Example 4.7. For the same party as Example 4.6 how many ways are there to assign guests to seats in such a way that every guy is sitting next to at least one gal, and vice versa.

Solution:
(1) Assign guests to tables as in Example 4.6
(2) Pick a table
(3) Pick gender arrangement for one side from \{MFMF, MFFM, FMFM, FMMF $\}$
(4) Pick gender arrangement for the other side from \{MFMF, MFFM, FMFM, FMMF $\}$

Thus, for each assignment of guests to tables, there are $2 \cdot 4 \cdot 4 \cdot 4!\cdot 4!=18,432$ different ways to assign guest to seats in such a way that each guy is sitting next to at least one gal and vice versa. The final count becomes

$$
18432 \cdot\left[\binom{8}{4}^{2}+2\binom{7}{4}^{2}\right]
$$

