1. (12 points) Recall:

Definition 6.1. Let \(f, g : \mathbb{N} \to \mathbb{R}^+ \). We say that \(f \) is of order \(g \), written \(f(n) \in O(g(n)) \),
if there exist \(N \in \mathbb{N} \) and \(C \in \mathbb{R} \) such that for all \(n \geq N \), \(f(n) \leq C \cdot g(n) \).

(a) Find witnesses \(N \) and \(C \) that show \(7n + 5 \in O(n) \).

\[
\begin{align*}
\{ & 7n \leq 7n \quad \text{if } n \geq 1, \\
& 5 \leq n \quad \text{if } n \geq 5 \\
& 7n + 5 \leq 8n \quad \text{if } n \geq 5 \}
\end{align*}
\]

\(N = 5 \)

\(C = 8 \)

(b) Find witnesses \(N \) and \(C \) that show \(4n^2 + 3n + 1 \in O(n^2) \).

\[
\begin{align*}
\{ & 4n^2 \leq 4n^2 \quad \text{if } n \geq 1, \\
& 3n \leq n^2 \quad \text{if } n \geq 3 \\
& 1 \leq n^2 \quad \text{if } n \geq 1 \\
& 4n^2 + 2n + 1 \leq 4n^2 \quad \text{if } n \geq 3 \}
\end{align*}
\]

\(N = 3 \)

\(C = 4 \)

(c) Prove: If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \) then \(f_1(n) \times f_2(n) \in O(g_1(n) \times g_2(n)) \).

- Since \(f_1(n) \in O(g_1(n)) \) there exist \(N_1 \) and \(C_1 \) such that for all \(n \geq N_1 \), \(f_1(n) \leq C_1 \cdot g_1(n) \).
- Since \(f_2(n) \in O(g_2(n)) \) there exist \(N_2 \) and \(C_2 \) such that for all \(n \geq N_2 \), \(f_2(n) \leq C_2 \cdot g_2(n) \).
- All quantities are positive, so we can multiply inequalities to get \(f_1(n) \times f_2(n) \leq C_1C_2 \cdot g_1(n) \times g_2(n) \) for all \(n \geq N_1, N_2 \).
- Thus, \(f_1f_2 \in O(g_1g_2) \) with witnesses \(N = \max(N_1, N_2) \) and \(C = C_1C_2 \).
2. (12 points) Analysis of recursive “divide and conquer” algorithms may yield recursive performance estimates like T, to the right. To show that $T(n) \in O(n \log n)$ it is easier to restrict n to be a power of two:

Prove: For all $n \in \mathbb{N}$, $T(2^n) = 2^n(a + bn)$.

(BASE CASE) $T(2^0) = T(1) = a = 2^0 \cdot (a + 0 \cdot b)$

(INDUCTION STEP) Assume $T(2^k) = 2^k(a + bk)$. Then

$$T(2^{k+1}) = 2 \left[T\left(\frac{2^{k+1}}{2} \right) \right] + 2^{k+1}b$$

$$= 2 \left[T(2^k) \right] + 2^{k+1}b$$

$$\overset{IH}{=} 2 \left[2^k(a + bk) \right] + 2^{k+1}b$$

$$= 2 \left[2^k a + 2^k bk \right] + 2 \cdot 2^k b$$

$$= 2 \left[2^k a + 2^k bk + 2^k b \right]$$

$$= 2^{k+1}(a + b(k + 1))$$

as needed. This completes the induction. \[\square \]
3. (10 points) Recall that a substitution, \(F[U_1, \ldots, U_n] \) denotes the sentence obtained by simultaneously replacing all occurrences of variables \(v_i \) by the corresponding words \(U_i \) in formula \(F \).

For \(F \equiv x + (y - z) + wx \), write the results of the following substitutions:

(a) \(F[a, b][x, y] \) \(\equiv \) \((a + (b - z)) + wa\)

(b) \(F[b][q] \) \(\equiv \) \((x + (y - z)) + wx\)

(c) \(F[y, b][x, y] \) \(\equiv \) \((y + (b - z)) + wy\)

(d) \(F[y][b][x, y] \) \(\equiv \) \((b + (b - z)) + wb\)

(e) \(F[y-w][x][y-z][w] \) \(\equiv \) \((y - (y - z)) + (y - z) + (y - z)(y - w)\)

4. (10 points) Let \(A \) be the set of alphabetic characters, \(A = \{a, b, \ldots, z\} \) and let \(# \) and \$ be two operation symbols. Define a infix language in which

(a) \$ takes precedence over \#,

(b) \$ associates to the right, and

(c) \# associates to the left.

