)$ (since 1 is odd)
- Step: Suppose t_{0}, t_{1} are trees of odd sizes n_{0} and n_{1}. Let t be obtained from t_{0} and t_{1}. then the size of t is $n_{0}+n_{1}+1$ which is again odd.

Example: Odd size of binary trees

- Every binary tree has an odd number of nodes.
- Let $P(t)$ be the property
' t has an odd number of nodes"
Induction on trees:
- Basis: $P(\bullet)$ (since 1 is odd)
- Step: Suppose t_{0}, t_{1} are trees of odd sizes n_{0} and n_{1}. Let t be obtained from t_{0} and t_{1}. then the size of t is $n_{0}+n_{1}+1$ which is again odd.
- By induction on binary tree we conclude that $P(t)$ for all binary trees t.

The mother of all inductions

- The Induction principle applies to all inductively generated sets.
- But induction on \mathbb{N} is the one usually invoked. Why?

The mother of all inductions

- The Induction principle applies to all inductively generated sets.
- But induction on \mathbb{N} is the one usually invoked. Why?
- Take generated set $\mathbb{G}, P(x)$ a property of $x \in \mathbb{G}$.
- Obtain induction over $x \in \mathbb{G}$ for property $P(x)$ as induction over $n \in \mathbb{N}$ for the property: $P(n)$ is true for all $x \in \mathbb{G}$ generated in $\leqslant n$ steps

The mother of all inductions

- The Induction principle applies to all inductively generated sets.
- But induction on \mathbb{N} is the one usually invoked. Why?
- Take generated set $\mathbb{G}, P(x)$ a property of $x \in \mathbb{G}$.
- Obtain induction over $x \in \mathbb{G}$ for property $P(x)$
as induction over $n \in \mathbb{N}$ for the property:

$$
P(n) \text { is true for all } x \in \mathbb{G} \text { generated in } \leqslant n \text { steps }
$$

- Note that \mathbb{N} is the simplest infinite generated set: one initial object, one generative rule, involving one premise!

