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I

Introduction and Overview

This chapter briefly describes tools and methods used in the P545 Lab Projects.

I.1 ERTS

ERTS is an electic golf car outfitted
for computer control. The logical view
of ERTS’s architecture is typical of sys-
tems of its kind (Fig. 1). Its five logical
levels are:
1. Mechanical. The vehicle and its
moving parts, wheels, axels, gear boxes,
steering mechanism, pedals, motor, and
so forth. Mechanical control behaves
like a standard vehicle. The driver
activates a power switch, steers with
the steering wheel and column, accel-
erates with the throttle pedal, decceler-
ates with the brake pedal, sets the park-
ing brake with a friction lever.

2. Electrical. Under computer control, electro-mechanical actuators perform
the driver’s actions. Actuator position is driven by varying the ampherage
supplied to it. With each actuator there is a sensor measuring the physical
postion of the actuators. Under closed-loop control a controller repeatedly reads
a voltage present in the sensor, computes the difference between the actual and
desired position of the actuator and emits a command to correct this error. The
frequency of this loop depends on the mechanical properties of the actuator.

3. Digital. The next layer of the logical architecture digitizes the sensor read-
ings and actuator commands, so that they can be dealt with by a program
or dedicated digital controller. Hardware ADC/DAC devices convert from/to
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Figure 1: ERTS logical architecture
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continuous analog electronics to/from discrete digital values that conventional
processors can manipulate.

4. Computational. On ERTS, digital control calculations are done with software.
There is an on-board network of compute nodes running this software.

5. Experimental. ERTS mission is to serve as a platform for experimental
research in autonomous robotics. A system deployed on ERTS for performing
research is referred to as “the experiment.” The aim in ERTS development is to
provide an environment for researchers who are not experts in robotic control.
Such an environment is itself a research problem.

I.2 ERTS Design Model

The design model for ERTS development is a system of synchronized, communi-
cating components. The operating system provides a global synchronizing event
called clock. Each component is a cyclic process with the following behavior:

C : cycle[
synchronize;
accept all inputs, I;
S := next(I, S);
emit all outputs from S;

]

The model is similar to that of a clocked-sequential finite-state machine and
is the dominant model for digital hardware design. Variable S represents com-
ponent C’s internal state. In each cycle, C first synchronizes with all components
in the system. At that point, it captures and holds the values present on each
of its input channels. C then updates its local state as a function of its current
inputs and state. Finally, C presents and holds values on all its output channels,
until the next system cycle begins.

There is a potential race condition if two or more components write to the
same output channel. It is the designer’s responsibility to see that this condition
never arises. In any system cycle, the design must assure that exactly one1

component presents output to a given channel.

I.3 Python

Python is a scripting language used for prototyping, software system control,
and applications that involve interaction with the underlying file and operating
systems. A Python program is similar in character to a “shell script” written
in tcsh or bash, in that user-level commands are part of the language. Python
is much more powerful, however, in that it provides for object-oriented style,
symbolic data manipulation, and other features.

1As discussed later, one may in some cases relax this condition to “at most one”
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As we shall see however, any language can be used to develop prototypes
in ERTS. Later in the course, you may wish to transform Python models into
higher performance languages. Conversely, Python my be too detailed a level
of programming for your purposes. With some preparation, You can use much
higher level languages, such as Matlab to develop and explore experimental
models.

I.4 Communication

A novel aspect of the ERTS software environment is its treatment of commu-
nication. All transactions among components and with the vehicle are done in
a uniform way through the file system. ERTS is mounted as a directory in the
global file name space, and components are subdirectories. These file-like enti-
ties are memory mapped, so they act as global variables, but they are accessed
by ordinary file I/O system calls.

In accordance with the design model these communications are synchronized.
The synchronization mechanism is provided by the file system. Uniformity is
supported by a collection of Python classes.

I.4.1 SySeFS or “SyncFS”

SySeFS stands for Synchronous-Sequential File System.2 It is a modified version
of the 9p network file system protocols that originated at Bell Labs. A memory
mapped file-space region file is mounted by each computer in the ERTS network.
Consequently, all file transactions take place in some node’s primary memory
and not on any hard disk. Communication is relatively fast, but some caution is
needed to assure that dynamic memory allocation is bounded. Briefly, SySeFS
works as follows:

• If a transaction involves a target file on another node, SySeFS uses TCP/IP
to transfer data to or from the target.

• All file reads are performed asynchronously, as in a normal file system.

• All file writes are performed synchronously, that is, write calls are deferred
to a synchronization event at which point all pending writes are performed
(in an arbitrary order).

• SySeFS provides a sync call that blocks the caller until a global synchro-
nization event occurs. This event is triggered after all pending writes are
completed.

I.4.2 CartFS

CartFS.py is a framework for writing ERTS components in Python. Its signature
is shown in Figure 2.

2It used to be called SyncFS until we learned that the name has been taken.
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CartFSFile

encapsulates special properties of the files through which ERTS components
communicate. The content of a CartFSFile is presented to Python as an associa-
tion list, or “dictionary.” Values are accessed by key. For instance the compass
component’s output file is specified as

Compass

clock tick integer cycle count
enable boolean boolean compass enabled?
heading degrees real direction relative to magnetic North

It has three values accessed by keys clock, enable and heading.

JSON. Were you to print the compass file the display would look like

{"enable": true, "heading": 137.306060932, "clock": 9979}

This transport string is expressed in JSON format [www.json.org] format, a
simple, human readable, data description language. JSON is supported for many
programming languages, including Python, C, Java, and many others. Using
it as a transport language makes it easy to create systems using components
written in different languages.

