Program Synthesis Example 2

Find the quotient z of real numbers $0 \leq x < y \leq 1$ to within tolerance Δ (without using division, of course).

$$\{0 \leq x < y \leq 1\} S \{z \leq x/y < z + \Delta\}$$

Programming strategy:

$$\{0 \leq x < y \leq 1\}$$

begin

make a guess

while \neggood-enough

this is a reasonable guess

do

improve the guess

do

end

$$\{z \leq x/y < z + \Delta\}$$
Technique: Generalize a constant (Δ) to a variable (d).

Introduce a variable d to represent the known accuracy of the current guess.

$$\text{INV} \equiv z \leq x/y < z + d$$

If $d \leq \Delta$ then the postcondition is satisfied, so let $d > \Delta$ be the loop test.

Establish the invariant: Since $0 \leq x < y \leq 1$ initially, we know that $0 < x/y < 1$. Hence, initializing d to 1 and z to 0 assures the invariant.

\[
\begin{align*}
\{0 \leq x < y \leq 1\} \\
\text{begin} \\
z &:= 0; \\
d &:= 1; \\
\text{while } d > \Delta \\
\{z < x/y < z + d\} \\
\text{do} \\
\text{improve } z \text{ and } d \\
\text{end} \\
\{z \leq x/y < z + \Delta\}
\end{align*}
\]
Idea: Let’s try a binary search, that is, reduce d by half each time through the loop. Assuming that $z \leq x/y < z + d$, there are two possibilities:

- If $z + \frac{1}{2}d > x/y$, then $z \leq x/y < z + \frac{1}{2}d$
- otherwise, $z + \frac{1}{2}d \leq x/y < z + d$

Either way, we know the quotient to within $\frac{1}{2}d$, so

\[
\{0 \leq x < y \leq 1\} \\
\text{begin}
\begin{align*}
 z &:= 0; \\
 d &:= 1;
\end{align*}
\text{while } d > \Delta \text{ do}
\begin{align*}
 \{z < x/y < z + d\} \\
 \text{begin}
 \begin{align*}
 \text{if } z + \frac{1}{2}d > x/y \\
 \text{then } &z := z \\
 \text{else } &z := z + \frac{1}{2}d;
 \end{align*}
 \quad d := \frac{1}{2}d
\end{align*}
\text{end}
\{z \leq x/y < z + \Delta\}
Replace the distracting \(z := z \) by \textbf{skip}.

Fix the “cheat” in the \texttt{if}-test. Get rid of the division by multiplying through by \(y \).

\[
\{ 0 \leq x < y \leq 1 \} \\
beg\begin{align*}
& z := 0; \\
& d := 1; \\
& \text{while } d > \Delta \text{ do} \\
& \quad \{ z < x/y < z + d \} \\
& \quad \text{begin} \\
& \quad \quad \text{if } \textcolor{red}{zy + \frac{1}{2}dy > x} \text{ then skip} \\
& \quad \quad \text{else } z := z + \frac{1}{2}d; \\
& \quad \quad d := \frac{1}{2}d \\
& \text{end} \\
\text{end} \\
\end{align*}
\]
\[
\{ z \leq x/y < z + \Delta \}
\]
The test seems too costly.

Technique: strength reduction. Introduce “trailer variables” \(u \) and \(v \) to hold the multiplications, subject to invariants

\[
\begin{align*}
I1: & \quad u = zy \\
I2: & \quad v = \frac{1}{2}dy
\end{align*}
\]

Now we are obligated to maintain these new invariants. Let \(d' \), \(z' \), \(u' \), and \(v' \) denote the “next” values of \(d \), \(z \), \(u \), and \(v \), respectively. Depending on the test,

Case A: \(u + v > x \):

\[
\begin{align*}
d' &= \frac{1}{2}d \\
z' &= z \\
u' &= z' \cdot y = z \cdot y \quad (\text{I1}) = u \\
v' &= \frac{1}{2}(d') \cdot y = \frac{1}{2}dy \quad (\text{I1}) = \frac{1}{2}v
\end{align*}
\]

Case B: \(u + v \leq x \):

\[
\begin{align*}
d' &= \frac{1}{2}d \\
z' &= z + \frac{1}{2}d = z + d' \\
u' &= z' \cdot y = (z + \frac{1}{2}d)y = zy + \frac{1}{2}dy \quad (\text{I1, I2}) = u + v \\
v' &= \frac{1}{2}(d') \cdot y = \frac{1}{2}dy \quad (\text{I2}) = \frac{1}{2}v
\end{align*}
\]
\{0 \leq x < y \leq 1\}

begin
z := 0;
d := 1;
u := 0;
v := \frac{1}{2}y;

while d > \Delta do
\{z < x/y < z + d \land u = zy \land v = \frac{1}{2}dy\}
begin
d := \frac{1}{2}d;
if u + v > x
 then skip
 else begin z := z + d; u := u + v; end;
v := \frac{1}{2}v
end
\end
\{z \leq x/y < z + \Delta\}

This is called *Wensley’s algorithm* [Wensley 58] for real number division, specifically computing the fractional parts of floating point representations.

Since it reduces integer division to addition and divide-by-two, it is a candidate for use in a typical processor, which will have instructions for these operations.
However, this algorithm is not ideally suited for implementation in hardware because addition takes too long ($O(\log n)$ for n-bit operands). Later, we will see a series of optimizations that improve on Wensley’s algorithm that are used in floating point hardware.

\[
\{0 \leq x < y \leq 1\}
\begin{align*}
&\text{begin} \\
&z := 0; \\
d := 1; \\
u := 0; \\
v := \frac{1}{2} y; \\
\text{while } d > \Delta \text{ do} \\
&\{z < x/y < z+d \land u = zy \land v = \frac{1}{2} dy\} \\
&\text{begin} \\
&d := \frac{1}{2} d; \\
&\text{if } u+v > x \\
&\quad \text{then skip} \\
&\quad \text{else begin } z := z+d; u := u+v; \text{end;} \\
&v := \frac{1}{2} v \\
&\text{end} \\
&\text{end} \\
&\{z \leq x/y < z+\Delta\}
\end{align*}
\]