
CF:ConeFinder Feature Extractor

Version: 0.0.0
Date: November 1, 2010
Purpose: Visual tracking of orange traffic cones for application in real-

time obstacle detection
Status: documentation in progress
Author: Steven D. Johnson

ConeFinder Feature Extractor

Contents

1 Requirements 5

1.1 ConeFinder Feature Extractor . 5
1.1.1 Image Sources . 6
1.1.2 Telemetry . 6

2 Design 8

2.1 Image Processing . 8

3 Implementation 10

3.1 Image Processing. 11
3.2 Thresholding . 11
3.3 Edge Detection . 11
3.4 Segmentation . 11
3.5 Specifications . 11
3.6 Outstanding issues . 12

3.6.1 Errors . 12
3.6.2 To Do . 12

4 Code 13

5 Test 14

5.1 Development Testing . 14
5.1.1 Test D-1 (August 6, 2010) 14
5.1.2 Test D-2 (August 6, 2010) 15

5.2 Regression Testing . 15

CONTENTS 2

A Specification Digest 16

B Developer Instructions 19

C User Instructions 20

TECHNICAL PROFILE 3

Technical Profile

ConeFinder is a vision function that locates orange traffice cones in a video field
of view. It is used in field experimentation involving obstacle avoidance for an
autonomous robotic vehicle.
This implementation uses image-processing primitives from the OpenCV library
[5], but does not employ higher vision functionality from OpenCV.

Acknowledgments

The image processing algorithms used in this project were originally designed
and implemented in Danko Antolovic for his Skeyeball tracking project [1, 2].
They were later re-implemented in Windows by Zack Rhoads and Dean Wyatt
to take advantage of a PGR Firefly video camera [6]. Scott Dial developed a sec-
ond, possibly different algorithm for a CMUcam video device with an on-board
microcontroller. Ivy Want converted Dial’s ConeFinder to use the OpenCV. The
version documented here is based on Wang’s implementation, but incorporates
some aspects of Antolovic’s.

This document was generated using [4].

REFERENCES 4

References

[1] Danko Antolovic. Development of a real-time vision system for an au-
tonomous model airplane. Technical Report 557, Indiana University Com-
puter Science Department, Bloomington, Indiana, October 2002. Masters
Thesis.

[2] Danko D. Antolovic, Bryce Himebaugh, and Steven D. Johnson. Skeyeball:
Real-time vision system for an autonomous model airplane. In Proceedings
of the 22nd Digital Avionics Systems Conference (DASC’03), October 2003.
Indianapolis, Indiana.

[3] Douglas Crockford. Introducing json, 2010.

[4] Steven D. Johnson. System documentation guidelines, 2009. Section 1.

[5] OpenCV User Group. Opencv welcome, July 2010.

[6] Zach Roads and Dean Wyatte. Development of a software-based real-time
computer vision system for autonomous terrestrial navigation, april 2006.
IUCS-CSCI-Y390 project report.

1 REQUIREMENTS 5

1 Requirements

Specification 1.1 All ERTS/vision functions satisfy these general operating
requirements:

1. Continuous operation. The function is capable of operating periodically
over a specified mission time without external intervention. Space con-
sumption and cycle execution time are bounded as a function of image
size.

2. SyncFS mode. For integration with ERTS/SyncFS [?, ?] primary output
is a JSON object or string in JSON format.

3. Dynamic image characteristics. The function is capable of handling dy-
namic changes in image size and format, as necessary to perform regres-
sion testing, and input redirection.

4. Telemetry. The function is capable of displaying, recording, or both, a
visual representation of its operation.

1.1 ConeFinder Feature Extractor

ConeFinder is a segmentation scheme for finding contiguous regions in whose
individual pixels share a common characteristic. The name “cone finder” comes
from the fact that in ERTS field testing, traffic cones are used as synthetic
objects in obstacle avoidance experience. Their shape and bright color make
traffic cones relatively easy to identify. Figure 1 illustrate the features of interest.

Specification 1.2 Extracted feature elements include:

1. Regions: maximal contiguous regions whose pixels satisfiy a given color
criterion.

2. Boundary: the pixels at the edge of a region.

3. Bounding Box: the region’s smallest enclosing rectangle.

4. Weight: (or “mass”), a measure of region size. To be considered signifi-
cant a region’s size muse exceed a specified minimum.

