Part II: OUTLINE

- The Spherical Projection Trick: Visualizing unit vectors.
- Quaternion Frames
- Quaternion Curves
- Quaternion Splines

The Geometry of Quaternions

Recall \((a, b)\) with \(a^2 + b^2 = 1\) is a unit-length complex number or a point on the unit circle \(S^1\).

Similarly, \(q = (q_0, q)\) with \(q_0^2 + q^2 = 1\) is a unit-length quaternion or a point on the unit 3-sphere \(S^3\).

Visualizing a Quaternion?

Learn how to visualize a quaternion by starting with a visualization of a point on \(S^1\), the circle:

\[q_0 = \sqrt{1 - (q_1)^2} \]
Visualizing a Quaternion?? . . .

Next, visualize a point on S^2, the ordinary sphere using only the projection \tilde{q}:

$$q_0 = \sqrt{1 - (q_1)^2 - (q_2)^2}$$

Finally, visualize a point on S^3, the quaternion space:

DISPLAY only \tilde{q}, but **INFERENCE**

$$q_0 = \sqrt{1 - (q_1)^2 - (q_2)^2 - (q_3)^2}$$

Visualize Quaternion Rotations

Each 4D quaternion point $q = (\cos \frac{\theta}{2}, \hat{n} \sin \frac{\theta}{2})$ is a frame — a 3×3 rotation matrix generated by applying $R(\theta, \hat{n})$ to the identity frame.

Identity Matrix is the quaternion $q = (1, 0, 0, 0)$.

Visualize q using only the VECTOR part \tilde{q}, so Identity is the zero vector.
Visualize Quaternion Rotations...

The quaternion rotation by θ about \vec{n}:

$$q = (q_0, q_i) = (\cos(\theta/2), \vec{n}\sin(\theta/2))$$

represents the matrix $R(\theta, \vec{n})$.

Action of rotating identity by θ about \vec{n}:

$q \neq (1, 0, 0, 0)$ gives Vector part:

$$\vec{q} \Rightarrow \vec{n}\sin(\theta/2)$$

Quaternion Interpretation

Rotation axis is Fundamental 3-vector: We know

$$q_0 = \cos(\theta/2), \quad q_i = \vec{n}\sin(\theta/2)$$

We also know that any coordinate frame M can be written as $M = R(\theta, \vec{n})$.

Therefore q_i points exactly along the axis we have to rotate around to go from identity I to M, and the length of q_i tells us how much to rotate.

Displaying spherical points

Displaying a point on a sphere is ambiguous:

The same horizontal projection is shared by the North vector (h, q) and the South vector $(-h, q)$.

Orbit is Front/Back Line

2D projection of orbit around sphere has two half circles that line up in 2D, match at two edge points only in 3D.

Projective spherical points

Polar Projection removes ambiguity, destroys symmetry:

the North vector (h, q) and the South vector $(-h, q)$ project to different points on the line.
Displaying S^3

A quaternion point can be displayed in:

- **Parallel Projection**: so $q = (h, \bar{q})$ lines up with $q = (-h, \bar{q})$,
- **Polar projection**: so only the “north pole” projects within the unit sphere, and “south pole” is at ∞ of R^3.

Quaternion Curves

Represent Families of Frames

Each orientation is a 4D point on the 3-sphere representing a quaternion.

Thus families of frames, which are really rotation matrices, become curves on the 3-sphere.

⇒ treat these curves just like any other curve…

Demo: Simple Quaternion Curves

Families of Quaternion Frames, …

Example: torus knot and its (twice around) quaternion Frenet frame:

![Torus Knot](image1.png)

Remark: Group theory *demands* that x and y rotations combine to give some z rotation!

Quaternion Interpolations

- Shoemake (Siggraph ‘85) proposed using quaternions instead of Euler angles to get smooth frame interpolations without **Gimbal Lock**:

 BEST CHOICE: Animate objects and cameras using rotations represented on S^3 by quaternions

Interpolating on Spheres

N-dimensional spherical interpolation employs the “SLERP,” a constant angular velocity transition between two directions, \bar{n}_1 and \bar{n}_2:

$$
\bar{n}_{12}(t) = \text{Slerp}(\bar{n}_1, \bar{n}_2, t) = \bar{n}_1 \frac{\sin((1-t)\theta)}{\sin(\theta)} + \bar{n}_2 \frac{\sin(t\theta)}{\sin(\theta)}
$$

where $\cos \theta = \bar{n}_1 \cdot \bar{n}_2$.

Remark on Spherical Interpolation

(The SLERP formula is simply the result of applying a **Gram-Schmidt decomposition** to the two vectors while enforcing unit norm in any dimension.)

