How to Write a CS Paper: What Your English Teacher Didn’t Cover and Doesn’t Know

Randall Bramley
Indiana University
13 September 2004

Work supported in part by NSF Grants CDA-9601632 and EIA-0202048 and DOE SciDAC Program
Overview

- Getting a topic to cover
- Mechanics of writing a CS research or project paper
- Politics of publication
- Presentation of the work
Finding the Project Topic

• Any unanswered question can turn into a research topic
 – More interesting ones are obviously better bets
 – Even a dull one can lead to surprises
 • Numerical algorithm for solving linear inequalities had the question “what is computational order of your method?” Answer: polynomial time … making it an extraordinary breakthrough
 – Never trust common sense – not yours and certainly not that of others
 • I/O directly to a file is faster than calling the same I/O functions indirectly through a library, of course.
 – Never give or take an answer that can be easily checked with a moment’s coding
 • For any question there is an answer that is simple, direct, and wrong
Developing the Project Topic

- *Serialization* is process of turning an internal programming object into a linear stream of bytes suitable for writing to a file or network connection.
- Java 1.0 claimed to have serialization that took linear time with respect to object size … but testing showed quadratic time.
- Java uses a *hash table* to track what’s been serialized; what happens when a hash table gets full?
Developing the Project Topic

- Don’t confuse theory and reality - but The Gap is a great source for new research problems
 - Wonderful theorem may require new implementation
 - Interesting computational observation may require new theory
- Wilkinson (1946) solved linear system of 16 eqns by hand.
 - Common Sense: for problems of that size, rounding errors would lead to zero digits of accuracy in solution.
 - Observation: it was accurate to next to last digit
 - Led to an entire area of research (backward error analysis)
- Bramley (1989) realized we can solve large linear least squares problems accurately … giving a Ph.D. and ultimately tenure (row projection methods, Stokes problems in CFD, model reduction in constrained optimization)
Possible Systems Topics

- Time all of your computations
 - Where is the time being taken?
 - Why is that part the bottleneck?
 - Can the bottleneck be removed by a better algorithm or implementation?

- Apply a technique from one area to a another area.
 - Consider taking measurement of CPU utilization from a machine every second for x years. Can we apply signal processing statistics to analyze a “signal” that can then be used to predict future CPU utilization?
 - Parallel computing involves partitioning large graphs to get node clusters with few inter-node edges. Can we use those techniques to reorganize files on a hard drive to minimize jumping around the HD?
Paper Writing Mechanics

- Every paper/thesis/research project report has the same *structural* outline
 - A clear statement of the problem
 - A survey of what has been done by others in the field, with an identification of what is lacking
 - A statement of what you have done/contributed that is new and different, and how it solves the problem

- Always start project with an *intellectual* outline:
 - Three major points to make or questions to address or ideas to explore
 - Define tests to validate or explore the points/questions
 - Title, abstract, introduction, conclusions are written *last*
 - The outline and ideas will evolve as the work proceeds!
Writing Mechanics

- Issue not to be underestimated: *what text processing language?*
 - Latex is best in world for *mathematical text, equations*
 - Bibtex works with Latex, gives flexible, great-looking *bibliography* that can be reused for future papers.
 - Latex/bibtex can be used with CVS to track changes, notify others
 - MS Word is more *familiar* to most people
 - MS Word has *change tracking*, valuable for late-stage changes and visual identification of who made them. But format is *binary*, so CVS is useless
 - Both Latex and Word are cranky and difficult for *large documents* (thesis or book). Framemaker is better tool then.
 - Conferences/journals often supply a format, always give requirements for margins, etc. Use those from the start!
Writing Mechanics: General

- Use **top-down, stepwise refinement** method starting from the outline.
- Multiple authors: agree from first on **person, tense, tone**.
- Multiple authors: have one clearly identified **lead author** for final merge, formatting, and submission.
- Never put off **implementations** or testing until last: it *always* will lead to changes in the paper, is *never* predictable.
- **Every claim** in a paper must be backed up in one of two ways:
 - With a citation to previously published working
 - With a proof of the theorem, or adequate testing results, to substantiate the claim.
 - Scale back your claims if necessary to match what was proven
Writing Mechanics: Testing

- State testing conditions well enough to reproduce them
 - Hardware, memory configuration (cache and main), hard drive speed, cpu model, etc. (Look at sysinfo command on Solaris)
 - OS name and version number
 - Language(s) used, compiler name, version, compilation flags
 - Job launch mechanism if relevant
 - Load on machine; shared resource or dedicated machine?
 - File system, hard drive transfer rates, libraries used
- Give statistics: multiple runs with average and standard deviation. Show timings with error bars at +/- one std dev.
- Discard outliers only if you state you’ve done so in the paper
Writing Mechanics: Testing

- Use a standard benchmark if one exists: for compiler optimizations, CPU performance, I/O rates such exist.
- If no standard exists, try to use tests that others have published and used – especially if you beat them. Don’t cherry pick tests.
- If no standard exists, consider proposing your set of tests as a standard benchmark.
- Only create new standards if a need exists – and be ready to give a lively defense for the new benchmarks.
- Provide your code and tests as open source, freely available code and data.
Side Note: **Bramley’s Rules for Committees:**

- Last slide almost violates one of the BRC
- Never go to a committee meeting unless an agenda posted in advance
- Never go to a committee meeting unless the end time is posted
- Never serve on a committee with more than four others
- Never serve on a committee with people who don’t have a direct interest in the success of the committee’s work
- Only serve on committees with a finite lifespan and an absolute deadline for getting the work done
- Never serve on a committee with the words “standards” or “policy” in the title
Bibliography