5. Centroid: the feature’s “center of mass.”

The centroid and weight values may be calculated over the entire region or just
its edge. A “fuzzy” region with edge irregularities would seem heavier than
one a smooth region with the same area. On the other hand, features not yet
required, such as the number or configuration of corners, would be based on
edge analysis.
The primary result is a feature list , in the form of a JSON[3] structure (Rqmt.
??(b)) listing as many significant features as are identified.

1 REQUIREMENTS 6

Figure 1: Traffic cone features

Specification 1.3 For reach significant region in an image ConeFinder re-
turns a feature descriptor listing feature elements specified in Requirement 1.2).

For Figure ??, which has just one region, the result might look like

["bounding box":[388, 169, 19, 8], "center":[392, 161], "weight":114]

1.1.1 Image Sources

Conefinder sequentially processes a sequence of images coming either from the
file system or in a live feed from a video source.
The stream of input images may be of varying size and format, within specified
bounds. Image size is most likely to be 640×480 or less, and formats limited to
those accepted by OpenCV primitives.

1.1.2 Telemetry

Like any visual feature extractor, ConeFinder includes options for displaying
and recording its results in visual form, both interactively and in real time.
Figure ?? shows an example of imagery that visualizes the features specified in
Specification 1.2.
Telemetry control requires flexibility for various experimental modes, such as.

1 REQUIREMENTS 7

• Sampling. Capturing individual images under operator control, and record-
ing. the corresponding results.

• Recording. Capturing images periodically at an externally controlled frame
and recording the corresponding results.

Specification 1.4 Visualization modes include

1. Interactive or real-time display in a window.

2. Saving visualized images in a directory or movie file.

2 DESIGN 8

2 Design

Specification 2.1 The implementation satisfies the general operational re-
quirements.

1. Continuous Operation. Dynamically allocated storage—including struc-
tures indirectly allocated through image processing and display libraries
(e.g. file I/O, OpenCV, gtk) is released within the scope in which it was
obtained.

2. SyncFS mode. Section ??.

3. Dynamic image characteristics ConeFinder relies on OpenCV to deal with
dynamic variations in image size and format.

4. Telemetry Section ??.

2.1 Image Processing

Image processing proceeds in four stages, as depicted in Figure 2:

1. A source image is acquired.

2. Color thresholding is used to reduce the source image to monochrome
regions (white in Fig. 2(b)).

3. A second pass over the monochrome image detects region edges.

4. A connected components algorithm is performed on the regions or their
edges1 to extract features as specified in Requirement 1.2.

Feature elements (Rqmt. 1.2) are determined as follows.

Specification 2.2

1. Fix thresholding parameters H (hue), S (saturation), V (value, or inten-
sity) and R (range). Let pixel P have HSV values of 〈h, s, v〉. P satisfies
the thresholding conditions when

|H − h| < R and s ≥ S and v ≥ V

Regions are maximal contiguous areas in an image whose pixels all satisfy
the thresholding condition.

2. A region’s edge is a sub-region whose pixels that have at least on neigh-
boring pixel outside the region.

1Whether regions or edges are preferred, and under what conditions, remains to be deter-
mined.

2 DESIGN 9

(a) Source Image (b) Thresholding

(c) Edge Detection (d) Segmentation

Figure 2: Main processing stages

3. A region’s bounding box is determined by two diagonal corners of the
smallest rectangle that fully encloses the region.

4. A region’s centroid is the point determined by averaging pixels’ x- and
y-coordinates, or those of its edge.

3 IMPLEMENTATION 10

3 Implementation

Figure 3 shows the over-all organization of ConeFinder, whose principle entities
and operation are briefly described below.

• codefinder.c contains the main program entry point.

main() finds images to process, invokes image processing, and performs
display & recording functions.

cf next image() acquires source images and manages internal image struc-
tures, releasing and re-allocating when necessary.

cf find cones() composes the image processing functions and performs feature-
list I/O.

cf done() performs termination clean-up, including finally releasing dy-
namically allocated structures.

src, hsv, thr, edg and dst are private references to OpenCV IplImage struc-
tures used by ConeFinder

• utilities.c

add tag() inserts a tag in a file name string, for instance,

aa/bb/cc.ppm + dd =⇒ aa/bb/cc dd.ppm

• ERTS/vision feature extractors:

threshold.c

threshold() performs thresholding on a color image, reducing it to a
monochrome image.

edge detect.c

edge detect() performs edge detection on a monochrome image, elim-
inating the interiors of foreground regions.

ccomponents.c

cc segment() finds, and returns features of, contiguous regions in a
monochrome image.

