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|: Fundamentals of Quaternions

e Motivation
e 2D Frames: Simple example, complex numbers.

e 3D Frames: Rotations and quaternions.



Il: Visualizing Quaternion Geometry

e The Spherical Projection Trick: Visualizing

unit vectors.
e Quaternion Frames
e Quaternion Curves

e Quaternion Splines



I1l: Quaternion Frames

e Quaternion Curves:. generalize the Frenet Frame
e Quaternion Frame Evolution

e Quaternion Curve and Surface Optimization



IV Clifford Algebras
e Clifford Algebras: Generalize quaternion struc-
ture to N-dimensions

e Reflections and Rotations:  New ways of look-

Ing at rotations

e Pin(N), Spin(N), O(N), and SO(N)
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Part I: OUTLINE

e Motivation
e 2D Frames: Simple example, complex numbers.

e 3D Frames: Rotations and quaternions.



Motivation

e Quaternion methods are now commonplace in

graphics.

e Quaternions are very geometric, but we seldom
attempt to visualize their properties geometri-

cally.

e That’s going to be our job today!



Basic Issues

e Basic fact number 1: Rotation matrices are Co-
ordinate Frame Axes.

e Basic fact number 2: Rotation matrices form
groups, which have geometric properties.
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Task vs Strategy

e Our task: Understand Rotations

e Rotations don’t just act on geometry, rotations
are geometry.

e Our strategy. the geometry should help us
to visualize the properties of rotations.

11



Simple Example: 2D Rotations

e 2D rotations =- geometric origin  for complex numbers.

e Complex numbers are a special subspace of quater-

nions.

e Thus 2D rotations introduce us to quaternions  and their

geometric meaning.
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

Z >

v @ >
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:
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Frame Matrix in 2D

This motion is described at each point (or time) by the matrix:

Ry() = |T N|

cosf —siné
sin@ cosé
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Another 2D Frame

If we did not know about cos?8 + sin?6 = 1, we might

represent the frame differently, e.qg., as:

Ro(A B) —= lA _B] |

B A

with the constraint A2 4+ B2 = 1.
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The Belt Trick:

Is There a Problem?

Demonstration: Rotations “want to be doubled” to get

back where you started.

See: Hart, Francis, and Kauffman.
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Ry (0) =

Half-Angle Transform:

A Fix for the Problem?
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Half-Angle Transform:

A Fix for the Problem?

Or, with ¢ = cos(6/2), b = sin(6/2),
(i.e., A = a? — b2, B = 2ab),
we could parameterize as:

R>(a,b) =

where orthonormality implies

(G,Q L b2)2 — 1

which reduces back to a2 + b2 = 1.
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Half-Angle Transform:

So the pair (a,b) provides an odd double-valued parame-

terization of the frame:

a2 — b2 —2ab

[TN] - 2ab a2 — b2

where (a, b) is precisely the same frame as (—a, —b).
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Frame Evolution in 2D

Examine time-evolution of 2D frame (on our way to 3D): First
In 6(t) coordinates:

cosf —siné

[TN] — sinfé cosé6

Differentiate to find frame equations:

T(t) = +xN

N(t) = —«T,

where k(t) = d@/dt is the curvature .
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Frame Evolution in 2D

Rearrange to make a “vector matrix:”

0 +/<;(t)] [T(t)]

ey
\ —r(t) O N(%)

Rt)




Frame Evolution in  (a,bd):

Using the basis (T, N) we have Four equations with Three

constraints from orthonormality, for One true degree of free-

dom.

Major Simplification occurs in (a, b) coordinates!!

= aa — bb a —b||a
T_Q[ab—l—bd]_z[b a ] b]
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Frame Evolution in (a,b):

But this formula for T is just N, where

S —2ab | a —b || —b
N=e [t =DV

weafi 233

or
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2D Quaternion Frames!

Rearranging terms, both T and N eqns reduce to

a|l 1] 0 —« a
bl o|4k O b

This is the square root of frame equations.




2D Quaternions ...

So one equation in the two “quaternion” variables (a, b) with

the constraint a?+b2 = 1 contains both the frame equations

.
—~ —~

T = +xN

N = —xT
= this Is much better for computer implementation, etc.
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Rotation as Complex Multiplication

Ifwe let (a + ib) = exp (1 0/2) we see that

rotation is complex multiplication!

“*Quaternion Frames” in 2D are just complex numbers, with

Evolution Eqns = derivative of exp (i 6/2)!
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Rotation with no matrices!

