Model checking by explicit state traversal

This example is taken from “Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specification,” by Clarke, Emerson, and Sistla (ACM Transactions on Programming Languages and Systems, 8(2):244–263, April 1986). It is used to illustrate an algorithm showing that

The complexity of checking CTL formula ϕ in model M is

$$O(length(\phi) \times (\#states(M) + \#edges(M)))$$

The algorithm proceeds bottom-up, according to the phrases of ϕ, making one pass for each operator and quantifier. Each pass involves a recursive, depth-first traversal of M whose details depend on the operation or quantifier being evaluated. For example, the procedure for $AF[\phi]$ is:

```plaintext
boolean procedure AF(\phi, s, M)
    begin
        {Each state $s \in M$ in which $\phi$ is true has already been labeled with $\phi$.}
        if marked?(s) then return('AF[\phi]' \in labels(s));
        mark(s, M);
        if $\phi \in labels(s)$ then
            begin
                add-label('AF[\phi]', labels(s));
                return true
            end
        else
            begin
                for each $s' \in children(s)$ do
                    if $\neg AF(\phi, s', M)$ then return false;
                add-label('AF[\phi]', labels(s));
                return true
            end
    end
```

The following diagrams illustrate the evaluation of $AG[T1 \rightarrow AF[C_1]]$ for the mutual exclusion model.
AG[T1 → A F (C1)]
AG[\neg T1 + A F (C1)]
AG[\neg T1 + A F (C1)]
AG[\neg T_1 + A F (C1)]
\[-T_1 + A F (C_1)\]
\(\text{AG}[\neg T_1 + A F(C1)] \)
AG[\neg T1 + AF (C1)]
AG[−T1 + A F (C1)]
AG[−T1 + A F (C1)]
$AG[-T_1 + AF(C1)]$
AG[-T1 + A F (C1)]
AG\[−T1 + A F (C1)\]