Exercise 3.5-1. Draw two distinct $R O B D D$ sor the term

$$
d \oplus e \oplus(a b+a c+b c)
$$

where ' \oplus ' stands for the exclusive-or operation,

$$
x \oplus y=\bar{x} y+x \bar{y}
$$

Solution

Hint. The ROBDDs below are developed from the top down. The 0-branches are labeled with a black dot. The residual expressions within the tree show the result of simplifying the target expression with variable $x=0$ on the \bullet branch and $x=1$ on the \circ branch.

For example, consider the initial target expression $d \oplus e \oplus(a b+a c+b c)$ and suppose we want to reduce it with respect to variable a.

On the \bullet branch, simplify with $a=0$:

$$
d \oplus e \oplus(0 b+0 c+b c)=d \oplus e \oplus b c
$$

On the \circ branch, simplify with $a=1$:

$$
d \oplus e \oplus(1 b+1 c+b c)=d \oplus e \oplus(b+c+b c) \stackrel{*}{=} d \oplus e \oplus(b+c)
$$

The residual expressions are then reduced with respect to the next variable in the ordering.
The ROBDD on the left uses variable ordering $\langle d, e, a, b, c\rangle$; the one on the right uses $\langle b, a, d, e, c\rangle$. In the examples below use the ' \oplus ' identities $0 \oplus x=x \oplus 0=x$ and $1 \oplus x=x \oplus 1=\bar{x}$.