• Always have a bibliography, it’s how you spread credit/blame
 – Citations are the coin of the realm in academia
• Make sure you have read every paper cited in the bibliography
 – Don’t use a ref from another paper without checking it yourself
• URL’s are convenient, but prefer long-lasting/more stable publications like journals, tech reports, hard copy.
 – Typical phrasing: “Also see URL http://...”
• When an idea is common in the area, try to cite the first person to have published it. Exception: a really good survey paper.
• Some ideas are folk knowledge: no citation needed, e.g. the halting problem.
Bibliography

• Journals and conferences will give their format guidelines
 – Citations numbered and in brackets [3,7]
 – Citations given as author-year parentheses (Springer1980)
 – Citations given as numbered trailing superscripts3,7,8
 – Journal name in italics, article in roman letters … or vice-versa?

• Some people are anal-retentive about bibliographies!
 – Lop off one page from their paper (pp. 36-67) and they’ll have a cow
The Politics of the CS Paper

- Multiple authored papers lead to greatest unsolved problem in Computer Science today: *order of author’s names*.
- As a student, always list your faculty advisor first
 - Especially if they pay your salary
 - A good advisor will change the order to put you first if major portion of ideas and work was your
 - There are bad advisors out there (but not at IU, *of course*.)
- If approx equal contributions made, list names alphabetically
- If someone insists on grabbing more credit than is their due, don’t write future papers with them
 - Corollary: may have to get another advisor
The Politics of the Paper

- Venues for a paper are refereed or not refereed. Also called “peer reviewed” papers.
 - 3-5 reviewers who read paper, give anonymous report to editor
 - There’s bad reviewers out there (but not at IU, of course.)
 - Main unrefereed paper venue: departmental technical reports
- Where do editors get reviewers?
 - From their friends and enemies
 - From the authors listed in your bibliography, especially if you claim to have topped someone with a better method, implementation, etc.
 - Corollary: you can sometimes use bibliography entries to help steer the paper into the hands of friendly souls.
 - Good researchers like being beaten, it improves the area
 - Never get into a pissing match with reviewers; they have the power
The Politics of the Paper

- Most refereed systems and beginning student papers go to conferences.
 - Conferences have a tighter schedule than journals
 - With a journal, multiple iterations between referees and authors possible
 - With a conference, you get one shot, no chance to rebut a reviewer
 - Means you must anticipate possible complaints
- Conference or journal, pick up latest issues or proceedings of it and read for style, topics, emphasis.
- Three directions in general a researcher can go
 - With the herd, validating the existing paradigm
 - Iconoclastic breaking of sacred beliefs
 - Off in a new direction, looking at problems no one else has
 - Guess which one leads to easiest acceptance of a paper
 - Guess which one leads to greatest self-esteem and recognition
The Politics of the Paper

- You can never publish negative results, unless cast as a positive result.
- Papers often have a “future work” section, which consists of the author marking ideas as his own without actually having to pursue them or do any real work.
- LPU’s: least publishable units to maximize number of publications
 - Encouraged by bean counters at companies and labs
 - Encouraged by draconian, inflexible page limit rules of publishers
Presenting Your Paper

• What is the time limit for your talk?
 – 20 minutes, have two main points you want to make
 – 30-50 minutes, have three main points you make
 – Finish five minutes late, everyone hates you
 – Finish five minutes early, everyone loves you
 – Insert extra transparencies or hidden PPT slides so you can fill out extra
time or answer predictable questions
 – Have some slides identified as skippable, if running out of time
 – Put a timing note on bottom/top or hidden on slide so you’ll know
where you should be at that point (“5 min”)
 – Always leave time for questions, it’s rude otherwise
Presenting Your Paper

- Don’t just give the paper, with same graphs, etc.
- Talk is your chance to convey things not allowed in paper
 - Results that were suggestive but not proof of an idea
 - Negative results that referees would not allow
 - A narrative story is more natural for a talk
- Can also give more recent results since paper was written
 - Journals have 1-3 year lag time between submission and publication(!)
 - Conferences typically have 3-12 month lag time
Presenting Your Paper

• The dreaded question period of a talk
 – Genuinely puzzled speakers may find it hard to articulate the question
 – Give an answer, then ask them “does that answer your question?”
 – Often can get valuable references, citations, related ideas from questions
 • An irrelevant question suggests you need to clarify the talk
 – Questioners who really want to give their own lecture
 • Let them run down, smile, and ask “uh, what was your question?”
 – It’s ok to say “I don’t know”, never try to BS your way through
 – It’s ok to say “I’ll find out whether or not we used JIT for those numbers, and send you the answer”. Be sure you do so.
 – Handle even hostile questioners with a smile and good nature – you’ll win far more points than they will ultimately
Presentation of the Paper

- MS Power Point (or Open Office Impress) are now the standard means of presentation. Learn to use them effectively!
- Be prepared for failures! Can you give a decent talk if reduced to a chalkboard? This is a measure of intellectual worth.
- Read O’Reilly book “MS Office Annoyances”, check the website annoyances.org
- Don’t let PowerPoint lead you to the Gettysburg Address syndrome…
Summary

• Topics for a paper are everywhere; start with a question
• Writing the paper
 – Outline and major ideas first
 – Co-develop writing and testing/implementation simultaneously
 – Don’t put off mechanics of formatting, bibliography until end
• Presenting results
 – Use different mechanisms than for paper: less formal
 – Present slightly different results, tell different story, but same conclusion as paper
 – It’s a conversation more than a lecture. You can draw benefit beyond just publicity for yourself.