For instance, \(a \$ b \$ c # d # e \$ f \$ g \) would be parsed as

You may—but are not required to—use Backus-Naur notation (BNF).

\[
\begin{align*}
F \in (A \cup \{\$\})^+ \\
&1. \quad A \subseteq F \\
&2. \quad x \in A \land v \in F \Rightarrow x \$ v \in F \\
&3. \quad \text{nothing else}
\end{align*}
\]

\[
\begin{align*}
E \in (F \cup \{\#\})^+ \\
&1. \quad F \subseteq E \\
&2. \quad u \in E \land v \in F \Rightarrow u \# v \in F \\
&3. \quad \text{nothing else}
\end{align*}
\]
5. (16 points) The language \(L \) and functions \(I, A, R \) and \(T \), defined below, are the same as in Section 3.6.

\[
L \subseteq \{a, b, \bullet\}^+ \\
\begin{array}{l}
1. \quad \bullet \in L \\
2a. \quad u \in L \Rightarrow au \in L \\
2b. \quad u \in L \Rightarrow bu \in L \\
3. \quad \text{nothing else}
\end{array}
\]

\[
I: L \rightarrow L \\
\begin{array}{l}
1. \quad I(\bullet) = \bullet \\
2a. \quad I(au) = bI(u) \\
2b. \quad I(bu) = aI(u)
\end{array}
\]

\[
R: L \rightarrow L \\
\begin{array}{l}
1. \quad R(\bullet) = \bullet \\
2a. \quad R(au) = A(R(u), a\bullet) \\
2b. \quad R(bu) = A(R(u), b\bullet)
\end{array}
\]

\[
A: L^2 \rightarrow L \\
\begin{array}{l}
1. \quad A(\bullet, v) = v \\
2a. \quad A(bu, v) = bA(u, v) \\
2b. \quad A(au, v) = aA(u, v)
\end{array}
\]

\[
T: L^2 \rightarrow L \\
\begin{array}{l}
1. \quad T(\bullet, v) = v \\
2a. \quad T(au, v) = T(u, av) \\
2b. \quad T(bu, v) = T(u, bv)
\end{array}
\]

(a) Indicate which of the following are true:

\[
\begin{array}{c|c|c|c}
i) & T & \bullet \in L & F \\
ii) & F & a \in L & F \\
iii) & T & A(R(ba\bullet), a\bullet) = A(A(R(\bullet), b\bullet), a\bullet) & F \\
vii) & T & I(\psi) = \bullet & F \\
viii) & T & I(u) = u \begin{bmatrix} a \ b \\ b \ a \end{bmatrix} & F \\
\end{array}
\]

(b) Use structural induction to prove: For all \(u \in L \), \(A(u, \bullet) = u \).

BASE CASE. \(A(\bullet, \bullet) \stackrel{A.1}{=} \bullet \).

INDUCTION: Assume \(IH \equiv A(u, \bullet) = u \).

\[
A(au, \bullet) \stackrel{A.2a}{=} a \ A(u, \bullet) \stackrel{IH}{=} au
\]

Similarly, for \(bu \),

\[
A(bu, \bullet) \stackrel{A.2b}{=} b \ A(u, \bullet) \stackrel{IH}{=} bu
\]
6. (20 points) This question has four parts on this and the next page.

The language Tree, defined below, is a symbolic representation of binary tree structures.

$$\text{Tree} \subseteq \{N, L, (,)\}^+$$

1. $L \in \text{Tree}$
2. if $t_1, t_2 \in \text{Tree}$ then $(N^*t_1^*t_2^*) \in \text{Tree}$
3. nothing else

(a) Indicate which of these sentences are words in the language Tree?

(i) Y^*L
(ii) $Y^*N^*L^*L$
(iii) $Y^*N^*(N^*L^*L^*)^*L$
(iv) $N^*(L)$
(v) $N^*(N^*N^*L)$
(vii) $N^*(N^*(N^*L^*L^*)^*(N^*L^*))^*$

(b) The size of any word is be number of characters it contains. Fill in the missing information to define a recursive function $\text{size}: \text{Tree} \rightarrow \mathbb{N}$ that gives the size of any word $t \in \text{Tree}$.