Spline Families

Schlag (in Graphics Gems II (1991)) gives recursive form for several cubic splines:

$$
S(x_1, x_2, x_3, x_4, t) =
L(L(x_1, x_2, f_1(t)), L(x_2, x_3, f_2(t)), f_123(t)),
L(L(x_2, x_3, f_2(t)), L(x_3, x_4, f_3(t)), f_234(t)), f(t))
$$

Spline Families . . .

For **Euclidean space**, the interpolator is

$$L(a, b, t) = a(1-t) + bt$$

while for **Spherical space**, the interpolator is

$$L(a, b, t) = a \frac{\sin((1-t)\theta)}{\sin \theta} + b \frac{\sin(t\theta)}{\sin \theta}
$$

where $a \cdot b = \cos \theta$.
Spline Families…

Catmull-Rom

\[
\begin{align*}
 f_{12} &= t + \frac{1}{3} \\
 f_{23} &= t \\
 f_{34} &= t - \frac{1}{3} \\
 f_{123} &= \frac{(t+1)}{2} \\
 f_{234} &= \frac{t}{2}
\end{align*}
\]

Bezier

\[
\begin{align*}
 f_{12} &= t \\
 f_{23} &= t \\
 f_{34} &= t \\
 f_{123} &= t \\
 f_{234} &= t \\
 f &= t
\end{align*}
\]

Uniform B-spline

\[
\begin{align*}
 f_{12} &= \frac{(t+2)}{3} \\
 f_{23} &= \frac{(t+1)}{3} \\
 f_{34} &= \frac{t}{3} \\
 f_{123} &= \frac{(t+1)}{2} \\
 f_{234} &= \frac{t}{2}
\end{align*}
\]

Plane Interpolations

In Euclidean space, these three basic cubic splines look like this:

The differences are in the derivatives: Bezier has to start matching all over at every fourth point; Catmull-Rom matches the first derivative; and B-spline is the cadillac, matching all derivatives but no control points.

Spherical Interpolations

Beziers, Catmull-Roms, and Uniform Bs

Quaternion Interpolations

Beziers, Catmull-Roms, and Uniform Bs
Optional:

Exponential Quaternion Map

Exponential map (Kim, Kim, and Shin; see also Grassia) has these advantages:

- **Derivative Computation Simpler.** Initial velocity conditions work.
- **Derivative Matching Simpler.** Easier to match neighboring derivatives.
- **No Renormalization Req’d.**
 4 vars, 3 DOF \Rightarrow 3 independent vars, constraints automatic.

Exponential Quaternion Map

METHOD: use only three “vector” degrees of freedom $\mathbf{n} = \mathbf{n} \theta / 2$: exponentiating gives four-component quaternion obeying unit 3-sphere constraint:

$$
q(\mathbf{n}) = e^{i \mathbf{n} \theta / 2} = (\cos(\theta / 2), \mathbf{n} \sin(\theta / 2))
$$

Note (Grassia): the quaternion frame evolution equations can be then be written directly in terms of the 3-vector \mathbf{n}!

Exponential Quaternion Map

Then, using logarithms of quaternion control points, e.g.,

$$
\mathbf{n} = \log q = \left(\frac{\theta}{2} \right) \frac{q}{|q|} = \cos^{-1}(q_0) \frac{q}{|q|}
$$

where \mathbf{n} is not normalized, we can use splines in the reduced Euclidean 3D space.

Exponential Quaternion Map

The trick:
Wherever you would see $x_0 + t(x_1 - x_0)$ in a Euclidean spline, replace $(x_1 - x_0)$ by

$$
\omega = \log((q_0)^{-1} \ast q_1)
$$

(This is easy: quaternion multiplication gives a new $Q = (Q_0, Q)$, and $\omega = \log Q$ is computed as usual.)

Exponential Quaternion Map

Then, with $\omega_i = \log((q_{i-1})^{-1} \ast q_i)$, let

$$
q(t) = q_0 \prod_{i=1}^{k} \exp(\omega_i \alpha_i(t))
$$

\Rightarrow Euclidean spline $\alpha_i(t)$ methods can be used, and derivative computations are simplified.
Exponential Quaternion Map

Example of a many-control-point Catmull-Rom spline done using the exponential method:

```
-1
-0.5
0
0.5
1
```

Even More Quaternion Interpolations

A number of other approaches can be found in the bibliography. Other literature includes:

- **Barr et al.** Global optimization emulating vanishing 4th derivative of Euclidean cubic splines, but on quaternion three-sphere.
- **Jüttler et al.:** Generalized rational splines, including quaternion component as well as a spatial component.

SUMMARY

- **The Spherical Projection Trick:** Visualizing unit vectors.
- **Quaternion Frames:** \vec{n} in quaternion tells how to make frame.
- **Quaternion Curves:** are like any other curve; spline applications.