
1 Sequential Programs – Sorting

One way to analyze sequential programs in PVS is construct models that rep-
resent those programs as recursive functions. We explore this approach here,
using Bubble Sort as a running example. Sequential sorting entails rearranging
the content of an array “in place.” So we shall also be exploring how to do
that in PVS. Section 1.1 presents with a sorting program and its semi-formal
correctness proof. Section 1.2 discusses how the program is translated to PVS.
Section 1.3 lists a initial PVS formulation of specification, implementation and
correctness.

1.1 Informal Proof of Bubble Sort

Below is a sequential program claimed to perform a bubble sort. Let us first
fix an input array content A and bounds L and U. Since the sorting is done in
place, the input array a is changed in the course of the program. So the initial
value A[L .. U] is just an expression representing the inital ordering of a within
index range [L .. U], where it is implicitly understood that L ≤ U..

{ a[L .. U] = A[L .. U] }
begin
k := U;
while L < k {inv2 ≡?}

begin
j := L;
while j < k {inv1 ≡?}

begin
if a[J] > a[J + 1]

then a[J], a[J + 1] := a[J + 1], a[J]
else skip;

j:= j+1
end;

k := k − 1
end

end
{ sorted?(a[L .. U], A[L .. U]) }

The postcondition consists of two parts,

sorted?(a[L .. U], A[L .. U]) ≡

 permutation?(a[L .. U], A[L .. U])
∧
ordered?(a[L .. U])

Saying that the elements of a[L .. U] just a rearrangement of the elements of
A[L .. U], and in addition, the elements of a[L .. U] are in non-decreasing order.

An explanation of how the program works might read, “The inner loop
moves the largest value in the range a[L .. k] into a[k]. The outer loop then

1

L U

a:

k

Sorted and larger

BEFORE

Not yet sorted

L U

a:

j

SWAP larger right

Not yet sorted

k

Sorted and larger

DURING

. . .

L U

a:

k

Sorted and larger

AFTER

Not yet sorted m

Largest in [L .. K]

Figure 1: Bubble Sort Diagrams

sorts the elements in the range a[k .. U], decrementing k by 1 until it reaches L.
This description is often accompanied by diagrams (Fig. 1), depicting what is
happening “during” the loop, that is, while L < k < U:

1.1.1 Formulation of Invariants

The diagrams are actually expressions of loop invariants; however, as always,
these pictures leave a lot unsaid. The outer loop’s invariant says that a is
partially sorted.

inv†2 ≡ ∀(k ≤ i < U) : a(i) ≤ a(i + 1)

The inner loop’s, invariant says that in addition to inv†2, that the largest value
in a[L .. j] is at index j. Formally,

inv†1 ≡ inv†2 ∧ ∀(L ≤ i < j) : a(i) ≤ a(j + 1)

2

Two support logical analysis, the invariants must “maintain” certain conditions
in order to sustain the permuation? property.

perm(l, u) ≡

(a) ∀(i < l ∨ u < i) : a′(j) = a(j) a’s content outside the “current”

bounds is unchanged.

(b) permutation?(a′[l .. u], a[l .. u]) Content inside “current” bounds is

permuted.

(c) permutation?(a′[L .. U], A[L .. U]) a preserves the content of A.

where a′ denotes the effect of the loop’s body.

Depending on how the proof is done, condition (c) may be subsumed by (a) and
(b). Condition (a), saying the loops have no side effects; and (b), saying initial
content is preserved; are irksome. Such intuitively obvious details are ignored
textbook explanations, of course. However, they are necessary in a formal proof.
So the actual loop invariants will look something like:

inv1 ≡ ∀(L ≤ i < j) : a(i) ≤ a(j + 1) ∧ perm(L, j)
inv2 ≡ inv1 ∧ ∀(k ≤ i < U) : a(i) ≤ a(i + 1) ∧ perm(k, U)

Both inv1 and inv2 are derivable from the post-condition using the method of
replacing a constant by a variable, together with “common knowledge” about
sortedness.

1.2 PVS Formulation

One approach to verifying the sorting algorithm is to formulate and prove the
”informal proof” in Section 1.1 by synthesizing verfication in the logic of program
correctness assertions. The difficulties lie in the manual translation and dealing
with array assignment, which we did not see in the previous homework exercise.

