P573 Computer Science

Randall Bramley
1104 Luddy Hall
8:00 - 9:15 AM, Monday \& Wednesday

Matrix-vector product

- Suppose A is an $n x n$ matrix, x is an $n x l$ vector
- Want $y=A^{*} x$ (so what are the dimensions of y ?)
- Two ways of computing this (actually, there are at least three ways, but you've probably only seen two)
- I'll assume indexing starts at 1 , since all linear algebra books do the same (except in signal processing)
- Version 1: compute the dotproduct of row i of A with the vector x to get $y(i)$

$$
\begin{aligned}
& \mathrm{y}= \\
& \hline \\
& \hline=\begin{array}{|c|c|c|c|}
\hline-2 & 1 & 2 & 3 \\
\hline 1 & 0 & -1 & 5 \\
\hline-3 & 2 & 3 & 0 \\
\hline-6 & 5 & 1 & 2 \\
\hline
\end{array} * \begin{array}{|c|}
\hline 1 \\
\hline 3 \\
\hline-3 \\
\hline 2 \\
\hline
\end{array}
\end{aligned}
$$

| 1 |
| :---: |$=$| -2 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | -1 | 5 |
| -3 | 2 | 3 | 0 |
| -6 | 5 | 1 | 2 |$*$| 1 |
| :---: |
| 3 |
| -3 |
| 2 |

$$
\begin{aligned}
& \mathrm{y}(1)=\mathrm{A}(1,1) * \mathrm{x}(1)+\mathrm{A}(1,2) * \mathrm{x}(2)+\mathrm{A}(1,3) * \mathrm{x}(3)+\mathrm{A}(1,4) * \mathrm{x}(4) \\
& 1=-2 * 1+1 * 3+2 *-3+3 * 2
\end{aligned}
$$

1
14
-3
:---:
1
-3
-6
:---:
3

$$
\left.\begin{array}{rl}
y(2) & =\mathrm{A}(2,1) * \mathrm{x}(1)
\end{array}+\mathrm{A}(2,2)^{*} \mathrm{x}(2)+\mathrm{A}(2,3) * \mathrm{x}(3)+\mathrm{A}(2,4)^{*} \mathrm{x}(4)\right)
$$

1
14
-6
:---:
1
-3
-6
:---:
3

$$
\begin{aligned}
y(3) & =A(1,1) * x(1)+A(1,2) * x(2)+A(1,3) * x(3) \\
-6 & =-3 * 1(1,4) * x(4) \\
-2 * 3+-3 *-3+ & +2 * 2
\end{aligned}
$$

1
14
-6
10
-2
:---:
1
-3
-6
:---:
3
-3

$$
\begin{aligned}
& \mathrm{y}(4)=\mathrm{A}(1,1) * \mathrm{x}(1)+\mathrm{A}(1,2) * \mathrm{x}(2)+\mathrm{A}(1,3) * \mathrm{x}(3)+\mathrm{A}(1,4) * \mathrm{x}(4) \\
& 10=-6 * 1+5^{*} 3+1^{*}-3+2 * 2
\end{aligned}
$$

Matrix-vector product

- Leads to a simple algorithm, version dotprod:
$y(1: n)=0 \quad / /$ Set y to all zeros for $i=1: n$

$$
\begin{aligned}
& \text { for } j=1: n \\
& \quad y(i)=y(i)+A(i, j) * x(j) \\
& \text { end for }
\end{aligned}
$$

end for

- The above is pseudo-code:
$-y(1: n)=0$ means set $y(1)=0, y(2)=0, \ldots, y(n)=0$
- "for $i=1: n$ " is a loop setting $i=1,2, \ldots, n$ in turn
- We can swap the order of loops above ...

Matrix-vector product

- Swapping loops gives version daxpy:

$$
\begin{aligned}
& y(1: n)=0 \text { // set y to be all zeros } \\
& \text { for } j=1: n \\
& \quad \text { for } i=1: n \\
& y(i)=y(i)+A(i, j) * x(j) \\
& \text { end for }
\end{aligned}
$$

end for

- This represents y as a linear combination of the columns of A, with coefficients given by x
- If columns of A are vectors $v_{1}, v_{2}, v_{3}, v_{4}$, the linear comb is $y=x(1) * v_{1}+x(2) * v_{2}+x(3) * v_{3}+x(4) * v_{4}$
- In picture form

1
14
-6
10
-2
:---:
1
-3
-6
:---:
3
-3

$$
\begin{aligned}
\mathrm{y} & =\mathrm{Col} 1 \text { of } \mathrm{A} * \mathrm{x}(1)+\mathrm{Col} 2 \text { of } \mathrm{A} * \mathrm{x}(2)+\mathrm{Col} 3 \text { of } \mathrm{A} * \mathrm{x}(3)+\mathrm{Col} 4 \text { of } \mathrm{A} * \mathrm{x}(4) \\
& =\mathrm{A}(1: 4,1) * \mathrm{x}(1)+\mathrm{A}(1: 4,2)^{*} \mathrm{x}(2)+\mathrm{A}(1: 4,3) * \mathrm{x}(3)+\mathrm{A}(1: 4,4)^{*} \mathrm{x}(4)
\end{aligned}
$$

Matrix-vector product

- So big, fat, hairy deal. Who cares? (ans: we do)
- Load/store analysis says the first implementation (dotprod) is going to be 1.5 times faster than the second (daxpy)
- Now for the magic part of load/store: the same analysis says some implementation exists that will be 2 times as fast as the dotprod implementation
- Load/store does not say what that magic implementation would consist of, just that it exists
- Call that implementation dgemv for arcane reasons that will be explained later
- Big claims made above, and you should not trust Bramley (or anyone) unless that theoretical claim is backed up with actual computational results

Matrix-vector product

- The mysterious third method (dgemv) is actually easy to do, based on some simple ideas covered later
- Implemented all three ways of computing matrixvector product in Fortran 2018
- Language does not matter, results hold in C, C++, assembly language, Cobol,
- Ran on a desktop system with Intel i7 core processor
- Then plotted computational rate in Gflops/sec, against the matrix order (A is $n x n$, so the matrix order is n)
- n ranges from 10 k to 20 k

Results for matrix-vector product

Results for matrix-vector product

Matrix-vector product

- Load/store ratios of performance are not always exact, but do tell which implementation will be faster
- So if it says 1.5 times faster, actual performance may be 1.2 to 2.1 times faster, but will not be less than 1.0
- Results on previous slide shows the predicted ratios are good for this operation

Matrix-vector product

- Caveats:
- Load/store is for large n; for $n=1$ matrix-vector multiply is just a scalar multiply so all three versions are identical
- Generally, "large n " means the data does not fit in cache, but in most cases $n \geq 50$ suffices
- It's always possible to implement even a simple operation in such a stupid way that it will run abysmally slow
- Results are for a general matrix A.
- If A is the zero matrix, just set $y=0$ (well, duh)
- If A is a Fourier transform, ultrafast methods exist better than any of the three shown
- If $A=u v^{T}$ is a rank- 1 matrix where u and v are $n x 1$ vectors, again far faster methods exist that take just $4 n$ flops, not $2 n^{2}$ flops