cc reset() resets, and reallocates if necessary, local storage used by
cc segment()

copy, E img, S img, B img, C img storage areas used in cc segment()
to perform a connected-components algorithm

3 IMPLEMENTATION 11

ERTS/vision feature extractors

utilities.c

add_tag()

[Ports indicate public entities]

threshold.c

threshold()

edge_detect.c

edge_detect()

cc_segment()
cc_reset()

ccomponents.c

copy, E_img, S_img,
 B_img, C_img

cf_find_cones()

src, hsv, thr, edg, dst
cf_done()

cf_next_img()
main()

conefinder.c

Figure 3: Organization of ConeFinder

3.1 Image Processing.

The conefinder.c module maintains IplImage* references src (source image), hsv
(HSV copy of src for thresholding), thr (threshold immage), edg (edge image)
and dst (destinationm or reference image). Within condfinder.c the find cones()
routine passes these references to the image processing functions, which return
their imagery through them.
Each of the image processing functions has a by-reference IplImage* argument
called ref. When ref is non-null, the procedure highlights it for use in dis-
play telemetry. That is, ref is used to show the accumulated results of image
processing.

3.2 Thresholding

3.3 Edge Detection

3.4 Segmentation

3.5 Specifications

Specification 3.1

1. Continuous operation. See Development Test 5.1.1.

2. SyncFS mode. This requirement is not yet implemented.

3 IMPLEMENTATION 12

3. Dynamic image characteristics. In cf reset() the current source image size
is saved in src sz. Newly acquired image sizes are compared to this size,
and if they differ, IplImage references are released and re-allocated. Simi-
larly, in cc reset(), dynamically allocated working storage in E img, B img,
S img and C img is freed and re-allocated.

4. Telemetry. Examples of telemetry configurations are found in conefinder.c

Specification 3.2

1. Regions: Regions are determined by threshold().

2. Boundary: Boundary edges are determined by edge detect().

3. Bounding Box: Bounding boxes are determined in ccomponents().

4. Weight: Region weights are determined in ccomponents(). Minimum sig-
nificant weight is set by the constant CC MIN WEIGHT.

5. Centroid: The centroid is determined in ccomponents().

Specification 3.3 At present a feature list is issued to stdout from ccompo-
nents() in the form of a JSON string.

Specification 3.4

1. Interactive or real-time display in a window. See conefinder.c or any main()
routine for examples.

2. Saving visualized images in a directory or movie file. Not yet implemented.

3.6 Outstanding issues

3.6.1 Errors

1. Ccomponents() sometimes returns a false feature whose bounding box sur-
rounds chaff at the lower-left of the image.

3.6.2 To Do

1. Change ccomponents() to return, rather than just print, a string or struc-
ture representing the feature list (Spec. 3.3.

4 CODE 13

4 Code

5 TEST 14

5 Test

5.1 Development Testing

5.1.1 Test D-1 (August 6, 2010)

ConeFinder was run contin-
uously for twenty-four hours
on a desktop workstation.
Connected-component seg-
mentation is applied to region
interiors, rather than edges.
Occasionally, an erroneous
bounding box appears, sur-
rounding groups of chaff,
always at the lower-left of the
display (not captured in the
screen shot, right).

Over the 24-hour period, thirteen warning messages were issued indicating cor-
ruption of JPEG data. The presumed causes include the web-cam interface,
and timing errors at the system level.

Corrupt JPEG data: premature end of data segment

Corrupt JPEG data: 16 extraneous bytes before marker 0xd9

Corrupt JPEG data: premature end of data segment

Corrupt JPEG data: premature end of data segment

Corrupt JPEG data: 12 extraneous bytes before marker 0xd9

Corrupt JPEG data: 13 extraneous bytes before marker 0xd9

Corrupt JPEG data: 210 extraneous bytes before marker 0xd9

Corrupt JPEG data: 83 extraneous bytes before marker 0xd9

Corrupt JPEG data: 201 extraneous bytes before marker 0xd9

Corrupt JPEG data: premature end of data segment

Corrupt JPEG data: premature end of data segment

Corrupt JPEG data: 15 extraneous bytes before marker 0xd9

Corrupt JPEG data: premature end of data segment

5 TEST 15

5.1.2 Test D-2 (August 6, 2010)

ConeFinder Connected-
component segmentation is
applied to region edges, rather
than interiors. Bounding boxes
are wrong and an extraneous
bounding box is generated,
as also observed in Test D-
1. These anomolies indicate
problems in the connected-
component implementation

5.2 Regression Testing

No regression tests are specified.