This section centers on the alternative approach of modeling the program
as a system of recursive function. The accompanying PVS source file contains
an intermediate-level formulation of a sequential algorithm for Bubble Sort. I’ve
tried to strike a balance between a naive logical representation and a more
generic one. It may be illuminating to step through some of these proofs while
reading the discussions below.

1.2.1 Order of Results

The resulting sort.pvs file is an artifact of the proof process in which the ac-
cumlated definitions, axioms, lemmas and theorems are listed in dependence
order. In other words, just as in ordinary mathematical discourse, the def-
initions, etc., make up an organized explanation that in no way reflects the
chronological order in which supporting lemmas were introduced to solve sub-
problems arising in the proof process. And, of course, all the mistakes and blind
alleys are not mentioned.

3

1.2.2 Range Restriction and Measure Induction

All of the inductive arguments are based on the size of the array region, that is
the difference u − l between upper and lower bounds of the region. There are
numerous ways to set this up, of course, and the consequences of the set-up can
manifest themselves as unexpected sub-goals or TCCs. In particular, we want
to avoid cases in which the range is negative, that is, the lower bound exceeds
the upper bound.

• A seemingly straightforward approach is to explicitly restrict the range in
the premises of all theorems,

∀l, u : N, l ≤ u⇒ · · ·

Although this can be made to work, it induces distracting proof sub-goals,
and complicates the specification of MEASURE terms in recursive definitions.

• On can use dependent subtyping to restrict the upper bound to be greater
than the lower bound. For example, the inner loop of the program might
be modeled as BS inner loop is defined,

InnerLoop(a, l:nat, u:{i:nat | l <= i}, a):
RECURSIVE ARRAY [nat -> int] = ...

Theorems are likewise parameterized,

FORALL (l:nat): FORALL (u:{i:nat | l <= i}, a)) : · · ·

Not only is this more in the spirit of an ordinary mathematical explana-
tion, but it also discharges the range restrictions as TCCs, most of which
are automatically proven. When it is necessary to invoke the restriction
on u in a proof, it is readily done with typepred.

• See the parameterized subrange type in the Prelude is defined

subrange(l, u): TYPE = {k | l <= k AND k <= u}

includes a built-in theory of induction, but it cannot be used directly in
function calls, nor does it restrict l ≤ k/

• In the PVS source file accompanying this tutorial, record type used:

RNG: TYPE = [# l:nat, u:{i:nat | l <= i}#]
RNG sz(r: RNG): nat = r‘u - r‘l

It isn’t obvious that this approach is any better than dependent typing,
but it can be made to work.

4

1.2.3 Measure Induction

The measure-induct+ command is used for doing induction over terms, rather
than single variables. In the case of Bubble Sort, those terms express the size
of the range over which a function is operating. In the accompanying PVS file
induction is invoked with

(measure-induct+ "r‘u-r‘l" ("r"))

where r is a variable of type RNG.1

The measure-induct principle takes the form of a stong induction, so no
subgoal for the base case is generated. Nevertheless, the proof will inevitably
compel base case(s), so it is usually a good idea to discharge it immediately.

1 (measure-induct+ "r‘u-r‘l" ("r")) invoke induction, introducing
skolem constant x!1 of type RNG

2 (case "x!1‘u = x!’1") discharge the base case.

2.1 . . . direct proof . . . typically does not use the induc-
tion hypothesis

2.2 (skolem f "R") Induction case, l 6= u.
...
(inst i.h. tl tu) Suitable instantiation of the in-

duction hypothesis
...

1.2.4 Algorithm Models

PVS file sort.pvs uses standard techniques for translating sequential programs
to their models as recursive functions. Each loop is developed as an iterative
(tail-recursive) function. The program in Section 1.1 translates to

BS_inner_loop(a, r): RECURSIVE ARRAY [nat -> int] =
IF r‘l = r‘u
THEN a
ELSE IF a(r‘l) > a(r‘l + 1)

THEN BS_inner_loop(swap(a, r‘l, r‘l+1), (# l:= r‘l + 1, u:=r‘u #))
ELSE BS_inner_loop(a, (# l:= r‘l + 1, u:=r‘u #))

ENDIF
ENDIF
MEASURE RNG_sz(r) by <

BS_outer_loop(a, r): RECURSIVE ARRAY [nat -> int] =
IF r‘u = r‘l
THEN a

1(measure-induct+ "RNG sz(r), ("r")) would work just as well.