This is the miracle:
a+ b = 67;6/2
represents rotations “more nicely” than the matrices R(6).
(o' +ib')(a +ib) = 0F0/2 = A 4B

where If we want the matrix, we write:;

A2 — B2 _2AB

ROVRO) =R +0)=| "7 " 207,
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The Algebra of 2D Rotations

The algebra corresponding to 2D rotations is easy: just com-

plex multiplication!!

(a' + i) (a + ib)

a'a —b'b4+i(a’b+ ab)
(a'a —b'b, a'b+ ab)
(A, B)

112

(a’,b) % (a,b)

112
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The Geometry of 2D Rotations

(a,b) with a2 + b2 = 1 is a point on the unit circle , also
written S1. Rotations are just complex multiplication , and
take you around the unit circle like this:
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The Geometry of 2D Rotations

(a,b) with a2 + b2 = 1 is a point on the unit circle , also
written S1. Rotations are just complex multiplication , and
take you around the unit circle like this:

(&’a-b’b, a’b+ab’ (@, b’)

0+0
2

0/2

(a,b)
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The Geometry of 2D Rotations

(a,b) with a2 + b2 = 1 is a point on the unit circle , also
written S1. Rotations are just complex multiplication , and
take you around the unit circle like this:
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Quaternion Frames

In 3D, repeat our trick: take square root of the frame, but now

use quaternions:

e Write down the 3D frame.
e Write as double-valued quadratic form.

e Rewrite linearly in the new variables.
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The Geometry of 3D Rotations

We begin with a basic fact:

Euler theorem: every 3D frame can be written as a spinning

by 6 about a fixed axis n, the eigenvector of the rotation ma-
trix:

52
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The Geometry of 3D Rotations
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Euler theorem: every 3D frame can be written as a spinning
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52
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Quaternion Frames ...

Matrix giving 3D rotation by 6 about axis n:
R3(6,1n) =
c+ (n1)2(1 —¢) nino(l—c) —snz n3ni(l—-c)+ sny

nino(l —¢) +sn3 c4+ (n2)2(1 —¢) nano(l —c) — sny
nin3(l —c) —snp nonz(l—c)+sn1 c+ (n3)?(1 —c)

where ¢ = cosf, s =sinf,andn-n = 1.
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Quaternion Frame Parameters

To find 6 and axis n, given any rotation matrix or frame M,
we need two steps:

TrM =1+ 2cosé6

= solve for 6.

M- M=
0 —2n3sind +2nosinf
+2n3 sin 6 0 —2n1Sin 6
- —2npsSinfd +2nisind O

= solve for n as long as 8 = 0.
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Quaternions and Rotations

Some set of axes can be chosen as the identity matrix:

y
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Quaternions and Rotations

Any arbitrary set of axes forms the columns of an orthogonal
rotation matrix:

b
a a C
X X X
= a b C
y y y
a b C
Z Z Z
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Quaternions and Rotations

Any arbitrary set of axes forms the columns of an orthogonal
rotation matrix:

b
a aX X CX
= a b C
y y y
a b C
Z Z Z
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Quaternions and Rotations

Any arbitrary set of axes forms the columns of an orthogonal
rotation matrix:

b
aX X CX
a
= a b C
y y y
a b C
Z Z Z
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Quaternions and Rotations

Any arbitrary set of axes forms the columns of an orthogonal
rotation matrix:

b
\

a C
X X X

= a b C
a y Yy oy

a b C
Z Z Z
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Quaternions and Rotations

By Euler’s theorem, that matrix has an eigenvector n, and so
IS representable as a single rotation about n applied to the
identity:

a b C

X X X

= a b C
y y y

a b C

Z Z Z

5>
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Rotations and Quadratic Polynomials

a2 — b2 —2ab 5

Remember R>(0) = oub a2 b2 |

What if we try a 3 x 3 matrix R3 instead of 2 x 27?

qg -+ q% — qg — Q§ 22<J1q% — 2;10(13 . 29193 + 29097
2q192 + 29093 9§ — 97 + 95 — 45 22612613 — 22qocn .
29193 — 29092 29293 + 29091 95 — 91 — 95 T 43

Hint: set ¢gg = ¢g»> = O or any other (¢ %= j) pair to see a
familiar sight!
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Quaternions and Rotations

Why does this matrix parameterize a rotation? Because Columns

of R3(q0, 91, 92, g3) are orthogonal:
col; - col; = 0 for ¢ 7 j

What is LENGTH of 3-vector column?

>, 2, 2, 2\2
col; - col; = (g§ + 91 + 95 + q3)
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Quaternions and Rotations . ..

So if we require| ¢3 + g7 + g5 + ¢5 = 1| orthonormality is

assured and R3(qo, 91, g2, g3) IS a rotation.