Sensor

is is class encapsulating ERTS components. This class manages all the I/O
performed by its instances, which need only provide file names through calls to
add reader and add writer. In essence, these routines connect the components
together. Methods read files and write files perform file operations on all files
that have been “registered” with add reader and add writer

The run method, below, fixes the cyclic behavior of a Sensor:

while 1:
self.wait_for_clock()
self.read_files()
if not self.has_requirements(): continue
self.process()
self.write_files()

Compare this with the component design model in Section I.2. The only differ-
ence is that Sensor.run() checks whether all input files (channels) are present in
the current cycle. Inputs may not be present while the system is starting up,
or may disappear if a component fails.

CartFS Sensors execute synchronously through the mechanism wait for clock().
Once a component is released to perform a cycle, it reads all of its inputs at
once. Then it performs its process function, and finally, writes all its results.

The default process method in class Sensor is empty:

7
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wait_for_clock
write
read
close
__del__
clearraw
setraw
__init__

CartFSFile

process

Sensor

__int__
add_reader
add_mapped_reader
add_writer
read_files
write_files
wait_for_clock
write_once
has_requirements
run

__init__
emit

CartFSLoggingHandler

CartFS classes

Figure 2: CartFS Signature

def process(self):
"""Process the current data and update state."""

pass

Every Sensor instance must provide its own a definition for process(). In all
early assignments, the connection specification is included in a skeleton program.

I.5 ERTS Simulator

ERTS has a simulator, CartSim that is accessed through CartFS in exactly the
same way as on the ERTS vehicle. Figure 3 shows a snapshot of cartsim running
a simulation. The term window to the right is running a navigation component,
and the 3-tab term window to the upper left is running the simulator. The
graphical window at the lower-left is a component called visualizer that displays
the GPS position of the vehicle. Visualizer may be used either in the simulator
or on the vehicle without modification.

Figure 3 illustrates that multiple-component systems run concurrently as
ordinary linux processes, each often in its own terminal window. The term win-
dow at the lower-right shows that one may observe the communication behavior
of the system using basic Linux commands like cat.

I.5.1 VMware

VMware (http://www.vmware.com/ is a virtual machine environment in which
one computer may be used to emulate others. Emulation may be at the level
of the operating system, or the underlying computer hardware, or both. In
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Figure 3: The ERTS simulator
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P545, the lab desktops use VMware run a configuration UbuntuTM identical to
that running on the ERTS vehicle. The simulator and its graphical display are
installed and interact with software components in (almost) exactly the same
way as the physical vehicle.

I.6 Other Tools

I.6.1 Telemetry Visualization

It is important to render test data in a visual form, for both analysis and presen-
tation. In all test-runs, you will record sensor readings, including the GPS posi-
tion of the vehicle. In this way you can plot other readings, such as steering error,
against vehicle position (Fig. ??). You may use any graphical tools you like
to visualize your tests. A popular choice is GnuPlot [http://www.gnuplot.info/]
because it is widely available.

I.6.2 Subversion

Subversion [http://subversion.tigris.org/] (SVN) is a version control system
used as a repository for ERTS software. I also contains homework directories
for each participant. You will receive instructions for using SVN in class.

I.6.3 Doxygen

Doxygen [http://www.stack.nl/ dimitri/doxygen/index.html] is a source-code
documentation system. For projects and other reports, Doxygen generated doc-
umentation is required. You will receive instructions on its use later in the
course.
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II

Project Requirements

The P545 Lab Project is to design, implement, test and demonstrate a navi-
gation component (NAV) or subsystem that steer the ERTS robotic golf cart
along a sequence of lattitude-longitude points on the ERTS test field (Fig. 2.

The vehicle may encounter obstacles along its path and must steer as to
avoid them while staying within the boundaries of the course.

II.1 Design Elements

II.1.1 Waypoints

A waypoint is a positional reference used for navigation. It specifies the coordi-
nates (X, Y ) of point in degrees of lattitude and longitude (a “lat-lon” for short)
and a radius R indicating how close to (X, Y ) is “close enough.”

(X, Y)

R

II.1.2 Courses and Corridors

A list of waypoints defines a two-dimensional course, consisting of a sequence
of segments, or corridors. A corridor is the area that results by “sweeping” a
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waypoint in a straight line to the next waypoint in the course.

1

2,8

3,7

6

5

4

II.1.3 Obstacles
Obstacles may appear at any point
withing the boundaries of a course. For
the basic Lab Project, these obstacles
placed before a course run and are sta-
tionary throughout that run. In order
to simplify detection and avoidance, ob-
stacles are uniform: each is an orange
traffic cone placed atop a five-gallon
bucket.

II.2 Path Planning

NAV components should do more than simply react to instantaneous conditions.
Examples of path planning include:

• Efficient navigation through tight turns. For example, a driver approach-
ing a sharp left turn will “swing” to the right before reaching the turning
point, in order to maximize the turning radius.

• When driving multiple laps through a course, particularly one that in-
cludes fixed obstacles, the vehicle should be able to traverse successive
laps faster and more efficiently.

ERTS has both simulated and actual sensors that detect obstacles at a range of
five to ten meters. They return the obstacle bearing (distance and angle relative
the vehicle heading, or direction of travel) from the sensor, and an estimate of the
obstacle’s width. NAV must determine how to bypass this “negative waypoint”
while remaining inside the current corridor (if possible), and take action to avoid
hitting the obstacle.
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Specification R1 (GPS Navigation)

The vehicle driver shall navigate any course within the confines of the test
field, passing through each waypoint in sequence, and staying within the
the course boundaries defined by the waypoint corridors.

