Definition. Let \(f, g : \mathbb{N} \to \mathbb{R}^+ \). We say that \(f(n) \) is of order \(g(n) \), written \(f(n) \in O(g(n)) \), if there exist \(N \in \mathbb{N} \) and \(C \in \mathbb{R} \) such that for all \(n \leq N \), \(f(n) \leq C \cdot g(n) \).

\[
\exists C \in \mathbb{R}, N \in \mathbb{N}: [\forall n \leq N: f(n) \leq C \cdot g(n)]
\]

To show that \(f(n) \in O(g(n)) \), one typically finds appropriate values (existential witnesses) for \(N \) and \(C \).

Example 1. \(2n^2 + 5n + 3 \in O(n^2) \).

Find a dominating value in terms of \(n^2 \) for each term in \(2n^2 + 5n + 3 \).

\[
2n^2 \quad \& \quad 5n \quad \& \quad 3
\]

\[
0 \leq n \quad \& \quad 5 \leq n \quad \& \quad 2 \leq n
\]

\[
\downarrow \quad \downarrow \quad \downarrow
\]

\[
2n^2 \leq 2n^2 \quad 5n \leq n^2 \quad 3 \leq n^2
\]

(a) (b) (c)

To satisfy (a-c), take \(N = 5 \). To satisfy (a+b+c), take \(C = 4 \).

\[
\forall n \geq 5: 2n^2 + 5n + 3 \leq 4n^2
\]

Example 2. \(2^{(n+10)} \in O(2^n) \).

Write down the inequality and “solve” it.

\[
\begin{align*}
2^{(n+10)} & \leq C \cdot 2^n & n \geq N, C > 0 \\
2^{10} \cdot 2^n & \leq C \cdot 2^n & \text{since } 2^{(n+10)} = (2^n)(2^{10}) \\
C \cdot 2^n & \leq C \cdot 2^n & \text{if let } C = 2^{10}
\end{align*}
\]

So this claim is true if \(C > 0 \). Since both sides of this inequality are now the same, the inequality is true for any value of \(n \). We can take \(N = 0 \), then. So:

\[
\forall n \geq 0: 2^{n+10} \leq 1024 \cdot 2^n
\]

That is,

\[
2^{(n+10)} \in O(2^n) \text{ for } C = 2^{10} \text{ and } N = 0
\]
Example 2. \(n^2 \notin O(n) \). Assume \(C \) and \(N \) exist such that, for all \(n \geq N \), \(n^2 \leq C \cdot n \). Since \(0 \leq n \) (considered as a real number), we can divide both sides of the inequation by \(n \) to get \(n \leq C \). However, this inequality does not hold whenever \(n > C \), a contradiction to our assumption. In particular, no such \(C \) exists and, therefore, \(n^2 \notin O(n) \).

\[\square \]

Example 3. \(n(\log_2 n) \notin O(n) \).

Assume \(n(\log_2 n) \in O(n) \) and deduce a contradiction.

Assume \(C \) and \(N \) exist for which

\[
\begin{align*}
n(\log_2 n) & \leq C \cdot n \quad \text{for all } n \geq N \\
\downarrow \\
\log n & \leq C \quad \text{(multiply by } \frac{1}{n}, \ n \geq N \geq 0) \\
n & \leq 2^C \quad \text{(raise both sides to a power of } 2, \ n \geq 0) \\
& \quad \text{for all } n \geq N \ ?!
\end{align*}
\]

The last inequality doesn't hold for arbitrarily large \(n \), so we have reached a contradiction. The original assumption that \(n(\log_2 n) \in O(n) \) must be false, and this is just what we set out to demonstrate.

\textit{Two explain the proof in a more “linear” way, one could write…}

Assume for the purpose of contradiction that \(N \) and \(C \) exist such that, for all \(n \geq N \), \(n(\log_2 n) \leq C \cdot n \). Now consider any \(n \) greater than the larger of \(N \) and \(2^C \). Then since \(\log_2 \) is an increasing function,

\[
n(\log_2 n) > n(\log_2 2^C) = n \cdot C.
\]

This contradicts our assumption, so either \(N \) or \(C \) do not exist. Therefore \(n(\log_2 n) \notin O(n) \).

\[\square \]
Example 4. \(n^2 + 7 \not\in O(3n + 5) \).

Again, prove this by contradiction. *Keep in mind that we are seeking a “big enough \(n \)” to refute the assumption, “For some \(N \) and \(C \), \(n^2 + 7 \leq C \cdot (3n + 5) \).”*

(a) Assume \(n^2 + 7 \in O(3n + 5) \) and let \(N \) and \(C \) be the existential witnesses.