A SPECIFICATION DIGEST 16

A Specification Digest

Requirements
1.1 All ERTS/vision functions satisfy these general operating requirements:

1. Continuous operation. The function is capable of operating peri-
odically over a specified mission time without external interven-
tion. Space consumption and cycle execution time are bounded as
a function of image size.

2. SyncFS mode. For integration with ERTS/SyncFS [?, ?] primary
output is a JSON object or string in JSON format.

3. Dynamic image characteristics. The function is capable of han-
dling dynamic changes in image size and format, as necessary to
perform regression testing, and input redirection.

4. Telemetry. The function is capable of displaying, recording, or
both, a visual representation of its operation.

1.2 Extracted feature elements include:

1. Regions: maximal contiguous regions whose pixels satisfiy a given
color criterion.

2. Boundary: the pixels at the edge of a region.

3. Bounding Box: the region’s smallest enclosing rectangle.

4. Weight: (or “mass”), a measure of region size. To be considered
significant a region’s size muse exceed a specified minimum.

5. Centroid: the feature’s “center of mass.”

1.3 For reach significant region in an image ConeFinder returns a feature
descriptor listing feature elements specified in Requirement 1.2).

1.4 Visualization modes include

1. Interactive or real-time display in a window.

2. Saving visualized images in a directory or movie file.

A SPECIFICATION DIGEST 17

Design
2.1 The implementation satisfies the general operational requirements.

1. Continuous Operation. Dynamically allocated storage—including
structures indirectly allocated through image processing and dis-
play libraries (e.g. file I/O, OpenCV, gtk) is released within the
scope in which it was obtained.

2. SyncFS mode. Section ??.

3. Dynamic image characteristics ConeFinder relies on OpenCV to
deal with dynamic variations in image size and format.

4. Telemetry Section ??.

2.2

1. Fix thresholding parameters H (hue), S (saturation), V (value, or
intensity) and R (range). Let pixel P have HSV values of 〈h, s, v〉.
P satisfies the thresholding conditions when

|H − h| < R and s ≥ S and v ≥ V

Regions are maximal contiguous areas in an image whose pixels
all satisfy the thresholding condition.

2. A region’s edge is a sub-region whose pixels that have at least on
neighboring pixel outside the region.

3. A region’s bounding box is determined by two diagonal corners of
the smallest rectangle that fully encloses the region.

4. A region’s centroid is the point determined by averaging pixels’
x- and y-coordinates, or those of its edge.

A SPECIFICATION DIGEST 18

Implementation
3.1

1. Continuous operation. See Development Test 5.1.1.

2. SyncFS mode. This requirement is not yet implemented.

3. Dynamic image characteristics. In cf reset() the current source
image size is saved in src sz. Newly acquired image sizes are
compared to this size, and if they differ, IplImage references are
released and re-allocated. Similarly, in cc reset(), dynamically al-
located working storage in E img, B img, S img and C img is freed
and re-allocated.

4. Telemetry. Examples of telemetry configurations are found in
conefinder.c

3.2

1. Regions: Regions are determined by threshold().

2. Boundary: Boundary edges are determined by edge detect().

3. Bounding Box: Bounding boxes are determined in ccomponents().

4. Weight: Region weights are determined in ccomponents(). Mini-
mum significant weight is set by the constant CC MIN WEIGHT.

5. Centroid: The centroid is determined in ccomponents().

3.3 At present a feature list is issued to stdout from ccomponents() in the
form of a JSON string.

3.4

1. Interactive or real-time display in a window. See conefinder.c or
any main() routine for examples.

2. Saving visualized images in a directory or movie file. Not yet
implemented.

Code

Test

B DEVELOPER INSTRUCTIONS 19

B Developer Instructions

C USER INSTRUCTIONS 20

C User Instructions

Index

boundary, 5, 12, 16, 18
bounding box, 5, 12, 16, 18

of a region, 9, 17

centroid, 5, 9, 12, 16–18

edge
of a region, 8, 17

ERTS, 5, 16

feature
descriptor, 6, 16
element, 6, 8, 16
significant, 5, 16

feature list, 5

JSON, 5, 16

region, 5, 8, 12, 16–18
significant, 6, 16

thresholding
conditions, 8, 17
parameters, 8, 17

weight, 5, 12, 16, 18

21