Specification R2 (Obstacle Avoidance)

While traversing a course, the vehicle shall avoid any obstacles it encoun-
ters, while remaining inside the boundaries of the course. In cases that it
is impossible to avoid an obstacle and remain inside the course, the vehicle
should stop.

Specifcation R3 (Path Planning)

On a given course with stationary obstacles, higher evaluations are given
to NAV components that show evidence of Path Planning.

II.3 Project Report

To receive full credit for the P545 Lab Project,

• The software must be demonstrated and evaluated in the field for full
credit. Simulated evidence is not considered.

• The design, implementation, and evidence of functionality must be pre-
sented in a written report, which may be accompanied by an oral presen-
tation.

It is a waste of effort to put off writing a final report until the course is almost
over. This final P545 Lab Project Report should contain a cumulative set of
reports for each of the laboratory assignments. If individual lab reports are
written carefully, it will take less effort to assemble them into a final report.

The primary purpose of the report is explaining the design and implementa-
tion of your solution to requirements listed in this section. It should also include
a record of testing along the way, but, in the end, your report is concerned with
your software as a whole.

II.3.1 Test Plans

Lab assignments provide instructions about what tests to perform, but it is
good practice to write a test plan prior to each field test. Figure 1 shows an
example format for such a test plan.

II.3.2 Test Reports

II.3.3 Final Report
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Test Plan Team: A

Test ID: Lab1-1.1

Date: September 2, 2011

Purpose:Test square0.py and square1.py. Tune

driver[turn P term]... Location:

Conditions:

Team Members Present:

Procedure:

Results:

Field Observations:

Figure 1: A Test Plan
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Figure 2: P545 Test Field with GPS course

Figure 3: Visualizer trace of a simulated GPS follower with obstacle avoidance
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Lab 1

Meet ERTS

Your first laboratory assignment introduces you to the robotic vehicle ERTS, the
laboratory platform for this course. ERTS is a standard electric golf car, modi-
fied for computer control. The primary tools used to develop ERTS navigation
components are used in this first assignment.

1.1 Objectives

You are to tune a Python driver component that navigates a square course
repeatedly (Fig. 1.1).

1. Use the ERTS simulator to tune the value of a constant that contols how
aggressively to correct steering.

2. Perform a field test on ERTS to fine-tune that constant.

3. Record vehicle telemetry, including GPS position and steering error.

4. Plot the vehicle path and compare it to the simulated path.

5. Write a report explaining any discrepancies.

1.2 Design

A standard design model for controllers is a finite state automaton, depicted
in Figure 1.2(a) as a control-flow diagram rendered in algorithmic state ma-
chine (ASM) syntax. Boxes represent control states; diamonds represent state-
transition decisions; and ovals represent transitional actions. The design for the
square driver has two control states.

• In its turn state, driver is negotiating a corner of the square. It continues
to turn until ERTS’s direction of travel, or heading, reaches the desired
compass point, North, East, South or West.

17
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Figure 1.1: The square course

• In its straight state, ERTS is traveling along a side of the square. Driver
remains in this state until ERTS has reached the next turning point.

While in either state, driver steers to correct its true heading relative to the
target heading. The ASM refers to two components of the driver’s local data
state: target-heading is the desired direction of travel; odometer is the cumulative
distance traveled. When driver from turn to straight state, it resets odometer,
and when it goes from straight to turn state it changes it’s target-heading, from
North to East, East to South, etc.

Driver runs concurrently in a system of other components, including compass
that reads a compass sensor, gps that reads a GPS sensor, and vcs the vehicle
control module. Figure 1.2(b) shows the system architecture, that is, how the
components are connected. In every system step each of these components reads
inputs, computes and emits outputs, updates its data state, and decides what
its next control state should be. Conceptually, the components are running in
parallel, but in reality the host operating system is choosing a (possibly) linear
order of exectution.

1.3 Vehicle Status (Sensors)

The components mentioned in the previous section are describe in more detail
below.
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Figure 1.2: Square-driver design
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1.3.1 Compass

The compass component interfaces to a PNI V2XE compass device that mea-
sures the vehicle’s heading, or direction of travel. The heading value is returned
in decimal degrees with 0=north, 90=east, 180=south, and 270=west.

compass

clock tick int cycle count
enable boolean bool compass enabled?
heading degree float direction relative to magnetic North

The SySeFS file interface to compass looks like

{"enable": true, "heading": 137.306060932, "clock": 9979}

1.3.2 Odometer

The Vehicle Control Module (VCS) is the digital interface to the stock sensors
and actuators in the ERTS vehicle. The vcs component has the (partial) sig-
nature shown below. One of its functions counts revolutions of the cart’s motor
to measure distance travelled as a running total of elapsed meters since the cart
was last powered on.

vcs
clock tick int cycle count
distance meters real distance traveled since start-up
speed km/hr real vehicle speed
handpull sw {on, off} bool status of the handpull switch

The SySeFS file interface to vcs looks like

{"handpull sw": true, "distance": 100.85311581, "speed":
2.44885968334, "clock": 3457}

1.3.3 GPS

ERTS’s GPS sensor is a Garmin GPS18 5Hz. It measures absolute global po-
sition along with speed and heading when the vehicle is in motion. For this
assignment, you will be using the position measurement to quantify the perfor-
mance of your driver.

gps
clock tick int cycle count
lat degrees float current lattitude
lon degrees float current longitude
heading degrees float direction relative to true North

The SySeFS file interface to vcs looks like

{"lat": 39.1823418929, "speed": 2.26470957754, "lon":
-86.5219751882, "heading": 81.0308328403, "clock": 188657}
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1.4 Vehicle Command