(b) Then for \(n \geq N \), \(n^2 + 7 \leq C(3n + 5) = 3Cn + 5C \).

(c) Subtracting 7 from both sides, \(n^2 \leq 3Cn + 5C − 7 \).

(d) Divide both sides by \(n \) to get \(n \leq 3C + \frac{5C}{n} − \frac{7}{n} \).

(e) If \(n > 5C \) and \(n > 7 \) we can replace both fractions by 1 and still preserve the inequality, \(n \leq 3C + 2 \).

(f) Thus, if we take \(n \) to be the larger of \(N \) and \(3C + 2 \), the inequality cannot hold.

This argument demonstrates by contradiction that \(C \) and \(N \) do not exist, proving the result.

\(\square \)
Proposition. If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \) then \(f(n) \in O(h(n)) \).

Proof: Assume \(N_1 \) and \(C_1 \) are witnesses to \(f(n) \in O(g(n)) \) and \(N_2 \) and \(C_2 \) are witnesses to \(g(n) \in O(h(n)) \). Let \(N_3 \) be the greater of \(N_1 \) and \(N_2 \). For all \(n \geq N_3 \)
\[
f(n) \leq C_1 \cdot (g(n)) \quad (n \geq N_1 \text{ and } f(n) \in O(g(n)))
\]
\[
\leq C_1 \cdot (C_2(n)) \quad (n \geq N_2 \text{ and } g(n) \in O(h(n)))
\]
Thus, for all \(n \geq N_3 \), and for \(C_3 = C_1 \cdot C_2 \), \(f(n) \leq C_3 \cdot h(h) \). That is, \(f(n) \in O(h(n)) \) with witnesses \(N_3 \) and \(C_3 \). □

Exponential Order

[Taken from lecture notes by Danial Leivant, 2005]

Proposition. For all \(n \in \mathbb{N} \), \(n < 2^n \).

Proof: by induction on \(n \in \mathbb{N} \). Base Case: \(0 < 1 = 2^0 \).

Induction: Assume \(k < 2^k \). Then \(k+1 < 2^k + 1 < 2^k + 2^k = 2 \cdot 2^k = 2^{k+1} \). □

Proposition. For all \(n \in \mathbb{N} \), \(n \geq 4 \) implies \(n^2 < 2^n \).

Proof: We proceed by induction. Base Case: \(4^2 \leq 16 = 2^4 \).

Induction: Assume that \(k^2 \leq 2^k \). Then
\[
(x + 1)^2 = x^2 + 2x + 1^H
\]
\[
< 2^k + 2x + 1 \quad \text{I.H.}
\]
\[
< 2^k + 2^k \quad \text{by the Lemma above}
\]
\[
= 2^{k+1}
\]
□

Proposition. For all \(n \geq 3 \), \(n^2 > 2n + 1 \).

Proof: by induction on \(n \geq 3 \). Base Case: \(3^2 = 9 > 2 \cdot 3 + 1 \). Induction:
\[
(x + 1)^2 = x^2 + 2x + 1^H
\]
\[
\equiv (2x + 1) + 2x + 1 \quad \text{I.H., } n \geq 4
\]
\[
= 4x + 2
\]
\[
> 2x + 3 \quad \text{since } x > 1
\]
\[
= 2(x + 1) + 1
\]
□
Corollary. If $C \geq 4$ then for all $n \geq 4$, $C \cdot n < 2^n$.

Discussion. We are going to show that $n^k \in O[2^n]$ provided that n is a power of 2, that is $m = 2^m$. Thus, means we are only “sampling” the functions for values of $n \in \{1, 2, 4, 8, 16, \ldots \}$ to see which dominates the other. That this is good enough is not obvious, but is a consequence of the fact that, considered as functions over \mathbb{R}, they increase “smoothly.”

Proposition. For all $k \geq 4$ there exists an $m \in \mathbb{N}$ such that $2^{2m} > (2^m)^k$.

Proof: Note that the right-hand side, $(2^m)^k = 2^{mk}$. By the Corollary above, since $k \geq 4$, we have $2^m > km$ for all $m \geq k$. Raising 2 to the power of both sides preserves the inequality, yielding $2^{2m} > 2^{km} = (2^m)^k$, as desired. □

Corollary. For every $k \geq 1$ and every $C \in \mathbb{R}$, there exists an $m \in \mathbb{N}$ for which $2^{2m} < C \cdot (2^m)^k$.

Proof: By the Proposition above there is a constant D for which $(2^m)^k < 2^{2m}$ whenever $2^m > D$. Taking m such that 2^m is the greater of C and D we have

$$C \cdot (2^m)^k \leq (2^m)(2^m)^k = (w^m)^{k+1} < 2^{2m}$$

□