P573 Computer Science

Randall Bramley 1104 Luddy Hall 8:00 – 9:15 AM, Monday & Wednesday

- Suppose *A* is an *n x n* matrix, *x* is an *n x 1* vector
- Want y = A * x (so what are the dimensions of y?)
- Two ways of computing this (actually, there are at least three ways, but you've probably only seen two)
- I'll assume indexing starts at 1, since all linear algebra books do the same (except in signal processing)
- Version 1: compute the dotproduct of row *i* of *A* with the vector *x* to get *y*(*i*)

$$y = A * x$$

	=	-2	1	2	3	*	1
		1	0	-1	5		3
		-3	2	3	0		-3
		-6	5	1	2		2

y(1) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)1 = -2*1 + 1*3 + 2*-3 + 3*2

y(2) = A(2,1)*x(1) + A(2,2)*x(2) + A(2,3)*x(3) + A(2,4)*x(4)14 = 1*1 + 0*3 + -1*-3 + 5*2

y(3) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)-6 = -3*1 + 2*3 + -3*-3 + 0*2

y(4) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)10 = -6*1 + 5*3 + 1*-3 + 2*2

- Leads to a simple algorithm, version dotprod : y(1:n) = 0 // Set y to all zeros for i = 1:n for j = 1:n y(i) = y(i) + A(i, j)*x(j) end for end for
- The above is pseudo-code:
 - -y(1:n) = 0 means set y(1) = 0, y(2) = 0, ..., y(n) = 0- "for i = 1:n" is a loop setting i = 1, 2, ..., n in turn
- We can swap the order of loops above ...

- This represents *y* as a linear combination of the columns of *A*, with coefficients given by *x*
- If columns of *A* are vectors v_1, v_2, v_3, v_4 , the linear comb is $y = x(1)*v_1 + x(2)*v_2 + x(3)*v_3 + x(4)*v_4$
- In picture form

1	
14	
-6	
10	

-2	1	2	3	
1	0	-1	5	
-3	2	3	0	*
-6	5	1	2	

$y = \text{Col 1 of } A^*x(1) + \text{Col 2 of } A^*x(2) + \text{Col 3 of } A^*x(3) + \text{Col 4 of } A^*x(4)$ = A(1:4,1)*x(1) + A(1:4,2)*x(2) + A(1:4,3)*x(3) + A(1:4,4)*x(4)

- So big, fat, hairy deal. Who cares? (*ans: we do*)
- Load/store analysis says the first implementation (*dotprod*) is going to be 1.5 times faster than the second (*daxpy*)
- Now for the magic part of load/store: the same analysis says *some implementation* exists that will be 2 times as fast as the *dotprod* implementation
- Load/store does not say what that magic implementation would consist of, just that it exists
- Call that implementation *dgemv* for arcane reasons that will be explained later
- Big claims made above, and you should not trust Bramley (or anyone) unless that theoretical claim is backed up with actual computational results

- The mysterious third method *(dgemv)* is actually easy to do, based on some simple ideas covered later
- Implemented all three ways of computing matrixvector product in Fortran 2018
- Language does not matter, results hold in C, C++, assembly language, Cobol,
- Ran on a desktop system with Intel i7 core processor
- Then plotted computational rate in Gflops/sec, against the matrix order (*A* is *n x n*, so the matrix order is *n*)
- *n* ranges from 10k to 20k

Results for matrix-vector product

Results for matrix-vector product

- Load/store ratios of performance are not always exact, but do tell which implementation will be faster
- So if it says 1.5 times faster, actual performance may be 1.2 to 2.1 times faster, but will not be less than 1.0
- Results on previous slide shows the predicted ratios are good for this operation

- Caveats:
 - Load/store is for large n; for n = 1 matrix-vector multiply is just a scalar multiply so all three versions are identical
 - Generally, "large *n*" means the data does not fit in cache, but in most cases $n \ge 50$ suffices
 - It's always possible to implement even a simple operation in such a stupid way that it will run abysmally slow
 - Results are for a general matrix A.
 - If *A* is the zero matrix, just set y = 0 (well, duh)
 - If *A* is a Fourier transform, ultrafast methods exist better than any of the three shown
 - If $A = uv^T$ is a rank-1 matrix where u and v are $n \times 1$ vectors, again far faster methods exist that take just 4n flops, not $2n^2$ flops