Square is an instance of the jdriver component, which indirectly controls the
vehicle’s mechanical actuators by writing commands to a predetermined location
at jdriver s. These commands are read by other components, including the
VCS, which translate symbolic commands to voltages governing the actuators.
The jdriver signature is

jdriver

clock tick int cycle count
enable boolean bool computer control enabled
percent throttle percentage float throttle control
percent braking percentage float brake control
turn radius inverse meters float steering control
direction {forward, backward} string direction of travel relative to the vehicle
mode {auto, manual} string vehicle control mode handshake

The SySeFS file interface to jdriver looks like

{"clock": 0, "enable": false, "percent throttle": 0.0,
"percent braking": 0.0, "turn radius inverse": 0.0, "direction":

"forward", "mode": "manual"}

NOTE: Your driver component must produce and write a string of
this form on every cycle

1.4.1 Throttle

For this lab, the throttle control is held at a a fixed value throughout a run of
the course. A value around 60% is a reasonable starting point, but may need
to be adjusted at the field. Ask experimentors that have gone before you what
setting they would recommend.

A fixed throttle value does not result in a constant vehicle speed. Speed
fluctuates as the load on the drive motor changes. For instance when driving
up hill the vehicle slows down if the throttle is held in one position.

The VCS component reads a desired throttle setting from the percent throttle
value in jdriver/jdriver s. In turn, VCS manipulates the voltage supplied
to the vehicle’s drive motor, which determines how much mechanical power is
appied to the wheels.

1.4.2 Steering

You will be using the steering actuator to control the heading of the cart. Steer-
ing is specified as the inverse of turn radius in meters. For example, if you want
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to turn an arc that is 20 m in radius, you set jdriver s[turn radius inverse] to
1
20 = 0.050.

The turn radius is negative for left turns and positive for right turns. Writing
0 commands an effectively infinite turn radius for straight driving.

1.5 Implementation

The square driver is written in Python. For this assignment you are given two,
functionally identical verstions.

square raw.py Is a version that has been stripped down to a minimum so you
can most easily see what is going on.

square sensor.py Is an instance of the CartFS Sensor class, which provides a
general framework for component develop. Sensor manages communica-
tions with other components in the system, including set-up and cycle-by-
cycle interaction.

All components perform their cycles ten times per second. The process routine
in square is this cycle.

NOTE: process is the only portion of code that requires modification.
The two required modifications are:

1. Tune the value of constant steering sensitivity to experimen-
tally improve driving performance.

2. On each cycle, record for later analysis the current vehicle speed,
postion, actual heading and heading error—the difference between
the desired and actual direction of travel.

You will ride in ERTS as you test your driver is running. Write down your
observations. From these, decide how to change the steering constant to improve
performance. Retest and record write down your observations.

1.6 ERTS Simulator

You are encouraged to use the simulator to obtain a reasonable initial estimate
for turn P term, and to make sure your coding changes execute properly. In-
terfacing with the simulator is exactly1 like interfacing with ERTS. To use the
simulator,

1. Sign on to any computer in LH035. Open a term window.

2. Run vmware and select the Linux virtual machine.
1Almost exactly. There may be formatting discrepancies. These will be corrected fixed as

they are found.
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3. Log in to the virtual machine with user ID and password p415user.

4. Create a top-level directory with your CS network user ID as its name.
Keep copies of all your work in this directory so as not to interfere with
other students using the same virtual machine.

5. Check out a working copy of your SVN directory, including your versions
of square raw and square sensor.py.

6. In a separate term window, start cartsim. The simulator has a graphic
display. You will find it in ~/ui/visualizer.py.

7. Run one of your driver components.

NOTE: The ERTS simulator is a development tool. Importantly, it
can be used to determine whether your programs will run properly on
the real ERTS vehicle. The simulator does not contain an accurate
model of vehicle dynamics, nor does it even consider the terrain of the
test field. Thus, simulation can usually “get you close” to a solution—
usually—but do not expect it to predict behavior in the real world.
Solving an assignment in the simulator carries no credit. Credit is given
only for demonstration on the ERTS vehicle itself.

1.7 Lab Report

See the Test Plan on the following page. Your report assumes (does not have
to repeat) the content of design and implementation descriptions given in this
assignment. Later, when you are responsible for design and implementation
documentation should be part of the report.

It should focus on field observations and subsequent telemetry analysis. An
crucial element day-to-day reports are the observations you make in real time
during testing. It is very important that you write these down as they occur,
because you will forget or dismiss them later. It is from these observations, often,
that hypotheses for future testing arise. In both research and development,
maintaining a chronological record of your activities is good practice.

Don’t hesitate to take pictures and video clips, if you have the means. These
can save the effort of later trying to write descriptions, and they help document
the work. However, recordings cannot capture what you are thinking, so write
that down.

1.7.1 Visualization and Analysis of Telemetry

It is important to render test data in a visually meaningful form, for both anal-
ysis and presentation. In all test-runs, record salient sensor readings, including
the GPS position of the vehicle. In this way you can plot other readings against
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vehicle position. You may use any visualization tool you like for these purposes,
but a popular choice is GnuPlot2

A fragment of the telemetry recorder for an ERTS field test is shown below.

