
P573 Computer Science

Randall Bramley

1104 Luddy Hall

8:00 – 9:15 AM, Monday & Wednesday

Matrix-vector product

• Suppose A is an n x n matrix, x is an n x 1 vector
• Want y = A*x (so what are the dimensions of y?)
• Two ways of computing this (actually, there are at

least three ways, but you’ve probably only seen two)
• I’ll assume indexing starts at 1, since all linear algebra

books do the same (except in signal processing)
• Version 1: compute the dotproduct of row i of A with

the vector x to get y(i)

21-2 3

-101 5

32-3 0

15-6 2

1

3

-3

2

= *

 y = A * x

1 21-2 3

-101 5

32-3 0

15-6 2

1

3

-3

2

= *

y(1) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
 1 = -2*1 + 1*3 + 2*-3 + 3*2

1

14

21-2 3

-101 5

32-3 0

15-6 2

1

3

-3

2

= *

y(2) = A(2,1)*x(1) + A(2,2)*x(2) + A(2,3)*x(3) + A(2,4)*x(4)
 14 = 1*1 + 0*3 + -1*-3 + 5*2

1

14

-6

21-2 3

-101 5

32-3 0

15-6 2

1

3

-3

2

= *

y(3) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
 -6 = -3*1 + 2*3 + -3*-3 + 0*2

21-2 3

-101 5

32-3 0

15-6 2

1

3

-3

2

= *

y(4) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
 10 = -6*1 + 5*3 + 1*-3 + 2*2

1

14

-6

10

Matrix-vector product

• Leads to a simple algorithm, version dotprod :
 y(1:n) = 0 // Set y to all zeros
 for i = 1:n
 for j = 1:n
 y(i) = y(i) + A(i, j)*x(j)
 end for
 end for
• The above is pseudo-code:

– y(1:n) = 0 means set y(1) = 0, y(2) = 0, …, y(n) = 0
– “for i = 1:n” is a loop setting i = 1, 2, …, n in turn

• We can swap the order of loops above ...

Matrix-vector product

• Swapping loops gives version daxpy :
 y(1:n) = 0 // set y to be all zeros
 for j = 1:n
 for i = 1:n
 y(i) = y(i) + A(i, j)*x(j)
 end for
 end for
• This represents y as a linear combination of the

columns of A, with coefficients given by x
• If columns of A are vectors v

1
, v

2
, v

3
, v

4
, the linear

comb is y = x(1)*v
1
+ x(2)*v

2
+ x(3)*v

3
+ x(4)*v

4

• In picture form

21-2 3

-101 5

32-3 0

15-6 2

1

3

-3

2

= *

1

14

-6

10

2

-1

3

1

1

0

2

5

-2

1

-3

-6

3

5

0

2

1=

1

14

-6

10

* + 3* + -3* + 2*

 y = Col 1 of A*x(1) + Col 2 of A*x(2) + Col 3 of A*x(3) + Col 4 of A*x(4)
 = A(1:4,1)*x(1) + A(1:4,2)*x(2) + A(1:4,3)*x(3) + A(1:4,4)*x(4)

Matrix-vector product

• So big, fat, hairy deal. Who cares? (ans: we do)
• Load/store analysis says the first implementation

(dotprod) is going to be 1.5 times faster than the
second (daxpy)

• Now for the magic part of load/store: the same analysis
says some implementation exists that will be 2 times as
fast as the dotprod implementation

• Load/store does not say what that magic
implementation would consist of, just that it exists

• Call that implementation dgemv for arcane reasons that
will be explained later

• Big claims made above, and you should not trust
Bramley (or anyone) unless that theoretical claim is
backed up with actual computational results

Matrix-vector product

• The mysterious third method (dgemv) is actually easy
to do, based on some simple ideas covered later

• Implemented all three ways of computing matrix-
vector product in Fortran 2018

• Language does not matter, results hold in C, C++,
assembly language, Cobol,

• Ran on a desktop system with Intel i7 core processor
• Then plotted computational rate in Gflops/sec, against

the matrix order (A is n x n, so the matrix order is n)
• n ranges from 10k to 20k

Results for matrix-vector product

Results for matrix-vector product

Matrix-vector product

• Load/store ratios of performance are not always exact,
but do tell which implementation will be faster

• So if it says 1.5 times faster, actual performance may
be 1.2 to 2.1 times faster, but will not be less than 1.0

• Results on previous slide shows the predicted ratios are
good for this operation

Matrix-vector product

• Caveats:
– Load/store is for large n; for n = 1 matrix-vector multiply is

just a scalar multiply so all three versions are identical
– Generally, “large n” means the data does not fit in cache, but

in most cases n ≥ 50 suffices
– It’s always possible to implement even a simple operation in

such a stupid way that it will run abysmally slow
– Results are for a general matrix A.

• If A is the zero matrix, just set y = 0 (well, duh)
• If A is a Fourier transform, ultrafast methods exist better than any of

the three shown
• If A = uvT is a rank-1 matrix where u and v are n x 1 vectors, again far

faster methods exist that take just 4n flops, not 2n2 flops

	mechanics
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