1. $\text{size}(L) = 1$
2. $\text{size}(N^*t_1^*t_2^*) = 3 + \text{size}(t_1) + \text{size}(t_2)$

Full credit if you entered 1 instead of 3 above.

(c) The depth of a tree is defined to be one plus the length of the longest path from its root to a leaf. Define a recursive function $\text{depth}: \text{Tree} \rightarrow \mathbb{N}$ that gives the depth of the tree it represents.

$$\text{depth}(L) = 1$$
$$\text{depth}(N^*t_1^*t_2^*) = 1 + \max(\text{depth}(t_1), \text{depth}(t_2))$$
(d) Prove by induction that the size of a tree is exponential in its depth. That is, for some constant \(C \), and for any \(t \in \text{tree} \), \(\text{size}(t) < C \cdot 2^d \), where \(d = \text{depth}(t) \).

Comment. This is way too tricky to be a test question. Ample credit was given for any reasonable attempt. You had to answer parts (b) and (c) correctly to have much chance at a proof. If \(\text{size}(t) \) were defined to be the number of \(N \) s and \(L \) s, it is pretty easy to prove that \(\text{size}(t) \leq 2^{\text{depth}(t)} - 1 \). The purpose of \(C \) is to account for the parentheses. But the theorem as stated does not support an induction. Instead, one has to prove something stronger:

Lemma. For all \(t \in \text{tree} \), \(\text{size}(t) \leq 3(2^d - 1) \), where \(d = \text{depth}(r) \)

Proof.

Base case. \(\text{size}(L) = 1 \leq 3 \cdot 1 = 3(2^1 - 1) = 3(2^{\text{depth}(L)} - 1) \)

Induction. Let \(t = (N \ t_1 \ t_2) \) and \(s = \text{size}(t) \quad d = \text{depth}(t) = 1 + \max(d_1, d_2) \)
\[
\begin{align*}
 s_1 &= \text{size}(t_1) \quad d_1 = \text{depth}(t_1) \\
 s_2 &= \text{size}(t_2) \quad d_2 = \text{depth}(t_2)
\end{align*}
\]
Assume by induction that
\[
\begin{align*}
 s_1 &\leq 3(2^{d_1} - 1) \\
 s_2 &\leq 3(2^{d_2} - 1)
\end{align*}
\]
Let \(\tilde{d} = \max(d_1, d_2) \). Adding the inequalities above, we get
\[
s_1 + s_2 \leq 3(2^{\tilde{d}} - 1) + 3(2^{\tilde{d}} - 1) = 3(2^{\tilde{d}+1} - 2) = 3(2^{\tilde{d}} - 2)
\]
where \(d = \text{depth}(t) \), as defined above. Hence,
\[
\begin{align*}
 \text{size}(t) &= 3 + s_1 + s_2 \\
 &\leq 3 + 3(2^{\tilde{d}} - 2) \quad (\text{It is at this point that we learn } C \text{ must equal } 3) \\
 &= 3 + 3 \cdot 2^{\tilde{d}} - 6 \\
 &= 3 \cdot 2^d - 3 \\
 &= 3(2^d - 1)
\end{align*}
\]
This completes the induction step.

Corollary. For some constant \(C \) and for all \(t \in \text{tree} \), \(\text{size}(t) < C \cdot 2^d \), where \(d = \text{depth}(t) \).

Proof. With \(C = 3 \) and by the Lemma, \(\text{size}(t) \leq 3(2^d - 1) < C \cdot 2^d \).
7. (20 points) The *Theorem on Loop Invariants* from Chapter 5 says that to prove an assertion \textsc{post} holds after the while-loop executes,

\[
\begin{array}{c}
\text{while test do } \{ \text{inv} \} \text{ body} \\
\{ \text{post} \}
\end{array}
\]

it suffices to prove:

\[
\begin{array}{c}
\text{initialization: } \text{pre} \implies \text{inv}. \\
\text{invariance: } \{ \text{inv} \land \text{test} \} \text{ body} \{ \text{inv} \} \\
\text{termination: } \text{inv} \land \neg \text{test} \implies \text{post}.
\end{array}
\]

Use the Theorem on Loop Invariants to prove the program below computes A^B.

\[
\begin{array}{c}
\{ x = A \land y = B \} \\
\begin{array}{c}
\text{begin} \\
z := 1; \\
\text{while } y \neq 0 \text{ do } \{ z \cdot x^y = A^B \} \\
\quad \text{begin} \\
\quad \text{while even?}(y) \text{ do } \{ z \cdot x^y = A^B \land y \neq 0 \} \\
\qquad \text{begin} y := 1/2y; \quad x := x \times x \quad \text{end}; \\
\qquad z := z \times x; \\
\quad y := y - 1 \\
\quad \text{end} \\
\text{end} \\
\{ z = A^B \}
\end{array}
\end{array}
\]

There are two loops in the program, so there are two initialization, invariance and termination arguments.