#TICK LAT LON DIST RAD ANG ERR

26392 39.182295536 -86.522839268 284.4 1.17 1021.66 82. -0.287 -75.62 0.004

26393 39.182295832 -86.522840568 286.4 1.20 1021.78 82. -0.280 -73.65 0.004

26394 39.182296169 -86.522841884 288.3 1.22 1021.90 82. -0.273 -71.68 0.004

26395 39.182296550 -86.522843214 290.3 1.25 1022.02 82. -0.265 -69.72 0.004

26396 39.182296976 -86.522844555 292.2 1.28 1022.14 82. -0.258 -67.77 0.004

26397 39.182297446 -86.522845906 294.2 1.30 1022.27 82. -0.251 -65.82 0.004

26398 39.182297961 -86.522847263 296.1 1.33 1022.40 82. -0.244 -63.90 0.004

26399 39.182298522 -86.522848625 298.0 1.36 1022.53 82. -0.237 -61.98 0.004

26400 39.182299130 -86.522849988 299.9 1.38 1022.67 82. -0.230 -60.09 0.004

Here is a GnuPlot script that plots steering error (red circles) against position. Its output is
just below.

set title "sq-091026.dat"

set term png

set output ’sq-091026a.png’

set title ’sq-091026 with steering error & angle’

plot ’sq-091026.dat’ using 2:3:(abs($9)/50) with points lt 1 pt 6 ps variable lc rgb "red" title ’error’,\

As you can see, the plot is a clear representation of steering sensitivity. When the target
heading changes at the corners, the error immediately gets large and then smoothly diminishes
with successive steering adjustments. There is not much over-steer or under-steer.

Observation. The telemetry shows substantial precession in the overall vehicle path.
This is likely due to . . . What?

2http://www.gnuplot.info/
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Test Plan Team:

Test ID:

Date:

Purpose: Field Test square raw.py and square sensor.py. Tune nav[’steering sensitivity’]

Location: ERTS Test Field

Conditions:

Team Members Present:

Procedure:

1. Copy the square raw.py and square sensor.py programs onto a portable flash drive.

2. On the ERTS host computer, create a directory at top level named with your login ID
or team ID. Load and run the square *.py drivers on ERTS at the P545 test field.

3. Record telemetry data, including GPS position, speed, and steering error.

4. Tune value of nav[’steering sensitivity’] to improve steering feel and qualitative
performance.

Results:

• Number of test runs

• Location and names of telemetry files

• Final value of nav[’steering sensitivity’]

• . . .

Field Observations:
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Lab 2

Basic GPS Following

Let’s get started on implementing the Lab Project (Ch. II) In the square driver, you designed
a heading controller that adjusts the turn radius of the steering subsystem on each clock cycle
to minimize the difference between the current compass heading and the desired heading. In
this lab you will use the same controller to follow a course defined by list of points in the
Earth coordinate system, lattitude and longitude.

Where in Lab 1, steering corrections are based on four fixed headings, 0deg, 90deg,
180deg, and 270deg, for this assignment your component is given a list of GPS positions
P = (Plat, Plon) called lat-lons for brevity. Once the heading is correctly oriented to a point,
the steering controller holds this course until ERTS is “close enough” to P . Once it is close
enough, ERTS is steered toward the next lat-lon in the list.

2.1 Assignment Overview

Design a GPS driver that follows GPS course as depicted in Figure (3.2). Your driver is given
a list of waypoint specifications (See Sec. 2.3, below).

course = [[1,39.181917,-86.5221208333,1.5,3.0],\

[2,39.1818975,-86.521724,1.5,3.0],\

[3,39.182143,-86.5217033333,1.5,3.0],\

[4,39.182199,-86.5220985,1.5,3.0],\

[5,39.1819156667,-86.522309,1.5,3.0],\

[6,39.1819645,-86.522398,1.5,3.0],\

[7,39.1820415,-86.5223095,1.5,3.0],\

[8,39.1821313333,-86.5223926667,1.5,3.0],\

[9,39.1822116667,-86.522302,1.5,3.0]]

The objective is to traverse the course determined by this list and analyze the path ERTS
takes. When the cart reaches the end of the list, start again at the beginning and continue as
before until the safety driver overrides computer control and stops the vehicle.

2.2 What to turn in

Feel free to work in groups. In fact, it is encouraged. Feel free to share your observations with
others on the test field and ask them to share theirs’ with you. We’re all doing this together.

• Devise a way to plot the waypoints and corridors along with telemetry. The vehicle
path is meaningless without this frame of reference.
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• Design, develop and test a GPS-follower component that navigates through course.
You may (and should) use the same steering-control function that was given in Lab 1.

• Write a an implementation document describing your solution.

• Perform a field test of your GPS follower, that traverses course three times. Record
and plot positional data. With a pencil, add to the plot your estimate of an optimal
course.

• Write a concise summary of testing that was performed including field observations
and results. Discuss why your driver’s path differs from the optimal path.

• Post the results to the SVN under class/fall10/your-id/lab/2/.

•

Suggestions.

• As you begin testing your driver, shorten the course to two or three waypoints, in order
to conserve time for other teams. Use the full course only when you are confident in
the correctness of the code.

• As in Lab 1, use a fixed throttle setting that makes the average speed of around
3 m/s. A throttle percentage of around 60% is a good starting point. Once you
have completed the assignment, feel free to explore manipulating the throttle, say, to
maintain a constant speed.

• Clip the turning radius at 2.5 meters (inverse turning radius ≤ 0.4). Once you have
completed the assignment, feel free to manipulate (within reason) the turning range.

2.3 Waypoints
A waypoint is a positional reference used for navigation. The waypoint format and information
is based on the specification for the 2005 DARPA Grand Challenge “Race Across the Desert”
[1].

1,39.200100,−86.500000,1.5,4

lattitude (deg)

sequence number

LOB, radius (m)

speed (m/s)

longitude (deg)

1.
5 

m

39.200200  N

86.500000  W

There are five information components.

1. Sequence number, a positive integer that uniquely identifies the waypoint. Multiple
waypoints with the same positional information will have different sequence numbers.