5

ELSE BS_outer_loop(BS_inner_loop(a, r), (# l:= r‘l, u := r‘u - 1 #))
ENDIF
MEASURE RNG_sz(r) by <

BSort(a, r): ARRAY [nat -> int] = BS_outer_loop(a, r)

In general, this is not entirely a mechanical translation, but it is straightforward
and could be mechanized.

1.3 A Starting Formulation

sort: THEORY
BEGIN

RNG: TYPE = [# l:nat, u:i:nat | l <= i #]
RNG_sz(r:RNG):nat = r‘u - r‘l

%%%
%%% Reserve some variable names to save having to type them "in line".
%%%

a, b: VAR ARRAY [nat -> int] %
r, s: VAR RNG %
z: VAR int % always used for some item in an array
l, u: VAR nat % always used for lower bound of a range
k, j, i: VAR nat % always used as quantified index within a range

%%%
%%% Specification
%%% A region is sorted if it’s elements are in non-decreasing order
%%% and the result is a simple rearrangement of the original elements.

ordered?(a, r):bool =
forall(j,k:subrange(r‘l, r‘u)): j<=k IMPLIES a(j) <= a(k)

occurrences(z, a, r): RECURSIVE nat =
(IF (a(r‘l) = z) THEN 1 ELSE 0 ENDIF)
+
(IF (r‘l = r‘u)

THEN 0
ELSE occurrences(z, a, (# l:= (r‘l + 1), u:= r‘u #))

ENDIF)
MEASURE r‘u - r‘l

permutation?(a, r, b, s):bool =
forall z: occurrences(z, a, r) = occurrences(z, b, s)

6

sorted?(a, r, b, s): boolean =
ordered?(a, r)
AND
permutation?(a, r, b, s)

%%%%
%%%% PVS model of the sequential BubbleSort program
%%%%

swap(a:[nat->int], j,k:nat): ARRAY[nat -> int] =
a WITH [(j):= a(k), (k):= a(j)]

BS_inner_loop(a, r): RECURSIVE ARRAY [nat -> int] =
IF r‘l = r‘u
THEN a
ELSE IF a(r‘l) > a(r‘l + 1)

THEN BS_inner_loop(swap(a, r‘l, r‘l+1), (# l:= r‘l + 1, u:=r‘u #))
ELSE BS_inner_loop(a, (# l:= r‘l + 1, u:=r‘u #))
ENDIF

ENDIF
MEASURE RNG_sz(r) by <

BS_outer_loop(a, r): RECURSIVE ARRAY [nat -> int] =
IF r‘u = r‘l
THEN a
ELSE BS_outer_loop(BS_inner_loop(a, r), (# l:= r‘l, u := r‘u - 1 #))
ENDIF
MEASURE RNG_sz(r) by <

BSort(a, r): ARRAY [nat -> int] = BS_outer_loop(a, r)

%%%
%%% Correctness
%%%

BSort_sorts: THEOREM
FORALL (a, r): sorted?(BSort(a, r), r, a, r)

END sort

7

1.4 Scale of the Exercise

TCC1

TCC1

TCC2

TCC1

TCC2

RNG_szTCC3

TCC1

TCC2

occur rances

permutat ion?

ordered?

s w a p

BS_inner_loop

BS_outer_loop

swap_prop_1

swap_prop_2

order_prop_1

BS_outer_loop_orders
BS_inner_loop_lemma_1

BS_outer_loop_lemma_2

BS_outer_loop_lemma_1

BS_inner_loop_lemma_3 BS_inner_loop_lemma_2

permutat ion_lemma_2

occur rences

occurrences_prop_1

occurrences_prop_2

The diagram below shows the number of lemmas introduced and their depen-
dences to prove the Ordered? property of BubbleSort. It is included to give
you an idea of the scale of the this proof exercise.

8