(INNER LOOP)

initialization. The each time the program reaches the inner loop, the outer loop’s invariant is true, and this, together with the loop test even?(y) is just the inner loop’s invariant.

invariance. If y is even, the inner loop body computes new values, $x' = x^2$, $y' = 1/2y \neq 0$ and $z' = z$. So $z' \cdot x^{y'} = z \cdot (x^2)^{1/2} = z \cdot x^y = A^B$. So the inner invariant is preserved.

termination. When the inner loop terminates, its invariant is true and y is no longer an even number. Hence it is also the case that the outer invariant remains true.

(OUTER LOOP)

initialization. When the program first reaches the outer loop, we have $x = A$, $y = B$ and $z = 1$, so $z \cdot x^y = 1 \cdot A^B = A^B$.

invariance. The outer invariant still holds after the inner loop. The body of the outer loop assigns new values $x' = x$, $y' = y - 1$ and $z' = zx$. Thus, $z' \cdot x^{y'} = z \cdot x^{y-1} = z \cdot x^{(y-1)} = z \cdot x^y = A^B$ and the invariant is preserved.

termination. On termination we still have $z \cdot x^y = A^B$, but $y = 0$, so $x^y = 1$. Therefore the condition $z = A^B$ holds as desired.
8. (12 points) Let A be a set and $R \subseteq A \times A$ a relation. On the left below is an inductive definition of a relation $R^* \subseteq A \times A$. The statements on the right explain what this inductive definition means. They define a sequence of relations, $R_i \subseteq A \times A$, whose union (or limit) is R^*.

1. $R \subseteq R^*$
2. $(a, b), (b, c) \in R^* \Rightarrow (a, c) \in R^*$
3. nothing else

1. $R_0 = R$
2. $R_{k+1} = \bigcup_{i=0}^{\infty} \{(a, c) \mid \exists b \in A: (a, b), (b, c) \in R_k\}$
3. $R^* = \bigcup_{i=0}^{\infty} R_i$

(a) For the relation depicted below-right, what are the sets R_0, R_1, R_2, R_3?

$$R_0 = \{(a, b), (b, d), (b, c), (e, f), (f, e)\}$$

$$R_1 = \{(a, b), (b, d), (b, c), (e, f), (f, e), (a, d), (a, c), (f, f), (e, e)\}$$

$$R_2 = (\text{same as } R_1)$$

$$R_3 = (\text{same as } R_2)$$

(b) The “nothing else” clause means that there are no unnecessary ordered pairs in R^*. **Prove:** If S is any transitive relation that contains R, then $R^* \subseteq S$. **HINT:** use the more primitive definition of $R^* = \bigcup_{i=0}^{\infty} R_i$.

Proposition. For all $n \in \mathbb{N}$, $R_n \subseteq S$.

Proof. The proof is by induction on n. In the base case, it is given that $R_0 \subseteq S$.

(INDUCTION) suppose $R_k \subseteq S$. . . and let (x, y) be any element of R_{k+1} . . . Therefore $R_{k+1} \subseteq A$.

Now let (x, y) be any element of R^*. Then because $R^* = \bigcup R_k$, there must be some k for which $(x, y) \in R_k$. By the proposition, $R_k \subseteq S$, so $(x, y) \in S$. Since (x, y) was arbitrary, we have shown that $R^* \subseteq S$.

\[\square \]
9. (10 points)

(a) Draw an automaton over \(A = \{b, i, p, t, y, o\} \) that accepts the language \{bippity, boppity, boo\}. You may use empty and nondeterministic transitions if you wish.

\[\text{One that works is} \]

(b) Draw an automaton over \(\{0, 1\} \) that accepts a language whose words all start and end with the same two letters, such as 10110 and 000, but not 1001. You may use empty and nondeterministic transitions if you wish.

\[\text{One that works is} \]