2. Latitude, a numeral with 7 decimal places in the range [−90, 90] representing degrees
of latitude.

3. Longitude, a numeral with 7 decimal places in the range [−180, 180] representing degrees
of longitude.

4. Lateral Boundary Offset (LBO), a number with representing the radius in meters of a
circle centered at the given lat/lon. The LOB specifies how near the vehicle must be
in order to be “close enough.”
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Figure 2.1: Simple GPS follower control

5. Speed limit, a number specifying the maximum speed in meters per second allowed
between this waypoint and the next.

6. A lateral boundary offset, or LOB, defined to a circle centered on the lat/lon whose
radius,

2.4 Design
??

The square driver was designed as a two-state control automaton (Fig. ??). At any time
ERTS was either turning or driving straight, and the criteria for changing state was different.
The GPS follower has only one state (Fig. 2.1). At all times it is trying to reach the target
waypoint. When it does reach the target waypoint, it simply selects a new target.

2.4.1 Heading
The architecture of the GPS-following system is the same as that of the square driver (Fig.
??). However, both the GPS component and the Compass component provide a heading value.
One important difference is that the GPS heading is only accurate when the vehicle is in motion,
while the Compass is always accurate. Even though the GPS is wrong at the beginning of a
run, it is worthwhile to use it instead of the Compass.

2.5 Angle and Distance to a Waypoint
In the design of your GPS driver, you will need to take into account the bearing (angle,
or azimuth) and distance to the target waypoint. The test field is small, compared to the
circumference of the earth, and one may perform this computation using plane geometry.
However, there are a couple of potential problems in performing the calculation.

1. Latitude and longitude are measured in degrees, but the vehicle provides elapsed dis-
tance in terms of meters.

2. The conversion from degrees of latitude to meters is fixed. There are approximately
111,122 meters per degree. However, the conversion from degrees of longitude to meters
depends on the latitude. Our test field is located at approximately 86 degrees West,
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39 degrees North. At 39 degrees North each degree of longitude corresponds to about
86,358 meters.

3. Of course, the surface of the Earth is not flat (Right?). For large distances, planar
geometry is inaccurate.

The distance-azumith calculation is developed according to the current vehicle position, (x, y),
and the next-waypoint position, (u, v). Planar distance isq

(u− x)2 + (v − y)2

and the bearing is

η = arctan

„
u− x

v − y

«

(u, v)

η

β

(x, y)

Fortunately, Python provides a module, geopy [2] that performs sufficiently accurate calcu-
lations for “geocoding.” You may make use geopy to estimate distance and bearing, or you
may challenge yourself to design the calculations yourself (Sec. ??.Starting with geopy is
recommended for this assignment:

from geopy import distance

current_latlon = (39.181903,-86.522041)

waypoint_latlon = (39.182169,-86.522007)

meters_to_target = distance.distance(current_latlon,waypoint_latlon).kilometers * 1000

heading_to_target = distance.distance(current_latlon,waypoint_latlon).forward_azimuth

2.6 References
[1] DARPA, DARPA Grand Challenge 2005. Route Data Definition File. Aug Report

August 3, 2005.

[2] Goggle. geopy: A Geocoding Toolbox for Python. Getting Started guide. Updated July
2, 2010.
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Test Plan Team:

Test ID:

Date:

Purpose: Field test a basic GPS follower. Location: ERTS Test Field

Conditions:

Team Members Present:

Procedure:

1. Load and execute the driver on ERTS.

2. Record and save telemetry, including steering error.

3. Tune parameters for steering sensitivity, turn starting point, steering radius, etc.

Results:

Field Observations:
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Lab 3

Path Planning

In the second assignment you developed a driver component capable of passing through an
orderd list of GPS waypoints. The goal was simply to “touch” each waypoint in sequence.
In this assignment, you are to refine your driver to keep with in the course boundaries, as
discussed below. This is an open-ended assignment. There are many ways to approach it and
there is no perfect solution. As you progress in the lab project you will think of many ways
to improve what you have.

3.1 Courses and Corridors

A given list of waypoints defines a two-dimensional course, consisting of a sequence of seg-
ments, or corridors. A corridor is the area that results by “sweeping” a waypoint in a straight
line to the next waypoint in the course. In other words, it is a rectangle whose length is
the distance between two waypoints and whose width is twice the LOB of the first waypoint.
A semi-circle with radius equal to the first waypoint’s LOB is added at both ends of the
rectangle.

Figure 3.1 illustrates the corridors in a course of four waypoints having different LOBs.
The vehicle is traveling in a counter-clockwise direction. A clockwise traversal would result
in different corridors.

Note. In the default test course used in this and the previous assignments, all LOBs are
initially equal

3.2 Staying In The Lines

Figure 3.2 is a screen shot of the ERTS visualizer tracing the path of a point-to-point GPS
follower. It renders positions within the course boundaries in green and postions outside the
boundaries in red. The image shows that the vehicle has difficulties negotiating turns. The
sharper the turn, the more it strays outside corridor boundaries.

To solve this problem, your driver will have to “think ahead.” There are many ways to
do this, so think carefully. Do not expect to solve this problem, or even understand it, in a
few weeks. On the other hand, it is important to improve your driver as a means of better
understanding all aspects of the problem.

For instance, if you have an algorithm for the geometry of path planning, how are its
results conveyed to the vehicle control system? In some approaches, the simple point-to-point
GPS follower isn’t changed at all. Instead, the planning procedure might modify the course!
Figure 3.3 illustrates a new course (in green) charting a more valid path through the original.
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Figure 3.1: A course determined by four waypoints

Figure 3.2: Visualizer trace of a simple GPS follower
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Figure 3.3: A planned path through the original course.

