Part III: OUTLINE

- Quaternion Curves: generalize the Frenet Frame
- Quaternion Frame Evolution
- Quaternion Curve and Surface Optimization

What are Frames used For?

- Move objects and object parts in an animated scene.
- Move the camera generating the rendered viewpoint of the scene.
- Attach tubes and textures to thickened lines, oriented textures to surfaces.
- Compare shapes of similar curves.

Motivating Problem: Framing Curves

The (3,5) torus knot.

- Line drawing ≈ useless.
- Tubing based on parallel transport, not periodic.
- Closeup of the non-periodic mismatch.

Motivating Problems: Curves

Closeup of the non-periodic mismatch.
Can’t apply texture.

Motivating Problems: Surfaces

A smooth 3D surface patch: two ways to get bottom frame.

No unique orthonormal frame is derivable from the parameterization.
3D Curves: Frenet and PT Frames

Now give more details of 3D frames: Classic Moving Frame:
\[
\begin{bmatrix}
T'(t) \\
N'(t) \\
B'(t)
\end{bmatrix} = \begin{bmatrix}
0 & k_1(t) & k_2(t) \\
-k_1(t) & 0 & \sigma(t) \\
-k_2(t) - \sigma(t) & 0 & 0
\end{bmatrix} \begin{bmatrix}
T(t) \\
N(t) \\
B(t)
\end{bmatrix}.
\]

Serret-Frenet frame: \(k_2 = 0, k_1 = \kappa(t) \) is the curvature, and \(\sigma(t) = \tau(t) \) is the classical torsion. LOCAL.

Parallel Transport frame (Bishop): \(\sigma = 0 \) to get minimal turning. NON-LOCAL = an INTEGRAL.

3D curve frames, contd

Bishop's Parallel Transport frame is integrated over whole curve, non-local, but no problems on "roof."

Geodesic Reference Frame is the frame found by tilting North Pole of "canonical frame" along a great circle until it points in desired direction (tangent for curves, normal for surfaces).

Sample Curve Tubings and their Frames

Tubings based on Frenet, Geodesic Reference, and Parallel Transport frames. Easily see PT has least "Twist," but lacks periodicity.

3D Frames to Quaternion Frames

- Unit four-vector. Take \(q = (q_0, q_1, q_2, q_3) = (q_0, q) \) to obey constraint \(q \cdot \bar{q} = 1 \).
- Multiplication rule. Let \(q \ast p \) be the quaternion product of two quaternions \(q \) and \(p \), where

\[
\begin{align*}
[q \ast p]_0 &= q_0 p_0 - q_1 p_1 - q_2 p_2 - q_3 p_3 \\
[q \ast p]_1 &= q_0 p_1 + q_1 p_0 + q_2 p_3 - q_3 p_2 \\
[q \ast p]_2 &= q_0 p_2 + q_1 p_3 + q_2 p_0 - q_3 p_1 \\
[q \ast p]_3 &= q_0 p_3 + q_1 p_2 + q_2 p_1 - q_3 p_0
\end{align*}
\]

Quaternion Frame Evolution

Just as in 2D, let columns of $R_3(q)$ be a frame: (T, N, B); this system has nine components.

Derivatives of the i-th column R_i in quaternion coordinates have the form:

$$ R_i = 2W_i \cdot [q(t)] $$

where $i = 1, 2, 3$ and, e.g.,

$$ W_1 = \begin{bmatrix} q_0 & q_1 & -q_2 & -q_3 \\ q_3 & q_2 & q_1 & q_0 \\ -q_2 & q_3 & q_0 & q_1 \end{bmatrix} $$

(rows form mutually orthonormal basis).

Properties of Tait’s quaternion frame equations:

- Antisymmetry $\Rightarrow q(t) \cdot \dot{q}(t) = 0$ as required to keep constant unit radius on 3-sphere.
- Nine equations and six constraints become four equations and one constraint, keeping quaternion on the 3-sphere. \Rightarrow Good for computer implementation.
- Mathematica code implementing this differential equation is provided.

Example of a Quaternion Frame Curve

Left Curve = torus knot tubed with Frenet frame; Right Curve is projection from 4D of (twice around) quaternion Frenet frames.

Minimizing Quaternion Length Solves Periodic Tube

Quaternion space optimization of the non-periodic parallel transport frame of the (3,5) torus knot.

Minimizing Quaternion Length Works

Result of Quaternion space optimization of the (3,5) torus knot frame.

Can also Optimize Quaternion Frames on Patch:

Quaternion frames for (a) Geodesic Ref. (b) One edge Parallel Transport. (c) Random. (d) Minimal area result.

SUMMARY

- Quaternions can represent frames.
- Curve frames \Rightarrow quaternion curves.
- Surface patch frames \Rightarrow quaternion surface patches.
- Minimizing quaternion length or area finds parallel transport “minimal turning” set of frames.