Algorithms for Frequent Sets on Streams
Ed Robertson, edrbtsn@cs.indiana.edu

• Motivation – Association Rules and Frequent Sets
• Motivation – Data Streams
• Frequent Sets in Streams – Current Status
• Proposed project
• Other projects
Motivation - Association Rules and Frequent Sets

- Example: market basket analysis
 - data from supermarket scanners
 - want to know when sales of products are associated
 - men who buy diapers commonly buy beer

- Example - Amazon recommender
 - people who have purchased [the same set of books you have] also buy · · ·

- Requires discovering frequent sets
 - set of items occurs in at least $x\%$ of input baskets

- Problem is combinatorics
 - many possible sets need to be considered

- Off-line case well considered: \textit{apriori} algorithm prunes sets
Motivation - Data Streams

- Stream model
 - input data flow does not terminate
 - must answer queries about input thus far received

- Example - monitoring network traffic

- Problem is efficiency
 - must keep up with flow
 - no or minimal secondary storage use
 - guaranteed approximations, “time windows” typical work-arounds
Frequent Sets in Streams
Current Status

- Would like frequent sets for past intervals as well as everything up to now
- In pure form, combinatoric problem even worse!
- Existing algorithm:
 - guaranteed approximation
 - past intervals within scaled windows
 - example: last 300 seconds, preceding 10 minutes, 3 preceding quarter hours, preceding days
Frequent Sets in Streams
Proposed Project

- Many more experiments
 - what are reasonable data set characteristics?
- Reimplementation for performance
- Improve algorithms
 - amortized updates
Other Projects

- Extending EER tool for metadata and constraints
 - can graphical metadata model be translated unambiguously to relational schema?
 - can constraints be derived from graphical representations?
 - are graphical models easy for users to understand?
 - can graphical models be implemented with usable operations

- Enterprise-level modeling
 - understanding how modelers build high-level (meta-meta-) models
 - formalizing the same
 - participating in development of international standards for model-based enterprise interoperability