3.3 What to turn in

Use the same course as was given in the previous lab

course = [[1,39.181917,-86.5221208333,1.5,3.0],\

[2,39.1818975,-86.521724,1.5,3.0],\

[3,39.182143,-86.5217033333,1.5,3.0],\

[4,39.182199,-86.5220985,1.5,3.0],\

[5,39.1819156667,-86.522309,1.5,3.0],\

[6,39.1819645,-86.522398,1.5,3.0],\

[7,39.1820415,-86.5223095,1.5,3.0],\

[8,39.1821313333,-86.5223926667,1.5,3.0],\

[9,39.1822116667,-86.522302,1.5,3.0]]

Feel free to work in groups. An easy way to visualize your tests is using screen-shots capturing
the visualizer.py window. As is seen in Figure 3.2, it correctly draws corridors and colors the
cart path trace.

• Design, develop and test a course follower component that navigates through a course

and, perhaps imperfectly, stays inside corridor boundaries.

• Write a design document describing your approach and analyzing test results.

• Perform a field test, recording positional data.

• Post the results to the SVN under class/fall10/your-id/lab/3/.

3.4 Suggestions

3.4.1 Plotting Courses

For extra credit, devise and share with the class a GnuPlot script that plots the boudaries of
a course. This would really be helpful for those of us that use GnuPlot.
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3.4.2 RDDF files

The Python fragment below shows how to read a route definition data file (RDDF) into a list.

This code is extracted from the visualizer source in ~/ui/rddf.py on ERTS, or the VMware

image. You should consider adding this capability to your driver.

def read_rddf(rddf_file=’RDDF’):

rddf_data = None

try:

rddf_fd = open(rddf_file, ’r’)

rddf_data = rddf_fd.readlines()

except IOError:

print "Sorry, could not open", rddf_file

return(None)

# course is a waypoint list

course = []

if rddf_data != None:

for line in rddf_data:

line = line.rstrip()

(index, lat, lon, lbo, speed) = line.split(’,’)

course.append((int(index), float(lat), float(lon), float(lbo), float(speed)))

return course

3.5 Obstacles
In the next assignment you will begin to incorporate obstacle avoidance in your driver. ERTS’s
primary obstacle sensor, is a SICK LMS100 laser range-finding device. It’s graphical user
display is shown in Figure 3.4. One the test field, place three traffic cones in front of the
vehicle at different distances and bearings. Print the raw readings from the laser and save
them on your memory device.

Figure 3.4 shows an example of the readout. The list of values associated with key
"raw laser" represents the range readings from a bearing of −150◦ to +150◦, relative toCheck this
the current heading. The value 64000 denotes no reading. Remaining values are in units of
millimeters.

Study these readings and think about how you would derive obstacle ranges and bearings
from them. The lazer component attempts to do this, returning of list of possible obstacles
with the key "obstacle list". It does this using a simple scan of the raw readings, assuming
that the only obstacles are traffic cones. Obstacle positions are given in GPS coordinates.

3.6 References
[1] DARPA, DARPA Grand Challenge 2005. Route Data Definition File. Aug Report

August 3, 2005.

[2] Goggle. geopy: A Geocoding Toolbox for Python. Getting Started guide. Updated July
2, 2010.

36

http://www.darpa.mil/grandchallenge05/RDDF_Document.pdf
http://code.google.com/p/geopy/wiki/GettingStarted


{"raw_laser":
[ 0.0,

15982, 16055, 16084, 16174, 16227, 16259, 16367, 16473, 16522, 16610, 16681, 16759,

16823, 16918, 16962, 17027, 17143, 17239, 17346, 17451, 17542, 17626, 17752, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 9911, 9884, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 6679, 6675, 6688, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

18980, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000, 64000,

64000, 64000, 64000,

0.0],

"obstacle_list":

[["obs", [39.1819068009, -86.5220214353], 0.25],

["obs", [39.1819277773, -86.5220490907], 0.25]],

"clock":

30705}

Figure 3.4: A reading from the SICK LMS100 laser range-finder. The graphical
display (of a different reading) is shown above.
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Lab 4

Obstacle Avoidance

In this assignment you are to steer ERTS to avoid hitting detected obstacles, remaining within
the course boundaries if possible.

In the last assignment you were asked to record readings from the laser/laser s file to
obtain information about objects in the vehicle path. For this stage of development, the only
kind of object is a traffic cone, which has a simple “signature” in the laser scan. In fact, the
laser handler scans the raw bearing-distance readings and produces a list of obstacles with
the key obstacle list.

{"raw_laser": [ 0.0, 15982, 16055, ... 0.0],

"obstacle_list":

[["obs", [39.1819068009, -86.5220214353], 0.25],

["obs", [39.1819277773, -86.5220490907], 0.25]],

"clock":

30705}

You may use the raw readings if you wish, but it will be easier to use the obstacle list. At
least it will be easier at the start. Each member of obstacle list contains an identifier, lat-lon
coordinates, and an LOB. The LOB is always 0.25.

You already know how to use geopy to find the distance and bearing to a target GPS
position. Now, instead of steering toward the target, you need to steer away from it.

You can modify your path planning solution to account for obstacles. A good (i.e. rec-
ommended) approach is to insert a waypoint next to the obstacle that causes the vehicle to
bypass it. This is depicted in Figure fig:bypass.

Figure 4.2 is the layout of the test course. LOBs have been expanded from previous tests
to all more maneuvering room.
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Figure 4.2: Test course
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Lab 5

Midterm Field Trials

This week you are to schedule a field trial of your GPS follower on the ERTS test field. Submit
the results of your trial(s) and a report describing your /sf GPS driver’s design. Trials are
run as follows:

1. Inform the Test Driver (Caleb) that you would like to run a field trial for evaluation.

2. The Test Driver may give you a new course. Be prepared to load that course into your
driver. Your driver should also be configured to log positional data.