This implies ¢ is a point on 3-sphere in 4D

NOTE: ¢ = —q gives same R3().
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Quaternions and Rotations . ..

HOW does ¢ = (g, q) represent rotations?

LOOK at
27

R3(6,1) — R3(q0,491,92,93)

NOTICE: Choosing

6 v
6,n) = (Cos—, nsin—
q(6,0) = (cos _, fisin )

makes the R3 equation an IDENTITY .
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Quaternions and Rotations . ..

WHAT happens if you do TWO rotations?

EXAMINE the action of two rotations

R(¢")R(q) = R(Q)

EXPRESS in quadratic forms in ¢ and LOOK FOR an analog
of complex multiplication:
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Quaternions and Rotations . ..

RESULT: the following multiplication rule
g * ¢ = Q yields exactly the correct 3 x 3 rotation

matrix R(Q):
Qo =1d"*q
Q1=1d"*q
Q2=1q"*q
Q3= 1q*q

w N = O

9090 — 9191 — 9592 — 95393

9091 -
9692 -

- q4q0 -
- g5q0

9093 -

- 593 — 4342
- g591 — 9193

- g590 -

- 4192 — 9591

This i1s Quaternion Multiplication.
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Algebra of Quaternions
= 3D Rotations!

2D rotation matrices are represented

by complex multiplication

3D rotation matrices are represented

by quaternion multiplication
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Algebraic 2D/3D Rotations

Therefore in 3D, the 2D complex multiplication

(a',b) % (a,b) = (a'a — b'b, a'b+ ab’)

IS replaced by 4D quaternion multiplication:

/ _ / / / /
¢ *q = (9090 — 9191 — 9292 — 9393,

4091 -

4692 -

- q190 -

- g5q0

4693 -

- 45q3 — 9542,

- g591 — 4193,

- 4390

/ /
- q192 — ¢2q1)
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Algebra of Quaternions . ..

The is easier to remember by dividing it into the

scalar piece gg and the vector piece q:.

¢ *q = (q0q0 — d - q,

/] —

q04

qod’

q’ X q)
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Quaternions and Rotations

Another miracle: let us generalize the 2D equation
a+ b = €i9/2
How? We set

qg = (g0, 91, 92, 93)

= qo + 191 + Jjg> + kg3
_ (I09/2)

with ¢gg = cos(d/2) and
and I = (i,j, k).

nsin(6/2)
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Quaternions and Rotations ...

Then if we take i? = j2 = k2 = —1, and i x j = k (cyclic),

guaternion multiplication rule is automatic!

= q = qo +1q1 + jgo + kg3 Is the standard representation
for a quaternion, and we can also use 2 x 2 Pauli matrices
in place of (i, j, k) if we want.
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Key to Quaternion Intuition

Fundamental Intuition: We know

go = cos(#/2), q =nsin(8/2)

We also know that any coordinate frame M can be written
as M = R(0,n).

Therefore

q points exactly along the axis we have to rotate

around to go from identity I to M, and the length of

q tells us how much to rotate.
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Summarize Quaternion Properties

e Unit four-vector. Take ¢ = (q0,91,92,93) = (q0,q) tO
obey constraint g - ¢ = 1.

e Multiplication rule. The quaternion product g and p Is

q*p = (qoro — 4 - P, qoP + rod + 4 X P),
or, alternatively,

lg*plo| | 90Po— q1P1 — q2p2 — q3P3 |
q*pl1| _ |g0p1 + q1po + 92p3 — q3D2
q * P> qop2 + 92p0 + q3P1 — q1P3
3

 [q*p. ' qop3 + q3po + q1P2 — q2p1 |
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Quaternion Summary ...

e Rotation Correspondence. The unit guaternions g and

—q correspond to a single 3D rotation Rs3:

qg +q7 — ¢35 — CI§ 22611q% — 2;10613 . 29193 + 29092
2q192 + 29093 9§ — 97 + 95 — 45 22qzq§ — 22610611 ,
29193 — 29092 29293 + 29091 95 — 91 — 95 T 43
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Quaternion Summary . ..

e Rotation Correspondence. Let

= (cos 6 nsin 9)
q_ 27 2 y

with nn a unit 3-vector, n - n = 1. Then R(6,1n) is usual

3D rotation by 6 in the plane L to n.

e Inversion. Any 3 x 3 matrix R can be inverted for g up
to a sign. Carefully treat singularities! Can choose sign,

e.g., by local consistency, to get continuous frames.
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SUMMARY

e Complex numbers represent 2D frames.
e Complex multiplication represents 2D rotation.

e Quaternions represent 3D frames.

e Quaternion multiplication represents 3D rotation.
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