3. Once the vehicle is in position start the visualizer.

4. Load your driver and start execution. Then leave the vehicle.

5. When it is safe to do so, the Test Driver will give control to your driver.

6. the driver it should navigate three laps of the course, then set the throttle to 0% and
the turning radius to 0 and terminate.

7. Capture a screen shot of the visualizer.

Evaluation of a trial run is based on the following:

1. Three laps must be completed, after which the vehicle rolls to a stop.

2. Missing a waypoint is penalized.

3. Traveling outside the course boundary is penalized.

4. Smooth steering is rewarded.

5. Faster lap times are rewarded.

6. Smooth and appropriate speed control is rewarded.
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Appendix A

System Documentation

A.1 Organization of System Documentation

Section level organization of system documentation is given in Figure ??. The remainder of
this section discusses the purpose and content of each section. Generally, each section develops
a successively more concrete view of the target realization. In general, specifics are deferred
to later sections insofar as it makes sense. For instance, the requirements should not prescribe
design decisions; and the design should not prescribe representation details. However, there
are no precise “boundaries” for what is specified where. It depends on the nature of the
component being described. these sections, and they are all describing the same thing at
differing abstraction levels.

A.1.1 Requirements

The Requirements section specifies what the component under design does in terms of its
externally observable behavior. Requirement specifications may include such properties as:

• Functionality, the input-output relations.

• Preconditions or “assumptions,” are conditions for correct use.

1. Requirements. What the system does.

2. Design. How the requirements are satisfied.

3. Implementation. Key representations, algorithms, etc.

4. Coding. Indexed presentation of source code.

5. Testing. Purpose and procedures.

A. Developer Instructions. make procedures, etc.

B. User Instructions. End-user procedures.

Figure A.1: Organization of System Documentation
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• Postconditions or “guarantees,” including not only output values but also such things
as effects on call-by-reference argements, file space, etc.

• Invariants, such as safety and liveness conditions that are preserved by the executing
component.

• Constraints on resources such as time, space, etc.

• Validationvalidation. The requirements may include a collection of specific observable
(i.e. input/output) behaviors to which the delivered realization must comply. These
may be thought of as being provided by the End User (or customer) for determining
minimal satisfactory functionality.

Formal Requirements Specification. In applications where software is subject to
certification, it is necessary to identify and subsequently track critical requirement properties
through all levels of description. The formal requirements statement consists of a numbered
sequence of individual requirement specifications, for instance

Spec. R-1.1 System documentation follows the outline given in Figure A.1.

A.1.2 Design
The Design section explains how the requirements are satisfied. For this reason, it is usually
organized according to component functionality (rather than architecture, as is the case in
the Implementation section).

The design is presented abstractly, and routine representation details are deferred. It
typically includes, for example, graph depictions of data structures or control-flow. Key
algorithms may be presented in abbreviated form (e.g. pseudo-code) the main goal being to
show mathematically how requirements are addressed.

Ideally, the design description gives just enough information for someone with sufficient
programming expertise to develop an equivalent implementation on their own.

Design verificationverification is a comparison of two levels of description (as opposed
to testing the actual realization, see Section A.1.5). In critical applications, it is necessary
to explain how each formal requirement property is satisfied by the design. The means of
verification ranges from demonstration by model simulation to machine-checked mathematical
proof, although in commone practice may be merely a careful, more-or-less rigorous English
explanation.

Spec. D-1.1 A formal design specification statement explains how the system design
satisfies the requirements specification with the same sequence number.

A.1.3 Implementation
The Implementation section presents “key” representation details, including the overall archi-
tecture of the component. It should not include incidental coding details that can be readily
understood by inspection of the source code. Instead, this section gives the “lay of the land,”
that a competent programmer would need to know before delving into the low-level coding
details.

Specific design specification statements should be addressed. This is another level at
which the term “verification” is applicable.

Spec. I-1.1 A formal implementation specification statement explains how the program
or system realizes the properties of the requirements and design specifications having
the same sequence number.

A.1.4 Code
Source code is processed by a code documentation tool. Doxygen1 that generates navigation
indices, such as call graphs. These tools often have comment formatting provisions as well,

1http://www.stack.nl/~dimitri/doxygen/index.html is used in P545 unless it is su-
perceded by an equivalent tool provided by the project development environment.
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Figure A.2: Formal specification threads

allowing source-comments to be integrated logically in the higher-level system documentation.
However, the primary purpose of source-comments to providing local guidance in the

immediate code context. Hence, these comments are generally insufficient for the higher
purpose of the Implementation section.

Spec. C-1.1 In applications subject to certification, there must be references in the
source code to all formal specification statements, including their sequence numbers.

A.1.5 Test
In contrast to validation (Sec. A.1.1) and verification (Sec. A.1.2), testingtesting refers to
execution of the component realization (hardware device, object code, etc.) against a selected
sample of inputs and expected outputs.

The test of interest in this section do not include routine tracing for the purpose of pro-
gramming, but rather, a cumulative suite of fixed tests whose purposes include final validation
against end-user requirements, and regression testing against revisions, diagnoses of failures
in the field, and so forth.

These tests should be automated for repeatability, and anomales in testing must be tracked
and resolved prior to release of a component. This section includes both test specifications
and documentation of repeatable test procedures.

Spec. T-1.1 For each formal specification thread, there must be a battery of tests to
validate that the specification is met. In critical applications, a reporting system is
used to notify and track the resolution of the problem.
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